Download citation
Download citation
link to html
The discovery of a new quaternary intermetallic compound of composition Zr3Mn3Sn4Ga during a survey of the Zr–Mn–Sn–Ga phase diagram is reported. Single-crystal X-ray diffraction reveals that the new compound crystallizes in a hexagonal lattice (space group P63/mmc, No. 194). The analysis of single-crystal X-ray diffraction data indicates that the atomic arrangement is an ordered variant of the high-temperature hexagonal Ti6Sn5 crystal structure. From a simple geometry point of view, the unit cell consists of GaZr3 octahedra chains and Mn chains growing along the sixfold symmetry axis c. The Mn chains are stacked within the ab basal plane in a kagome geometry, with large interatomic distances. The possible slight levels of Sn/Ga and Zr/Mn mixed occupancy based on additional results of electron probe microanalysis and single-crystal neutron diffraction are discussed. It is noteworthy that this compound is the first quaternary intermetallic discovered in this structure and the first Ti6Sn5 derivative bearing a magnetic metal, namely Mn, in the 6g position, which may give rise to interesting physical properties.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520622009453/ra5117sup1.cif
Contains datablocks zrmnsnga_300k, zrmnsnga_100k, ZrMnGaSn_neutron1, ZrMnGaSn_neutron2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520622009453/ra5117zrmnsnga_300ksup2.hkl
Contains datablock zrmnsnga_300k

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520622009453/ra5117zrmnsnga_100ksup3.hkl
Contains datablock zrmnsnga_100k

CCDC references: 2209554; 2211262; 2211263; 2211264

Computing details top

Cell refinement: SAINT V8.38A (Bruker, 2018) for zrmnsnga_300k, zrmnsnga_100k. Data reduction: SAINT V8.38A (Bruker, 2018) for zrmnsnga_300k, zrmnsnga_100k; DATARED (CFML-v.1) for ZrMnGaSn_neutron1, ZrMnGaSn_neutron2. Program(s) used to solve structure: SHELXS (Sheldrick, 2008) for zrmnsnga_300k, zrmnsnga_100k. Program(s) used to refine structure: SHELXL 2018/3 (Sheldrick, 2015) for zrmnsnga_300k, zrmnsnga_100k; FULLPROF for ZrMnGaSn_neutron1, ZrMnGaSn_neutron2. Molecular graphics: Olex2 1.3 (Dolomanov et al., 2009) for zrmnsnga_300k, zrmnsnga_100k. Software used to prepare material for publication: Olex2 1.3 (Dolomanov et al., 2009) for zrmnsnga_300k, zrmnsnga_100k.

(zrmnsnga_300k) top
Crystal data top
GaMn3Sn4Zr3Dx = 7.900 Mg m3
Mr = 982.96Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 9785 reflections
a = 9.2073 (4) Åθ = 4.4–43.1°
c = 5.6287 (2) ŵ = 22.99 mm1
V = 413.24 (4) Å3T = 300 K
Z = 2Needle, metallic gray
F(000) = 8520.11 × 0.10 × 0.09 mm
Data collection top
Bruker APEX-II CCD
diffractometer
622 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.1473 before and 0.0451 after correction. The Ratio of minimum to maximum transmission is 0.6136. The λ/2 correction factor is Not present.
θmax = 43.2°, θmin = 2.6°
Tmin = 0.459, Tmax = 0.749h = 1717
36702 measured reflectionsk = 1717
622 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0039P)2 + 2.0701P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max < 0.001
wR(F2) = 0.033Δρmax = 1.26 e Å3
S = 1.36Δρmin = 1.43 e Å3
622 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
18 parametersExtinction coefficient: 0.0072 (3)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn1(6h)0.78917 (3)0.57834 (2)0.2500000.00638 (5)
Sn2(2c)0.3333330.6666670.2500000.00726 (6)
Zr1(6h)0.14705 (4)0.29409 (2)0.2500000.00518 (6)
Ga1(2a)0.0000000.0000000.0000000.00595 (9)
Mn1(6g)0.5000000.0000000.0000000.00660 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn1(6h)0.00591 (6)0.00809 (8)0.00585 (7)0.00405 (4)0.000000.00000
Sn2(2c)0.00545 (8)0.00545 (8)0.01089 (14)0.00273 (4)0.000000.00000
Zr1(6h)0.00583 (8)0.00445 (10)0.00480 (10)0.00223 (5)0.000000.00000
Ga1(2a)0.00602 (13)0.00602 (13)0.0058 (2)0.00301 (6)0.000000.00000
Mn1(6g)0.00603 (11)0.00742 (16)0.00680 (15)0.00371 (8)0.00088 (7)0.00177 (13)
Geometric parameters (Å, º) top
Sn1—Zr1i2.9865 (2)Sn2—Mn1xi3.0074 (1)
Sn1—Zr12.9926 (2)Sn2—Mn1xii3.0074 (1)
Sn1—Zr1ii2.9865 (2)Sn2—Mn1iv3.0074 (1)
Sn1—Zr1iii2.9926 (2)Zr1—Zr1ii3.6633 (2)
Sn1—Mn1iv2.7692 (1)Zr1—Ga12.7348 (3)
Sn1—Mn1v2.7692 (1)Zr1—Ga1ii2.7348 (3)
Sn1—Mn12.7692 (1)Zr1—Mn1iv3.1582 (2)
Sn1—Mn1vi2.7692 (1)Zr1—Mn1x3.1582 (2)
Sn2—Zr1vii2.9708 (3)Zr1—Mn1v3.1582 (2)
Sn2—Zr1viii2.9708 (3)Zr1—Mn1xi3.1582 (2)
Sn2—Zr12.9708 (3)Ga1—Ga1ii2.8144 (1)
Sn2—Mn1ix3.0074 (1)Ga1—Ga1v2.8144 (1)
Sn2—Mn1x3.0074 (1)Mn1—Mn1xiii2.8144 (1)
Sn2—Mn1v3.0074 (1)Mn1—Mn1iv2.8144 (1)
Zr1i—Sn1—Zr1ii85.687 (14)Ga1ii—Zr1—Mn1v102.504 (3)
Zr1ii—Sn1—Zr175.567 (7)Ga1—Zr1—Mn1x102.504 (3)
Zr1i—Sn1—Zr175.567 (7)Ga1—Zr1—Mn1xi102.504 (3)
Zr1i—Sn1—Zr1iii75.567 (7)Ga1—Zr1—Mn1iv132.457 (5)
Zr1—Sn1—Zr1iii140.255 (15)Ga1ii—Zr1—Mn1iv102.504 (3)
Zr1ii—Sn1—Zr1iii75.568 (7)Ga1ii—Zr1—Mn1xi132.457 (5)
Mn1vi—Sn1—Zr1ii66.432 (5)Ga1—Zr1—Mn1v132.457 (5)
Mn1iv—Sn1—Zr1ii136.937 (7)Ga1ii—Zr1—Mn1x132.457 (5)
Mn1—Sn1—Zr1ii136.937 (7)Mn1v—Zr1—Zr1ii54.552 (5)
Mn1v—Sn1—Zr1ii66.432 (5)Mn1xi—Zr1—Zr1ii155.888 (6)
Mn1—Sn1—Zr1iii66.346 (3)Mn1iv—Zr1—Zr1ii103.187 (4)
Mn1iv—Sn1—Zr1i66.432 (5)Mn1x—Zr1—Zr1ii96.007 (4)
Mn1v—Sn1—Zr1i136.937 (7)Mn1v—Zr1—Mn1x52.918 (4)
Mn1—Sn1—Zr1i66.432 (5)Mn1x—Zr1—Mn1iv117.352 (10)
Mn1iv—Sn1—Zr1iii123.680 (2)Mn1v—Zr1—Mn1iv93.578 (7)
Mn1vi—Sn1—Zr1i136.937 (7)Mn1v—Zr1—Mn1xi117.352 (10)
Mn1v—Sn1—Zr1iii123.681 (2)Mn1x—Zr1—Mn1xi93.578 (7)
Mn1vi—Sn1—Zr1123.680 (2)Mn1iv—Zr1—Mn1xi52.918 (4)
Mn1v—Sn1—Zr166.346 (3)Zr1xiv—Ga1—Zr1xv95.904 (5)
Mn1iv—Sn1—Zr166.346 (3)Zr1xvi—Ga1—Zr1xvii95.904 (5)
Mn1—Sn1—Zr1123.680 (2)Zr1xiv—Ga1—Zr1xvii84.096 (5)
Mn1vi—Sn1—Zr1iii66.346 (3)Zr1xvii—Ga1—Zr1xv180.0
Mn1—Sn1—Mn1v153.928 (9)Zr1—Ga1—Zr1xvii84.096 (5)
Mn1—Sn1—Mn1vi112.447 (4)Zr1v—Ga1—Zr1xvii95.904 (5)
Mn1iv—Sn1—Mn1vi153.928 (9)Zr1xvi—Ga1—Zr1xv84.096 (5)
Mn1vi—Sn1—Mn1v61.081 (3)Zr1xiv—Ga1—Zr1v180.0
Mn1iv—Sn1—Mn161.081 (3)Zr1—Ga1—Zr1xv95.904 (5)
Mn1iv—Sn1—Mn1v112.447 (4)Zr1xvi—Ga1—Zr1180.0
Zr1viii—Sn2—Zr1120.0Zr1v—Ga1—Zr1xv84.096 (5)
Zr1viii—Sn2—Zr1vii120.0Zr1—Ga1—Zr1xiv95.904 (5)
Zr1—Sn2—Zr1vii120.0Zr1xvi—Ga1—Zr1v95.904 (5)
Zr1viii—Sn2—Mn1xii63.8Zr1—Ga1—Zr1v84.096 (5)
Zr1vii—Sn2—Mn1iv152.102 (1)Zr1xvi—Ga1—Zr1xiv84.096 (5)
Zr1viii—Sn2—Mn1iv63.776 (1)Zr1—Ga1—Ga1ii59.033 (4)
Zr1vii—Sn2—Mn1xi152.102 (1)Zr1xvi—Ga1—Ga1ii120.967 (4)
Zr1—Sn2—Mn1x63.8Zr1—Ga1—Ga1v120.967 (4)
Zr1—Sn2—Mn1iv63.8Zr1xiv—Ga1—Ga1ii59.033 (4)
Zr1viii—Sn2—Mn1v152.102 (1)Zr1xv—Ga1—Ga1v120.967 (4)
Zr1vii—Sn2—Mn1x63.8Zr1v—Ga1—Ga1ii120.967 (4)
Zr1vii—Sn2—Mn1v63.775 (1)Zr1xiv—Ga1—Ga1v120.967 (4)
Zr1vii—Sn2—Mn1xii63.776 (1)Zr1xvii—Ga1—Ga1ii120.967 (4)
Zr1—Sn2—Mn1ix152.102 (1)Zr1xvii—Ga1—Ga1v59.033 (4)
Zr1—Sn2—Mn1v63.8Zr1xv—Ga1—Ga1ii59.033 (4)
Zr1vii—Sn2—Mn1ix63.8Zr1xvi—Ga1—Ga1v59.033 (4)
Zr1viii—Sn2—Mn1x152.102 (1)Zr1v—Ga1—Ga1v59.033 (4)
Zr1viii—Sn2—Mn1xi63.776 (1)Ga1ii—Ga1—Ga1v180.0
Zr1—Sn2—Mn1xii152.102 (1)Sn1—Mn1—Sn1xviii180.0
Zr1—Sn2—Mn1xi63.8Sn1xix—Mn1—Sn1viii180.0
Zr1viii—Sn2—Mn1ix63.8Sn1xviii—Mn1—Sn1viii104.684 (9)
Mn1ix—Sn2—Mn1xi127.551 (1)Sn1—Mn1—Sn1xix104.684 (9)
Mn1xi—Sn2—Mn1xii99.881 (2)Sn1xviii—Mn1—Sn1xix75.316 (9)
Mn1xii—Sn2—Mn1x99.881 (2)Sn1—Mn1—Sn1viii75.316 (9)
Mn1v—Sn2—Mn1x55.796 (2)Sn1—Mn1—Sn2iii72.617 (3)
Mn1xi—Sn2—Mn1x99.881 (1)Sn1—Mn1—Sn2xx107.383 (3)
Mn1ix—Sn2—Mn1v99.881 (1)Sn1xix—Mn1—Sn2xx72.617 (3)
Mn1ix—Sn2—Mn1xii55.796 (2)Sn1xviii—Mn1—Sn2iii107.383 (3)
Mn1xi—Sn2—Mn1v127.6Sn1xviii—Mn1—Sn2xx72.617 (3)
Mn1ix—Sn2—Mn1x127.551 (1)Sn1xix—Mn1—Sn2iii107.383 (3)
Mn1iv—Sn2—Mn1v99.881 (2)Sn1viii—Mn1—Sn2iii72.617 (3)
Mn1iv—Sn2—Mn1x127.6Sn1viii—Mn1—Sn2xx107.383 (3)
Mn1xii—Sn2—Mn1v127.551 (1)Sn1xviii—Mn1—Zr1iii119.780 (4)
Mn1xi—Sn2—Mn1iv55.796 (3)Sn1xviii—Mn1—Zr1xxi60.084 (6)
Mn1ix—Sn2—Mn1iv99.881 (2)Sn1viii—Mn1—Zr1xxi60.220 (3)
Mn1iv—Sn2—Mn1xii127.551 (1)Sn1viii—Mn1—Zr1iii119.917 (6)
Sn1v—Zr1—Sn1i154.313 (14)Sn1xix—Mn1—Zr1xxi119.780 (4)
Sn1xi—Zr1—Sn1140.255 (15)Sn1xviii—Mn1—Zr1xx60.220 (4)
Sn1v—Zr1—Sn194.334 (1)Sn1—Mn1—Zr1iii60.220 (4)
Sn1v—Zr1—Sn1xi94.333 (1)Sn1viii—Mn1—Zr1xx60.083 (6)
Sn1i—Zr1—Sn1xi94.334 (1)Sn1xix—Mn1—Zr1iii60.083 (6)
Sn1i—Zr1—Sn194.334 (1)Sn1—Mn1—Zr1i60.084 (6)
Sn1v—Zr1—Zr1ii52.291 (5)Sn1—Mn1—Zr1xx119.780 (3)
Sn1xi—Zr1—Zr1ii146.234 (4)Sn1xviii—Mn1—Zr1i119.916 (6)
Sn1i—Zr1—Zr1ii117.993 (2)Sn1xix—Mn1—Zr1xx119.917 (6)
Sn1—Zr1—Zr1ii52.142 (4)Sn1viii—Mn1—Zr1i119.780 (4)
Sn1—Zr1—Mn1xi104.023 (8)Sn1—Mn1—Zr1xxi119.916 (6)
Sn1v—Zr1—Mn1xi145.707 (6)Sn1xix—Mn1—Zr1i60.220 (4)
Sn1xi—Zr1—Mn1iv104.023 (8)Sn1xviii—Mn1—Mn1iv120.540 (2)
Sn1i—Zr1—Mn1v145.707 (6)Sn1—Mn1—Mn1iv59.460 (2)
Sn1xi—Zr1—Mn1xi53.434 (3)Sn1viii—Mn1—Mn1xiii120.540 (2)
Sn1xi—Zr1—Mn1v104.023 (8)Sn1xix—Mn1—Mn1iv120.540 (2)
Sn1—Zr1—Mn1iv53.434 (3)Sn1xix—Mn1—Mn1xiii59.460 (2)
Sn1—Zr1—Mn1x104.023 (8)Sn1viii—Mn1—Mn1iv59.460 (2)
Sn1i—Zr1—Mn1xi53.484 (3)Sn1—Mn1—Mn1xiii120.540 (2)
Sn1v—Zr1—Mn1iv145.707 (6)Sn1xviii—Mn1—Mn1xiii59.460 (2)
Sn1—Zr1—Mn1v53.434 (3)Sn2iii—Mn1—Sn2xx180.0
Sn1i—Zr1—Mn1iv53.485 (3)Sn2xx—Mn1—Zr1iii122.451 (5)
Sn1v—Zr1—Mn1v53.485 (3)Sn2xx—Mn1—Zr1xxi122.452 (5)
Sn1i—Zr1—Mn1x145.707 (6)Sn2iii—Mn1—Zr1iii57.549 (5)
Sn1xi—Zr1—Mn1x53.434 (3)Sn2xx—Mn1—Zr1xx57.549 (5)
Sn1v—Zr1—Mn1x53.485 (3)Sn2iii—Mn1—Zr1xx122.451 (5)
Sn2—Zr1—Sn1i102.844 (7)Sn2iii—Mn1—Zr1xxi57.548 (5)
Sn2—Zr1—Sn1xi70.128 (7)Sn2iii—Mn1—Zr1i122.452 (5)
Sn2—Zr1—Sn170.127 (7)Sn2xx—Mn1—Zr1i57.548 (5)
Sn2—Zr1—Sn1v102.844 (7)Zr1i—Mn1—Zr1iii70.895 (9)
Sn2—Zr1—Zr1ii108.667 (2)Zr1i—Mn1—Zr1xx109.105 (9)
Sn2—Zr1—Mn1v58.676 (5)Zr1i—Mn1—Zr1xxi180.0
Sn2—Zr1—Mn1x58.676 (5)Zr1xxi—Mn1—Zr1iii109.105 (9)
Sn2—Zr1—Mn1iv58.676 (5)Zr1xxi—Mn1—Zr1xx70.895 (9)
Sn2—Zr1—Mn1xi58.676 (5)Zr1iii—Mn1—Zr1xx180.0
Ga1—Zr1—Sn1xi78.905 (6)Mn1xiii—Mn1—Sn2iii62.102 (1)
Ga1ii—Zr1—Sn178.906 (6)Mn1iv—Mn1—Sn2iii117.898 (1)
Ga1ii—Zr1—Sn1i79.012 (6)Mn1xiii—Mn1—Sn2xx117.898 (1)
Ga1ii—Zr1—Sn1xi140.839 (10)Mn1iv—Mn1—Sn2xx62.102 (1)
Ga1—Zr1—Sn1i79.012 (6)Mn1xiii—Mn1—Zr1xxi63.541 (2)
Ga1ii—Zr1—Sn1v79.012 (6)Mn1iv—Mn1—Zr1xx63.541 (2)
Ga1—Zr1—Sn1140.839 (10)Mn1xiii—Mn1—Zr1i116.459 (2)
Ga1—Zr1—Sn1v79.012 (6)Mn1xiii—Mn1—Zr1iii63.541 (2)
Ga1—Zr1—Sn2149.033 (4)Mn1iv—Mn1—Zr1iii116.459 (2)
Ga1ii—Zr1—Sn2149.033 (4)Mn1iv—Mn1—Zr1i63.541 (2)
Ga1ii—Zr1—Zr1ii47.952 (2)Mn1xiii—Mn1—Zr1xx116.459 (2)
Ga1—Zr1—Zr1ii96.942 (6)Mn1iv—Mn1—Zr1xxi116.459 (2)
Ga1—Zr1—Ga1ii61.934 (7)Mn1xiii—Mn1—Mn1iv180.0
Symmetry codes: (i) y, x+y, z; (ii) xy, x, z+1/2; (iii) x, y, z+1; (iv) x+1, y, z1/2; (v) xy, x, z1/2; (vi) x+y+1, x+1, z; (vii) x+y+1, x+1, z1/2; (viii) y+1, xy, z; (ix) y+1, x+y+1, z1/2; (x) x+y+1, x+1, z1; (xi) x, y, z1; (xii) y+1, xy, z1; (xiii) x+1, y, z+1/2; (xiv) x+y, x, z1/2; (xv) y, xy, z; (xvi) x, y, z1; (xvii) y, x+y, z1; (xviii) x+1, y, z+1; (xix) y, x+y, z+1; (xx) x+1, y, z; (xxi) y+1, xy, z+1.
(zrmnsnga_100k) top
Crystal data top
GaMn3Sn4Zr3Dx = 7.944 Mg m3
Mr = 982.96Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 9901 reflections
a = 9.1953 (18) Åθ = 2.6–43.0°
c = 5.6118 (11) ŵ = 23.12 mm1
V = 410.93 (18) Å3T = 100 K
Z = 2Needle, metallic gray
F(000) = 8520.11 × 0.10 × 0.09 mm
Data collection top
Bruker APEX-II CCD
diffractometer
618 reflections with I > 2σ(I)
φ and ω scansRint = 0.059
Absorption correction: multi-scan
SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.1419 before and 0.0893 after correction. The Ratio of minimum to maximum transmission is 0.6091. The λ/2 correction factor is Not present.
θmax = 43.0°, θmin = 2.6°
Tmin = 0.456, Tmax = 0.749h = 1717
27596 measured reflectionsk = 1717
618 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.005P)2 + 4.8232P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max < 0.001
wR(F2) = 0.047Δρmax = 2.06 e Å3
S = 1.32Δρmin = 2.41 e Å3
618 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
18 parametersExtinction coefficient: 0.0061 (3)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn1(6h)0.78887 (4)0.57774 (2)0.2500000.00261 (6)
Sn2(2c)0.3333330.6666670.2500000.00265 (8)
Zr1(6h)0.14700 (5)0.29401 (3)0.2500000.00204 (8)
Ga1(2a)0.0000000.0000000.0000000.00282 (12)
Mn1(6g)0.5000000.0000000.0000000.00248 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn1(6h)0.00224 (8)0.00307 (10)0.00282 (10)0.00153 (5)0.000000.00000
Sn2(2c)0.00158 (10)0.00158 (10)0.00480 (17)0.00079 (5)0.000000.00000
Zr1(6h)0.00201 (11)0.00128 (14)0.00260 (14)0.00064 (7)0.000000.00000
Ga1(2a)0.00262 (17)0.00262 (17)0.0032 (3)0.00131 (8)0.000000.00000
Mn1(6g)0.00208 (15)0.0025 (2)0.0030 (2)0.00125 (10)0.00022 (8)0.00044 (17)
Geometric parameters (Å, º) top
Sn1—Zr1i2.9860 (6)Sn2—Mn1xi3.0024 (5)
Sn1—Zr12.9860 (5)Sn2—Mn1xii3.0024 (5)
Sn1—Zr1ii2.9859 (6)Sn2—Mn1vi3.0024 (5)
Sn1—Zr1iii2.9860 (6)Zr1—Zr1ii3.6544 (6)
Sn1—Mn1iv2.7633 (4)Zr1—Ga12.7295 (6)
Sn1—Mn12.7633 (4)Zr1—Ga1ii2.7295 (6)
Sn1—Mn1v2.7633 (4)Zr1—Mn1vi3.1534 (6)
Sn1—Mn1vi2.7633 (4)Zr1—Mn1x3.1534 (6)
Sn2—Zr1vii2.9676 (7)Zr1—Mn1v3.1534 (6)
Sn2—Zr1viii2.9675 (7)Zr1—Mn1xi3.1534 (6)
Sn2—Zr12.9676 (7)Ga1—Ga1ii2.8059 (5)
Sn2—Mn1ix3.0024 (5)Ga1—Ga1v2.8059 (5)
Sn2—Mn1x3.0024 (5)Mn1—Mn1xiii2.8059 (5)
Sn2—Mn1v3.0024 (5)Mn1—Mn1vi2.8059 (5)
Zr1i—Sn1—Zr1ii85.540 (18)Ga1ii—Zr1—Mn1v102.564 (9)
Zr1ii—Sn1—Zr175.458 (10)Ga1—Zr1—Mn1x102.564 (9)
Zr1i—Sn1—Zr175.458 (10)Ga1—Zr1—Mn1xi102.564 (9)
Zr1i—Sn1—Zr1iii75.458 (10)Ga1—Zr1—Mn1vi132.446 (7)
Zr1—Sn1—Zr1iii140.00 (2)Ga1ii—Zr1—Mn1vi102.564 (9)
Zr1ii—Sn1—Zr1iii75.458 (10)Ga1ii—Zr1—Mn1xi132.446 (7)
Mn1vi—Sn1—Zr1ii136.832 (10)Ga1—Zr1—Mn1v132.446 (7)
Mn1iv—Sn1—Zr1ii66.394 (7)Ga1ii—Zr1—Mn1x132.446 (7)
Mn1v—Sn1—Zr1ii66.394 (7)Mn1v—Zr1—Zr1ii54.588 (7)
Mn1—Sn1—Zr1ii136.832 (10)Mn1xi—Zr1—Zr1ii155.885 (8)
Mn1v—Sn1—Zr1iii123.621 (6)Mn1vi—Zr1—Zr1ii103.268 (14)
Mn1iv—Sn1—Zr1i136.833 (10)Mn1x—Zr1—Zr1ii95.956 (11)
Mn1—Sn1—Zr1i66.393 (7)Mn1v—Zr1—Mn1x52.835 (14)
Mn1v—Sn1—Zr1i136.833 (10)Mn1x—Zr1—Mn1vi117.310 (14)
Mn1iv—Sn1—Zr1iii66.393 (9)Mn1v—Zr1—Mn1vi93.607 (11)
Mn1vi—Sn1—Zr1i66.393 (7)Mn1v—Zr1—Mn1xi117.310 (14)
Mn1—Sn1—Zr1iii66.394 (9)Mn1x—Zr1—Mn1xi93.607 (11)
Mn1vi—Sn1—Zr166.393 (10)Mn1vi—Zr1—Mn1xi52.835 (14)
Mn1—Sn1—Zr1123.621 (6)Zr1v—Ga1—Zr1xiv84.048 (11)
Mn1iv—Sn1—Zr1123.621 (6)Zr1xv—Ga1—Zr1xvi95.952 (11)
Mn1v—Sn1—Zr166.393 (9)Zr1v—Ga1—Zr1xvi95.952 (11)
Mn1vi—Sn1—Zr1iii123.622 (6)Zr1xvi—Ga1—Zr1xiv180.0
Mn1v—Sn1—Mn1154.110 (12)Zr1xvii—Ga1—Zr1xvi84.048 (11)
Mn1v—Sn1—Mn1vi112.589 (13)Zr1—Ga1—Zr1xvi84.047 (11)
Mn1iv—Sn1—Mn1vi154.110 (12)Zr1xv—Ga1—Zr1xiv84.048 (11)
Mn1vi—Sn1—Mn161.021 (14)Zr1v—Ga1—Zr184.047 (11)
Mn1iv—Sn1—Mn1v61.021 (14)Zr1xvii—Ga1—Zr1xiv95.952 (11)
Mn1iv—Sn1—Mn1112.589 (13)Zr1xv—Ga1—Zr1xvii84.047 (11)
Zr1viii—Sn2—Zr1120.0Zr1—Ga1—Zr1xiv95.953 (11)
Zr1viii—Sn2—Zr1vii120.0Zr1xvii—Ga1—Zr1v180.0
Zr1—Sn2—Zr1vii120.0Zr1xv—Ga1—Zr1180.0
Zr1viii—Sn2—Mn1xii63.765 (2)Zr1xvii—Ga1—Zr195.953 (11)
Zr1vii—Sn2—Mn1vi152.142 (6)Zr1xv—Ga1—Zr1v95.953 (11)
Zr1viii—Sn2—Mn1vi63.765 (2)Zr1xvii—Ga1—Ga1ii59.069 (8)
Zr1vii—Sn2—Mn1xi152.142 (6)Zr1xv—Ga1—Ga1ii120.931 (8)
Zr1—Sn2—Mn1x63.765 (1)Zr1xvii—Ga1—Ga1v120.931 (8)
Zr1—Sn2—Mn1vi63.765 (1)Zr1v—Ga1—Ga1ii120.931 (8)
Zr1viii—Sn2—Mn1v152.142 (6)Zr1xiv—Ga1—Ga1v120.930 (8)
Zr1vii—Sn2—Mn1x63.764 (2)Zr1—Ga1—Ga1ii59.070 (8)
Zr1vii—Sn2—Mn1v63.764 (1)Zr1v—Ga1—Ga1v59.069 (8)
Zr1vii—Sn2—Mn1xii63.766 (2)Zr1xvi—Ga1—Ga1ii120.930 (8)
Zr1—Sn2—Mn1ix152.142 (6)Zr1xvi—Ga1—Ga1v59.070 (8)
Zr1—Sn2—Mn1v63.765 (1)Zr1xiv—Ga1—Ga1ii59.070 (8)
Zr1vii—Sn2—Mn1ix63.766 (2)Zr1xv—Ga1—Ga1v59.069 (8)
Zr1viii—Sn2—Mn1x152.142 (6)Zr1—Ga1—Ga1v120.931 (8)
Zr1viii—Sn2—Mn1xi63.765 (2)Ga1ii—Ga1—Ga1v180.0
Zr1—Sn2—Mn1xii152.142 (6)Sn1—Mn1—Sn1xviii104.827 (13)
Zr1—Sn2—Mn1xi63.765 (2)Sn1viii—Mn1—Sn1xix104.827 (12)
Zr1viii—Sn2—Mn1ix63.765 (2)Sn1xviii—Mn1—Sn1xix75.173 (12)
Mn1ix—Sn2—Mn1xi127.530 (4)Sn1—Mn1—Sn1viii75.173 (13)
Mn1xi—Sn2—Mn1xii99.932 (8)Sn1xviii—Mn1—Sn1viii180.0
Mn1xii—Sn2—Mn1x99.932 (8)Sn1—Mn1—Sn1xix180.0
Mn1v—Sn2—Mn1x55.715 (13)Sn1—Mn1—Sn2iii72.501 (11)
Mn1xi—Sn2—Mn1x99.932 (8)Sn1—Mn1—Sn2xx107.499 (11)
Mn1ix—Sn2—Mn1v99.932 (8)Sn1viii—Mn1—Sn2xx107.499 (10)
Mn1ix—Sn2—Mn1xii55.715 (13)Sn1xviii—Mn1—Sn2iii107.499 (12)
Mn1xi—Sn2—Mn1v127.530 (3)Sn1xviii—Mn1—Sn2xx72.501 (12)
Mn1ix—Sn2—Mn1x127.530 (4)Sn1viii—Mn1—Sn2iii72.501 (12)
Mn1vi—Sn2—Mn1v99.932 (8)Sn1xix—Mn1—Sn2iii107.498 (11)
Mn1vi—Sn2—Mn1x127.530 (4)Sn1xix—Mn1—Sn2xx72.502 (11)
Mn1xii—Sn2—Mn1v127.530 (4)Sn1xviii—Mn1—Zr1iii60.190 (8)
Mn1xi—Sn2—Mn1vi55.715 (13)Sn1xviii—Mn1—Zr1xxi119.810 (13)
Mn1ix—Sn2—Mn1vi99.932 (8)Sn1xix—Mn1—Zr1xxi60.191 (9)
Mn1vi—Sn2—Mn1xii127.530 (4)Sn1xix—Mn1—Zr1iii119.810 (13)
Sn1v—Zr1—Sn1xi94.336 (1)Sn1viii—Mn1—Zr1xxi60.190 (13)
Sn1i—Zr1—Sn194.336 (2)Sn1xviii—Mn1—Zr1xx119.810 (8)
Sn1v—Zr1—Sn194.336 (2)Sn1—Mn1—Zr1iii60.190 (13)
Sn1v—Zr1—Sn1i154.460 (18)Sn1xix—Mn1—Zr1xx60.190 (13)
Sn1xi—Zr1—Sn1i94.336 (2)Sn1viii—Mn1—Zr1iii119.810 (8)
Sn1xi—Zr1—Sn1140.00 (2)Sn1—Mn1—Zr1i60.191 (8)
Sn1v—Zr1—Zr1ii52.271 (10)Sn1—Mn1—Zr1xx119.810 (13)
Sn1i—Zr1—Zr1ii118.054 (6)Sn1xviii—Mn1—Zr1i60.190 (13)
Sn1xi—Zr1—Zr1ii146.209 (8)Sn1viii—Mn1—Zr1xx60.190 (8)
Sn1—Zr1—Zr1ii52.270 (11)Sn1xix—Mn1—Zr1i119.810 (8)
Sn1—Zr1—Mn1xi103.895 (14)Sn1—Mn1—Zr1xxi119.809 (8)
Sn1v—Zr1—Mn1xi145.686 (9)Sn1viii—Mn1—Zr1i119.810 (13)
Sn1i—Zr1—Mn1vi53.417 (5)Sn1xviii—Mn1—Mn1vi120.511 (7)
Sn1xi—Zr1—Mn1v103.896 (14)Sn1—Mn1—Mn1vi59.489 (7)
Sn1i—Zr1—Mn1xi53.417 (4)Sn1xix—Mn1—Mn1xiii59.489 (7)
Sn1i—Zr1—Mn1v145.686 (10)Sn1viii—Mn1—Mn1vi59.489 (7)
Sn1—Zr1—Mn1vi53.416 (6)Sn1viii—Mn1—Mn1xiii120.511 (7)
Sn1—Zr1—Mn1x103.895 (13)Sn1xix—Mn1—Mn1vi120.511 (7)
Sn1xi—Zr1—Mn1xi53.416 (6)Sn1—Mn1—Mn1xiii120.511 (7)
Sn1v—Zr1—Mn1vi145.686 (9)Sn1xviii—Mn1—Mn1xiii59.489 (7)
Sn1—Zr1—Mn1v53.416 (6)Sn2iii—Mn1—Sn2xx180.0
Sn1xi—Zr1—Mn1vi103.896 (13)Sn2xx—Mn1—Zr1iii122.419 (8)
Sn1v—Zr1—Mn1v53.416 (5)Sn2xx—Mn1—Zr1xxi122.421 (7)
Sn1xi—Zr1—Mn1x53.416 (6)Sn2iii—Mn1—Zr1iii57.581 (7)
Sn1i—Zr1—Mn1x145.686 (10)Sn2xx—Mn1—Zr1xx57.581 (7)
Sn1v—Zr1—Mn1x53.416 (5)Sn2iii—Mn1—Zr1xx122.419 (8)
Sn2—Zr1—Sn1xi70.000 (11)Sn2iii—Mn1—Zr1xxi57.579 (7)
Sn2—Zr1—Sn1i102.770 (9)Sn2iii—Mn1—Zr1i122.421 (7)
Sn2—Zr1—Sn169.999 (11)Sn2xx—Mn1—Zr1i57.579 (7)
Sn2—Zr1—Sn1v102.770 (9)Zr1i—Mn1—Zr1iii70.824 (15)
Sn2—Zr1—Zr1ii108.683 (4)Zr1i—Mn1—Zr1xx109.176 (15)
Sn2—Zr1—Mn1v58.655 (7)Zr1i—Mn1—Zr1xxi180.0
Sn2—Zr1—Mn1x58.655 (7)Zr1xxi—Mn1—Zr1iii109.176 (15)
Sn2—Zr1—Mn1vi58.655 (7)Zr1xxi—Mn1—Zr1xx70.824 (15)
Sn2—Zr1—Mn1xi58.655 (7)Zr1iii—Mn1—Zr1xx180.0
Ga1—Zr1—Sn1i79.070 (8)Mn1xiii—Mn1—Sn2iii62.142 (7)
Ga1ii—Zr1—Sn179.070 (14)Mn1vi—Mn1—Sn2iii117.858 (7)
Ga1ii—Zr1—Sn1xi140.931 (14)Mn1xiii—Mn1—Sn2xx117.858 (7)
Ga1ii—Zr1—Sn1i79.070 (8)Mn1vi—Mn1—Sn2xx62.142 (7)
Ga1—Zr1—Sn1xi79.070 (14)Mn1xiii—Mn1—Zr1xxi63.582 (7)
Ga1ii—Zr1—Sn1v79.070 (8)Mn1vi—Mn1—Zr1xx63.583 (7)
Ga1—Zr1—Sn1140.931 (14)Mn1xiii—Mn1—Zr1i116.418 (7)
Ga1—Zr1—Sn1v79.070 (8)Mn1xiii—Mn1—Zr1iii63.583 (7)
Ga1—Zr1—Sn2149.070 (8)Mn1vi—Mn1—Zr1iii116.417 (7)
Ga1ii—Zr1—Sn2149.070 (8)Mn1vi—Mn1—Zr1i63.582 (7)
Ga1ii—Zr1—Zr1ii47.976 (6)Mn1xiii—Mn1—Zr1xx116.417 (7)
Ga1—Zr1—Zr1ii96.885 (13)Mn1vi—Mn1—Zr1xxi116.418 (7)
Ga1—Zr1—Ga1ii61.861 (17)Mn1xiii—Mn1—Mn1vi180.0
Symmetry codes: (i) y, x+y, z; (ii) xy, x, z+1/2; (iii) x, y, z+1; (iv) x+y+1, x+1, z; (v) xy, x, z1/2; (vi) x+1, y, z1/2; (vii) x+y+1, x+1, z1/2; (viii) y+1, xy, z; (ix) y+1, x+y+1, z1/2; (x) x+y+1, x+1, z1; (xi) x, y, z1; (xii) y+1, xy, z1; (xiii) x+1, y, z+1/2; (xiv) y, xy, z; (xv) x, y, z1; (xvi) y, x+y, z1; (xvii) x+y, x, z1/2; (xviii) y, x+y, z+1; (xix) x+1, y, z+1; (xx) x+1, y, z; (xxi) y+1, xy, z+1.
(ZrMnGaSn_neutron1) top
Crystal data top
Hexagonal, P63/mmcc = 5.63860 Å
Hall symbol: -P 6c 2cV = 414.31 Å3
a = 9.21110 ÅConstant Wavelength Neutron Diffraction radiation, λ = 1.38300 Å
Data collection top
Radiation source: nuclear reactor50 independent reflections
300 measured reflectionsRint = 0.075
Refinement top
R[F2 > 2σ(F2)] = 0.0599 parameters
wR(F2) = 0.0910 restraints
50 reflections3 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn1(6h)0.7885 (5)0.5770 (5)0.2500000.020 (3)*
Sn2(2c)0.3333330.6666670.2500000.027 (5)*
Zr1(6h)0.1473 (4)0.2946 (4)0.2500000.012 (3)*0.935 (12)
Zr2(6g)0.5000000.0000000.0000000.000 (5)*0.065 (12)
Ga1(2a)0.0000000.0000000.0000000.017 (4)*
Mn1(6g)0.5000000.0000000.0000000.000 (5)*0.935 (12)
Mn2(6h)0.1473 (4)0.2946 (4)0.2500000.012 (3)*0.065 (12)
(ZrMnGaSn_neutron2) top
Crystal data top
Hexagonal, P63/mmcc = 5.63860 Å
Hall symbol: -P 6c 2cV = 414.31 Å3
a = 9.21110 ÅConstant Wavelength Neutron Diffraction radiation, λ = 1.38300 Å
Data collection top
Radiation source: nuclear reactor50 independent reflections
300 measured reflectionsRint = 0.075
Refinement top
R[F2 > 2σ(F2)] = 0.0647 parameters
wR(F2) = 0.1225 constraints
50 reflections
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn1(6h)0.7884 (7)0.5768 (7)0.2500000.010 (3)*
Sn2(2c)0.3333330.6666670.2500000.027630*
Zr1(6h)0.1475 (5)0.2950 (5)0.2500000.014 (4)*
Ga1(2a)0.0000000.0000000.0000000.006 (4)*
Mn1(6g)0.5000000.0000000.0000000.019 (5)*
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds