Download citation
Download citation
link to html
Almost 50 years after the initial report, the crystal structure of Cu2GeSe3, a I2-IV-VI3 semiconductor, has been revised using modern single-crystal X-ray diffraction data. The structure of this material can be properly described in the monoclinic space group Cc (No. 9) with unit-cell parameters a = 6.7703 (4) Å, b = 11.8624 (5) Å, c = 6.7705 (4) Å, β = 108.512 (6)°, V = 515.62 (5) Å3, Z = 4, rather than in the orthorhombic space group Imm2 (No. 44) with unit-cell parameters a = 11.860 (3), b = 3.960 (1), c = 5.485 (2) Å, V = 257.61 Å3, Z = 2, as originally proposed [Parthé & Garín (1971). Monatsh. Chem. 102, 1197–1208]. Contrary to what was observed in the orthorhombic structure, the distortions of the tetrahedra in the monoclinic structure are consistent with the distortions expected from considerations derived from the bond valence model. A brief revision of the structures reported for the I2-IV-VI3 family of semiconducting compounds (I: Cu, Ag; IV: Si, Ge, Sn; and VI: S, Se, Te) is also presented.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520620016571/ra5092sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620016571/ra5092Isup2.hkl
Contains datablock I

CCDC reference: 2051991

Computing details top

Data collection: CrysAlis PRO 1.171.39.28e (Rigaku OD, 2015); cell refinement: CrysAlis PRO 1.171.39.28e (Rigaku OD, 2015); data reduction: CrysAlis PRO 1.171.39.28e (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009) and enCIFer (Allen et al., 2004).

(I) top
Crystal data top
Cu2GeSe3F(000) = 768
Mr = 436.55Dx = 5.624 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71075 Å
a = 6.7703 (4) ÅCell parameters from 2471 reflections
b = 11.8624 (5) Åθ = 3.1–34.8°
c = 6.7705 (4) ŵ = 34.96 mm1
β = 108.512 (6)°T = 293 K
V = 515.62 (5) Å3Irregular fragment, grey
Z = 40.24 × 0.23 × 0.22 mm
Data collection top
Rigaku XtaLab Pro
diffractometer
1824 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1605 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 5.8140 pixels mm-1θmax = 34.6°, θmin = 3.4°
ω scansh = 1010
Absorption correction: multi-scan
CrysAlisPro 1.171.39.28e (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1818
Tmin = 0.505, Tmax = 1.000l = 1010
4227 measured reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0266P)2 + 0.1027P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.027Δρmax = 1.53 e Å3
wR(F2) = 0.077Δρmin = 1.83 e Å3
S = 1.16Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1824 reflectionsExtinction coefficient: 0.0158 (8)
56 parametersAbsolute structure: Flack x determined using 626 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
2 restraintsAbsolute structure parameter: 0.043 (18)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.0001 (2)0.08657 (5)0.49994 (18)0.0163 (3)
Cu20.51489 (16)0.24677 (5)0.50463 (15)0.0152 (3)
Ge0.52816 (19)0.08587 (3)0.52302 (18)0.00457 (14)
Se10.38650 (10)0.08110 (3)0.64001 (9)0.00524 (19)
Se20.38880 (11)0.24558 (4)0.63172 (10)0.00721 (16)
Se30.89215 (10)0.08425 (3)0.62468 (10)0.0066 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0197 (9)0.0157 (3)0.0137 (6)0.0019 (3)0.0058 (6)0.0006 (3)
Cu20.0146 (4)0.0176 (3)0.0126 (7)0.0014 (3)0.0034 (4)0.0013 (3)
Ge0.0041 (3)0.0067 (2)0.0023 (3)0.0005 (3)0.0001 (2)0.0003 (2)
Se10.0054 (3)0.0071 (2)0.0021 (3)0.00096 (16)0.0005 (2)0.00054 (15)
Se20.0072 (3)0.0082 (2)0.0059 (3)0.0019 (2)0.00160 (19)0.0005 (2)
Se30.0041 (3)0.0090 (2)0.0061 (4)0.00028 (14)0.0006 (2)0.00026 (15)
Geometric parameters (Å, º) top
Cu1—Se12.4855 (18)Cu2—Se2v2.3947 (15)
Cu1—Se2i2.3985 (10)Cu2—Se3i2.4080 (10)
Cu1—Se3ii2.3964 (10)Ge—Se12.4398 (9)
Cu1—Se3iii2.4106 (16)Ge—Se1v2.4634 (15)
Cu2—Se12.4420 (10)Ge—Se22.3371 (10)
Cu2—Se2iv2.4028 (16)Ge—Se32.3388 (17)
Se2i—Cu1—Se1107.24 (5)Cu2—Se1—Cu1107.04 (4)
Se2i—Cu1—Se3iii112.08 (5)Cu2—Se1—Gevi108.10 (4)
Se3ii—Cu1—Se1104.18 (5)Gevi—Se1—Cu1114.32 (5)
Se3iii—Cu1—Se1109.36 (6)Ge—Se1—Cu1111.85 (5)
Se3ii—Cu1—Se2i113.85 (6)Ge—Se1—Cu2107.94 (5)
Se3ii—Cu1—Se3iii109.73 (5)Ge—Se1—Gevi107.37 (5)
Se2iv—Cu2—Se1110.86 (5)Cu1vii—Se2—Cu2viii104.75 (5)
Se2v—Cu2—Se1109.92 (5)Cu2vi—Se2—Cu1vii109.78 (5)
Se2v—Cu2—Se2iv111.11 (6)Cu2vi—Se2—Cu2viii111.08 (6)
Se2iv—Cu2—Se3i106.56 (5)Ge—Se2—Cu1vii110.50 (5)
Se2v—Cu2—Se3i108.36 (4)Ge—Se2—Cu2viii113.74 (6)
Se3i—Cu2—Se1109.94 (5)Ge—Se2—Cu2vi107.00 (5)
Se1—Ge—Se1v105.15 (5)Cu1ix—Se3—Cu1x110.92 (5)
Se2—Ge—Se1108.44 (6)Cu1ix—Se3—Cu2vii114.12 (6)
Se2—Ge—Se1v106.79 (5)Cu2vii—Se3—Cu1x108.96 (4)
Se2—Ge—Se3114.02 (6)Ge—Se3—Cu1ix108.27 (5)
Se3—Ge—Se1112.57 (5)Ge—Se3—Cu1x104.37 (6)
Se3—Ge—Se1v109.35 (5)Ge—Se3—Cu2vii109.76 (4)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x1, y, z; (iii) x1, y, z1/2; (iv) x+1/2, y1/2, z; (v) x, y, z1/2; (vi) x, y, z+1/2; (vii) x+1/2, y+1/2, z; (viii) x1/2, y+1/2, z; (ix) x+1, y, z; (x) x+1, y, z+1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds