Download citation
Download citation
link to html
Hexa­nitro­stilbene (HNS) is an energetic material with wide application and excellent comprehensive performance. cis-HNS is successfully prepared using crude HNS with a purity of 95% as the raw material and N-methyl pyrrolidone (NMP) as the solvent. After separation and purification, acetone is used as a solvent to obtain light-yellow crystals at room temperature. The molecular structure of cis-HNS is determined through analysis of Fourier transform infrared, 13C NMR and 1H NMR spectroscopy and single-crystal X-ray diffraction data. The thermal decomposition properties of cis and trans-HNS are studied using differential scanning calorimetry (DSC). When the heating rate is low, cis-HNS will undergo a crystal transformation after melting, from liquid cis-HNS to liquid trans-HNS, and then it will solidify and release heat. According to the results of DSC data, the apparent kinetic parameters of thermal decomposition of cis- and trans-HNS were obtained by Kissinger method [Kissinger (1957). Anal. Chem. 29, 1702–1706] and Ozawa method [Ozawa (1965). Bull. Chem. Soc. Jpn. 38, 1881–1886], respectively. The spontaneous combustion temperature and self-accelerating decomposition temperature of cis and trans-HNS are calculated by the Zhang-Hu-Xie-Li method [Zhang et al. (1994). Thermochim. Acta, 244, 171–176].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520620015371/ra5090sup1.cif
Contains datablock cis-HNS

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620015371/ra5090cis-HNSsup2.hkl
Contains datablock cis-HNS

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520620015371/ra5090sup3.pdf
Supplementary material

CCDC reference: 2017990

Computing details top

Cell refinement: SAINT V8.38A (?, 2016); data reduction: SAINT V8.38A (?, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(cis-HNS) top
Crystal data top
C14H6N6O12F(000) = 1824
Mr = 450.25Dx = 1.815 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.2210 (6) ÅCell parameters from 6085 reflections
b = 10.3080 (3) Åθ = 2.2–26.3°
c = 19.4134 (5) ŵ = 0.16 mm1
β = 129.087 (1)°T = 170 K
V = 3296.17 (16) Å3Block, colourless
Z = 80.15 × 0.08 × 0.05 mm
Data collection top
D8 VENTURE
diffractometer
Rint = 0.088
Absorption correction: multi-scan
SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.0842 before and 0.0479 after correction. The Ratio of minimum to maximum transmission is 0.9408. The λ/2 correction factor is Not present.
θmax = 26.5°, θmin = 2.2°
Tmin = 0.701, Tmax = 0.745h = 2626
17600 measured reflectionsk = 1212
3373 independent reflectionsl = 2424
2698 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0482P)2 + 3.4414P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3373 reflectionsΔρmax = 0.29 e Å3
298 parametersΔρmin = 0.28 e Å3
301 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O60.75656 (9)0.74827 (14)0.40818 (9)0.0324 (3)
O40.93226 (9)0.79655 (13)0.53960 (9)0.0317 (3)
O70.91740 (9)0.33299 (16)0.39913 (10)0.0365 (4)
O110.46780 (9)0.41969 (15)0.14686 (10)0.0353 (4)
O100.72633 (10)0.53469 (14)0.09454 (9)0.0334 (4)
O120.47955 (9)0.37459 (15)0.04638 (9)0.0361 (4)
O80.79229 (9)0.29173 (14)0.34001 (9)0.0341 (4)
O90.82602 (9)0.45615 (16)0.22315 (10)0.0362 (4)
O10.83129 (11)0.21228 (16)0.62521 (12)0.0465 (4)
O20.92088 (11)0.33393 (18)0.73719 (11)0.0474 (5)
O50.70945 (11)0.58492 (17)0.43374 (10)0.0442 (4)
N40.50520 (10)0.42001 (15)0.11851 (11)0.0247 (4)
N60.85907 (10)0.33946 (15)0.39724 (10)0.0243 (4)
N50.75780 (10)0.50229 (15)0.17035 (11)0.0241 (4)
N20.93302 (10)0.72497 (16)0.58937 (10)0.0286 (4)
N30.72232 (10)0.64347 (16)0.38901 (10)0.0249 (4)
N10.87753 (12)0.30498 (18)0.65845 (13)0.0344 (4)
C110.61741 (11)0.52981 (17)0.25466 (12)0.0205 (4)
H110.5860010.5321720.2740320.025*
C120.58702 (11)0.47618 (17)0.17417 (12)0.0207 (4)
C130.63158 (11)0.47012 (17)0.14458 (12)0.0210 (4)
H130.6092200.4353340.0880140.025*
C90.74601 (11)0.57442 (16)0.28371 (11)0.0180 (4)
O30.9443 (2)0.7628 (4)0.6570 (2)0.0451 (9)0.75
C80.82967 (11)0.62663 (17)0.33614 (11)0.0198 (4)
H80.8403020.6768940.3034560.024*
C40.86181 (11)0.32986 (19)0.52342 (12)0.0241 (4)
H40.8431440.2428300.5076860.029*
C10.91002 (11)0.58709 (18)0.56482 (12)0.0216 (4)
C70.89197 (11)0.61363 (17)0.42198 (11)0.0202 (4)
H70.9409850.6568210.4439620.024*
C60.89143 (10)0.53722 (18)0.48651 (11)0.0198 (4)
C140.70953 (11)0.51666 (17)0.20068 (11)0.0193 (4)
C100.69528 (11)0.58025 (17)0.30650 (11)0.0193 (4)
C50.87004 (11)0.40667 (18)0.47128 (12)0.0212 (4)
C30.88205 (12)0.38592 (19)0.59942 (13)0.0259 (4)
C20.90706 (12)0.51313 (19)0.62216 (12)0.0255 (4)
H20.9218190.5489450.6756500.031*
O0AA0.9790 (6)0.7473 (12)0.6695 (6)0.041 (3)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0381 (8)0.0240 (7)0.0343 (8)0.0032 (6)0.0224 (7)0.0083 (6)
O40.0421 (9)0.0257 (7)0.0292 (7)0.0052 (6)0.0234 (7)0.0019 (6)
O70.0318 (8)0.0469 (9)0.0353 (8)0.0099 (7)0.0232 (7)0.0007 (7)
O110.0278 (8)0.0429 (9)0.0433 (9)0.0099 (6)0.0264 (7)0.0095 (7)
O100.0515 (10)0.0333 (8)0.0302 (8)0.0017 (7)0.0328 (8)0.0008 (6)
O120.0286 (8)0.0453 (9)0.0297 (8)0.0136 (7)0.0162 (7)0.0141 (7)
O80.0333 (8)0.0267 (7)0.0316 (8)0.0083 (6)0.0154 (7)0.0080 (6)
O90.0230 (8)0.0547 (10)0.0340 (8)0.0040 (7)0.0195 (7)0.0104 (7)
O10.0479 (10)0.0393 (9)0.0728 (12)0.0085 (8)0.0478 (10)0.0213 (8)
O20.0672 (12)0.0524 (10)0.0434 (10)0.0200 (9)0.0447 (10)0.0196 (8)
O50.0562 (11)0.0589 (11)0.0342 (8)0.0159 (9)0.0364 (8)0.0094 (8)
N40.0220 (8)0.0239 (8)0.0277 (8)0.0021 (7)0.0154 (7)0.0016 (7)
N60.0268 (9)0.0190 (8)0.0256 (8)0.0038 (7)0.0157 (7)0.0016 (6)
N50.0297 (9)0.0242 (8)0.0263 (8)0.0077 (7)0.0214 (8)0.0076 (7)
N20.0310 (9)0.0304 (9)0.0194 (8)0.0026 (7)0.0135 (7)0.0043 (7)
N30.0259 (8)0.0289 (9)0.0234 (8)0.0010 (7)0.0172 (7)0.0032 (7)
N10.0398 (10)0.0353 (10)0.0472 (11)0.0182 (9)0.0365 (10)0.0184 (9)
C110.0224 (9)0.0194 (9)0.0243 (9)0.0017 (7)0.0168 (8)0.0019 (7)
C120.0192 (9)0.0189 (9)0.0216 (9)0.0009 (7)0.0117 (8)0.0015 (7)
C130.0235 (9)0.0192 (9)0.0181 (9)0.0020 (7)0.0121 (8)0.0001 (7)
C90.0205 (9)0.0157 (8)0.0183 (8)0.0003 (7)0.0124 (7)0.0028 (7)
O30.066 (2)0.0404 (16)0.0294 (15)0.0062 (19)0.0304 (18)0.0113 (12)
C80.0246 (9)0.0183 (8)0.0220 (9)0.0050 (7)0.0174 (8)0.0021 (7)
C40.0193 (9)0.0217 (9)0.0317 (10)0.0042 (7)0.0163 (8)0.0049 (8)
C10.0195 (9)0.0233 (9)0.0203 (9)0.0004 (7)0.0118 (8)0.0002 (7)
C70.0210 (9)0.0209 (9)0.0215 (9)0.0040 (7)0.0147 (8)0.0035 (7)
C60.0148 (8)0.0243 (9)0.0191 (8)0.0018 (7)0.0101 (7)0.0009 (7)
C140.0242 (9)0.0187 (9)0.0206 (9)0.0014 (7)0.0168 (8)0.0002 (7)
C100.0231 (9)0.0170 (8)0.0172 (8)0.0018 (7)0.0124 (8)0.0011 (7)
C50.0182 (9)0.0240 (9)0.0210 (9)0.0029 (7)0.0122 (7)0.0002 (7)
C30.0254 (10)0.0301 (10)0.0312 (10)0.0100 (8)0.0222 (9)0.0115 (8)
C20.0241 (10)0.0321 (10)0.0213 (9)0.0072 (8)0.0148 (8)0.0039 (8)
O0AA0.058 (6)0.036 (5)0.022 (3)0.014 (5)0.022 (4)0.011 (3)
Geometric parameters (Å, º) top
O6—N31.222 (2)C11—C121.376 (2)
O4—N21.208 (2)C11—C101.384 (3)
O7—N61.217 (2)C12—C131.383 (3)
O11—N41.218 (2)C13—H130.9500
O10—N51.218 (2)C13—C141.371 (3)
O12—N41.231 (2)C9—C81.483 (2)
O8—N61.224 (2)C9—C141.407 (2)
O9—N51.225 (2)C9—C101.400 (2)
O1—N11.222 (3)C8—H80.9500
O2—N11.224 (2)C8—C71.328 (3)
O5—N31.221 (2)C4—H40.9500
N4—C121.467 (2)C4—C51.380 (3)
N6—C51.476 (2)C4—C31.377 (3)
N5—C141.476 (2)C1—C61.405 (2)
N2—O31.240 (4)C1—C21.383 (3)
N2—C11.481 (2)C7—H70.9500
N2—O0AA1.229 (9)C7—C61.486 (2)
N3—C101.470 (2)C6—C51.391 (3)
N1—C31.469 (2)C3—C21.379 (3)
C11—H110.9500C2—H20.9500
O11—N4—O12124.49 (16)C10—C9—C14113.78 (16)
O11—N4—C12118.30 (15)C9—C8—H8115.2
O12—N4—C12117.20 (15)C7—C8—C9129.67 (16)
O7—N6—O8125.36 (16)C7—C8—H8115.2
O7—N6—C5117.61 (15)C5—C4—H4121.7
O8—N6—C5117.00 (15)C3—C4—H4121.7
O10—N5—O9125.16 (16)C3—C4—C5116.54 (18)
O10—N5—C14117.68 (16)C6—C1—N2120.67 (16)
O9—N5—C14117.14 (15)C2—C1—N2116.30 (16)
O4—N2—O3123.5 (3)C2—C1—C6123.02 (17)
O4—N2—C1119.57 (15)C8—C7—H7117.3
O4—N2—O0AA119.9 (6)C8—C7—C6125.48 (17)
O3—N2—C1116.6 (3)C6—C7—H7117.3
O0AA—N2—C1115.1 (6)C1—C6—C7124.89 (16)
O6—N3—C10118.21 (15)C5—C6—C1114.53 (16)
O5—N3—O6125.23 (16)C5—C6—C7120.57 (16)
O5—N3—C10116.55 (16)C13—C14—N5116.17 (15)
O1—N1—O2124.80 (18)C13—C14—C9125.09 (16)
O1—N1—C3117.25 (19)C9—C14—N5118.73 (16)
O2—N1—C3117.94 (19)C11—C10—N3115.19 (15)
C12—C11—H11121.1C11—C10—C9123.88 (16)
C12—C11—C10117.81 (16)C9—C10—N3120.93 (16)
C10—C11—H11121.1C4—C5—N6115.45 (16)
C11—C12—N4119.00 (16)C4—C5—C6125.06 (17)
C11—C12—C13122.43 (17)C6—C5—N6119.41 (16)
C13—C12—N4118.54 (16)C4—C3—N1117.90 (18)
C12—C13—H13121.5C4—C3—C2122.63 (17)
C14—C13—C12116.90 (16)C2—C3—N1119.46 (18)
C14—C13—H13121.5C1—C2—H2121.0
C14—C9—C8119.73 (15)C3—C2—C1118.05 (17)
C10—C9—C8126.44 (15)C3—C2—H2121.0
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds