Download citation
Download citation
link to html
In the present work, the two-dimensional (2D) polymer poly[[μ4-2-(4-nitro­benzene­sulfonamido)­benzoato-κ4O1:O1:O1′:N6]silver(I)] (AgL), [Ag(C13H9N2O6S)]n, was obtained from 2-(4-nitro­benzene­sulfonamido)­benzoic acid (HL), C13H10N2O6S. FT–IR, 1H and 13C{1H} NMR spectroscopic analyses were used to characterize both compounds. The crystal structures of HL and AgL were determined by single-crystal X-ray diffraction. In the structure of HL, O—H...O hydrogen bonds between neighbouring mol­ecules result in the formation of dimers, while the silver(I) complex shows polymerization associated with the O atoms of three distinct deprotonated ligands (L). Thus, the structure of the Ag complex can be considered as a coordination polymer consisting of a one-dimensional linear chain, constructed by carboxyl­ate bridging groups, running parallel to the b axis. Neighbouring polymeric chains are further bridged by Ag—C monohapto contacts, resulting in a 2D framework. Fingerprint analysis of the Hirshfeld surfaces show that O...H/H...O hydrogen bonds are responsible for the most significant contacts in the crystal packing of HL and AgL, followed by the H...H and O...C/C...O inter­actions. The Ag...Ag, Ag...O/O...Ag and Ag...C/C...Ag inter­actions in the Hirshfeld surface represent 12.1% of the total inter­actions in the crystal packing. Studies of the inter­actions of the compounds with human serum albumin (HSA) indicated that both HL and AgL inter­act with HSA.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619008593/qs3085sup1.cif
Contains datablocks global, HL, AgL

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619008593/qs3085AgLsup2.hkl
Contains datablock AgL

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619008593/qs3085HLsup3.hkl
Contains datablock HL

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229619008593/qs3085HLsup4.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619008593/qs3085sup5.pdf
IR and NMR spectra and Hirshfeld information

CCDC references: 1934725; 1934724

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015).

2-(4-Nitrobenzenesulfonamido)benzoic acid (HL) top
Crystal data top
C13H10N2O6SZ = 2
Mr = 322.29F(000) = 332
Triclinic, P1Dx = 1.617 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9140 (3) ÅCell parameters from 5557 reflections
b = 10.0641 (5) Åθ = 3.1–32.6°
c = 10.1532 (5) ŵ = 0.28 mm1
α = 102.153 (4)°T = 301 K
β = 100.951 (4)°Prism, colourless
γ = 99.745 (4)°0.68 × 0.35 × 0.14 mm
V = 661.77 (6) Å3
Data collection top
Rigaku Xcalibur, Atlas, Gemini ultra
diffractometer
4515 independent reflections
Graphite monochromator3841 reflections with I > 2σ(I)
Detector resolution: 10.4186 pixels mm-1Rint = 0.043
ω scansθmax = 32.8°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 1010
Tmin = 0.901, Tmax = 1.000k = 1414
13718 measured reflectionsl = 1514
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.1382P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4515 reflectionsΔρmax = 0.33 e Å3
200 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single-crystal X-ray diffraction measurements were performed on an Agilent–Gemini diffractometer equipped with a CCD area detector using MoK? (0.71073 Å) radiation. The CrysAlisPro software package (Rigaku, 2015) was used for data collection and reduction (Oxford Diffraction Ltda, version 171.38.41). The structures were solved by direct methods using SHELXS-97 and refined by full-matrix least squares on F2 using SHELXL-2018 (Sheldrick, 2015). All non-hydrogen atoms were refined using anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12454 (4)0.47628 (3)0.74105 (3)0.02885 (9)
O10.33898 (16)0.03940 (10)0.38167 (11)0.0433 (2)
H10.4436060.0666040.4041670.065*
O20.32527 (14)0.14767 (10)0.54881 (12)0.0406 (2)
O30.01498 (16)0.51483 (10)0.82160 (11)0.0403 (2)
O40.25416 (15)0.58008 (10)0.70247 (11)0.0393 (2)
O50.58057 (18)0.11306 (11)1.12775 (11)0.0458 (3)
O60.79937 (17)0.14961 (13)1.00541 (14)0.0546 (3)
N10.01504 (15)0.36229 (11)0.60268 (11)0.0308 (2)
H1N0.1294220.3238490.6114240.037*
N20.64156 (17)0.16245 (12)1.03919 (12)0.0358 (2)
C10.25207 (18)0.08679 (13)0.45781 (13)0.0307 (2)
C20.06143 (17)0.14679 (12)0.42646 (12)0.0276 (2)
C30.05425 (17)0.28066 (12)0.49812 (12)0.0265 (2)
C40.2329 (2)0.33032 (15)0.46234 (14)0.0361 (3)
H40.308010.4196590.5071790.043*
C50.2993 (2)0.24796 (17)0.36091 (16)0.0418 (3)
H50.4202230.2816180.339510.05*
C60.1880 (2)0.11621 (16)0.29097 (15)0.0414 (3)
H60.2339940.0609170.2232640.05*
C70.0083 (2)0.06735 (14)0.32238 (14)0.0364 (3)
H70.0684070.0203760.2732930.044*
C80.28090 (17)0.38494 (12)0.83002 (12)0.0280 (2)
C90.2009 (2)0.30539 (16)0.91162 (16)0.0380 (3)
H90.0683940.3015060.9196860.046*
C100.3196 (2)0.23221 (15)0.98058 (15)0.0373 (3)
H100.2685010.1781231.0352030.045*
C110.51523 (19)0.24128 (12)0.96650 (13)0.0300 (2)
C120.5970 (2)0.32060 (15)0.88735 (15)0.0370 (3)
H120.729840.3245160.8801130.044*
C130.47850 (19)0.39464 (15)0.81850 (14)0.0349 (3)
H130.531170.4499330.7654280.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02764 (15)0.02435 (15)0.03087 (16)0.00152 (11)0.00438 (11)0.00453 (11)
O10.0386 (5)0.0351 (5)0.0449 (6)0.0104 (4)0.0123 (4)0.0017 (4)
O20.0288 (4)0.0346 (5)0.0517 (6)0.0038 (4)0.0147 (4)0.0000 (4)
O30.0398 (5)0.0385 (5)0.0421 (5)0.0128 (4)0.0122 (4)0.0032 (4)
O40.0375 (5)0.0283 (4)0.0465 (6)0.0046 (4)0.0031 (4)0.0126 (4)
O50.0538 (6)0.0428 (6)0.0410 (6)0.0088 (5)0.0051 (5)0.0176 (5)
O60.0403 (6)0.0572 (7)0.0746 (9)0.0202 (5)0.0156 (6)0.0252 (6)
N10.0230 (4)0.0315 (5)0.0319 (5)0.0014 (4)0.0053 (4)0.0022 (4)
N20.0355 (6)0.0292 (5)0.0378 (6)0.0047 (4)0.0019 (4)0.0056 (4)
C10.0255 (5)0.0294 (6)0.0331 (6)0.0002 (4)0.0031 (4)0.0071 (5)
C20.0251 (5)0.0295 (5)0.0266 (5)0.0017 (4)0.0043 (4)0.0081 (4)
C30.0245 (5)0.0288 (5)0.0248 (5)0.0022 (4)0.0032 (4)0.0087 (4)
C40.0309 (6)0.0377 (7)0.0360 (6)0.0037 (5)0.0097 (5)0.0086 (5)
C50.0376 (7)0.0519 (8)0.0392 (7)0.0040 (6)0.0172 (6)0.0160 (6)
C60.0457 (8)0.0464 (8)0.0355 (7)0.0098 (6)0.0192 (6)0.0092 (6)
C70.0414 (7)0.0345 (6)0.0303 (6)0.0035 (5)0.0095 (5)0.0041 (5)
C80.0261 (5)0.0274 (5)0.0277 (5)0.0018 (4)0.0051 (4)0.0055 (4)
C90.0279 (6)0.0468 (8)0.0460 (8)0.0078 (5)0.0147 (5)0.0207 (6)
C100.0345 (6)0.0420 (7)0.0413 (7)0.0059 (5)0.0139 (5)0.0202 (6)
C110.0303 (6)0.0269 (5)0.0291 (5)0.0035 (4)0.0036 (4)0.0042 (4)
C120.0266 (6)0.0461 (7)0.0417 (7)0.0067 (5)0.0114 (5)0.0158 (6)
C130.0295 (6)0.0415 (7)0.0364 (6)0.0036 (5)0.0109 (5)0.0159 (5)
Geometric parameters (Å, º) top
S1—O41.4271 (10)C4—H40.93
S1—O31.4293 (10)C5—C61.380 (2)
S1—N11.6287 (11)C5—H50.93
S1—C81.7733 (12)C6—C71.378 (2)
O1—C11.3128 (15)C6—H60.93
O1—H10.82C7—H70.93
O2—C11.2368 (16)C8—C131.3821 (17)
O5—N21.2226 (16)C8—C91.3919 (17)
O6—N21.2232 (16)C9—C101.3818 (19)
N1—C31.4109 (16)C9—H90.93
N1—H1N0.8488C10—C111.3771 (18)
N2—C111.4742 (16)C10—H100.93
C1—C21.4745 (17)C11—C121.3758 (18)
C2—C71.3988 (18)C12—C131.3869 (19)
C2—C31.4091 (16)C12—H120.93
C3—C41.3950 (17)C13—H130.93
C4—C51.381 (2)
O4—S1—O3120.22 (6)C6—C5—H5119.7
O4—S1—N1109.78 (6)C4—C5—H5119.7
O3—S1—N1104.49 (6)C7—C6—C5119.39 (13)
O4—S1—C8107.12 (6)C7—C6—H6120.3
O3—S1—C8108.39 (6)C5—C6—H6120.3
N1—S1—C8106.03 (6)C6—C7—C2121.45 (13)
C1—O1—H1109.5C6—C7—H7119.3
C3—N1—S1126.42 (8)C2—C7—H7119.3
C3—N1—H1N113.2C13—C8—C9121.35 (12)
S1—N1—H1N114.7C13—C8—S1119.98 (10)
O5—N2—O6124.50 (12)C9—C8—S1118.67 (9)
O5—N2—C11117.92 (12)C10—C9—C8119.56 (12)
O6—N2—C11117.58 (12)C10—C9—H9120.2
O2—C1—O1121.85 (11)C8—C9—H9120.2
O2—C1—C2123.80 (11)C11—C10—C9118.42 (12)
O1—C1—C2114.34 (11)C11—C10—H10120.8
C7—C2—C3118.68 (11)C9—C10—H10120.8
C7—C2—C1118.77 (11)C12—C11—C10122.67 (12)
C3—C2—C1122.55 (11)C12—C11—N2118.86 (11)
C4—C3—C2119.19 (11)C10—C11—N2118.47 (12)
C4—C3—N1121.53 (11)C11—C12—C13119.04 (12)
C2—C3—N1119.27 (10)C11—C12—H12120.5
C5—C4—C3120.56 (13)C13—C12—H12120.5
C5—C4—H4119.7C8—C13—C12118.95 (12)
C3—C4—H4119.7C8—C13—H13120.5
C6—C5—C4120.67 (13)C12—C13—H13120.5
O4—S1—N1—C357.75 (12)O4—S1—C8—C1317.03 (12)
O3—S1—N1—C3172.05 (10)O3—S1—C8—C13148.14 (11)
C8—S1—N1—C357.63 (12)N1—S1—C8—C13100.16 (11)
O2—C1—C2—C7179.10 (13)O4—S1—C8—C9162.39 (11)
O1—C1—C2—C70.05 (17)O3—S1—C8—C931.28 (12)
O2—C1—C2—C30.3 (2)N1—S1—C8—C980.42 (12)
O1—C1—C2—C3179.48 (11)C13—C8—C9—C101.3 (2)
C7—C2—C3—C40.65 (18)S1—C8—C9—C10179.30 (11)
C1—C2—C3—C4179.91 (11)C8—C9—C10—C110.3 (2)
C7—C2—C3—N1179.55 (11)C9—C10—C11—C120.3 (2)
C1—C2—C3—N11.01 (17)C9—C10—C11—N2179.56 (12)
S1—N1—C3—C432.39 (17)O5—N2—C11—C12167.21 (13)
S1—N1—C3—C2148.74 (10)O6—N2—C11—C1213.63 (18)
C2—C3—C4—C52.0 (2)O5—N2—C11—C1012.89 (18)
N1—C3—C4—C5179.15 (12)O6—N2—C11—C10166.27 (13)
C3—C4—C5—C61.4 (2)C10—C11—C12—C130.1 (2)
C4—C5—C6—C70.5 (2)N2—C11—C12—C13179.83 (12)
C5—C6—C7—C21.8 (2)C9—C8—C13—C121.6 (2)
C3—C2—C7—C61.3 (2)S1—C8—C13—C12179.04 (11)
C1—C2—C7—C6178.20 (13)C11—C12—C13—C80.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.862.6766 (14)174
C5—H5···O4ii0.932.63.5150 (17)170
C9—H9···O6iii0.932.63.3511 (18)138
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z.
(AgL) top
Crystal data top
[Ag(C13H9N2O6S)]F(000) = 848
Mr = 429.15Dx = 2.088 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8451 reflections
a = 19.9216 (7) Åθ = 3.1–26.7°
b = 5.2391 (2) ŵ = 1.67 mm1
c = 13.0860 (4) ÅT = 293 K
β = 91.864 (3)°Irregular, colourless
V = 1365.08 (8) Å30.21 × 0.18 × 0.17 mm
Z = 4
Data collection top
Rigaku Xcalibur, Atlas, Gemini ultra
diffractometer
3553 independent reflections
Graphite monochromator2723 reflections with I > 2σ(I)
Detector resolution: 10.4186 pixels mm-1Rint = 0.046
ω scansθmax = 29.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 2726
Tmin = 0.601, Tmax = 1.000k = 77
22926 measured reflectionsl = 1816
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0311P)2 + 1.0461P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3553 reflectionsΔρmax = 0.82 e Å3
208 parametersΔρmin = 0.78 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single-crystal X-ray diffraction measurements were performed on an Agilent–Gemini diffractometer equipped with a CCD area detector using MoK? (0.71073 Å) radiation. The CrysAlisPro software package (Rigaku, 2015) was used for data collection and reduction (Oxford Diffraction Ltda, version 171.38.41). The structures were solved by direct methods using SHELXS-97 and refined by full-matrix least squares on F2 using SHELXL-2018 (Sheldrick, 2015). All non-hydrogen atoms were refined using anisotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.45005 (2)1.02405 (5)0.25327 (2)0.04349 (10)
S10.23113 (4)0.89424 (14)0.01834 (6)0.03421 (18)
O10.47283 (10)0.3610 (4)0.13073 (16)0.0406 (5)
O20.41107 (11)0.7127 (4)0.14202 (16)0.0445 (5)
O30.23823 (11)1.0962 (4)0.09090 (18)0.0451 (6)
O40.21229 (12)0.9467 (4)0.08584 (18)0.0482 (6)
O50.05200 (13)0.0407 (5)0.2615 (2)0.0599 (7)
O60.00680 (14)0.0579 (5)0.1205 (2)0.0663 (8)
N10.30383 (12)0.7539 (5)0.02430 (19)0.0351 (6)
H1N0.330120.7865380.0753910.042*
N20.04063 (14)0.1248 (5)0.1763 (2)0.0448 (7)
C10.42645 (14)0.5073 (5)0.0991 (2)0.0315 (6)
C20.38807 (13)0.4301 (5)0.0032 (2)0.0282 (6)
C30.32950 (14)0.5556 (5)0.0338 (2)0.0299 (6)
C40.29988 (17)0.4801 (6)0.1271 (2)0.0420 (8)
H40.2615680.5635090.1521590.05*
C50.32676 (17)1.2170 (6)0.3173 (2)0.0450 (8)
H50.3069981.2629940.2546460.054*
C60.38302 (17)1.3464 (6)0.3546 (2)0.0420 (8)
H60.4004651.4820490.3180740.05*
C70.41304 (15)1.2716 (5)0.4467 (2)0.0358 (7)
H70.4508931.3584910.4713980.043*
C80.17263 (14)0.6715 (5)0.0643 (2)0.0309 (6)
C90.17305 (15)0.6189 (6)0.1683 (2)0.0376 (7)
H90.2028460.7033490.2128370.045*
C100.12919 (16)0.4414 (6)0.2050 (2)0.0385 (7)
H100.1288290.4030940.2743790.046*
C110.08587 (14)0.3220 (6)0.1366 (2)0.0347 (7)
C120.08370 (15)0.3743 (6)0.0338 (2)0.0409 (7)
H120.0531640.2915520.010050.049*
C130.12790 (16)0.5524 (6)0.0029 (2)0.0397 (7)
H130.1275330.5918820.0722380.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04819 (17)0.04274 (16)0.03908 (16)0.00480 (11)0.00562 (11)0.00134 (11)
S10.0330 (4)0.0303 (4)0.0392 (4)0.0023 (3)0.0008 (3)0.0045 (3)
O10.0330 (11)0.0440 (12)0.0444 (13)0.0003 (9)0.0045 (9)0.0083 (10)
O20.0459 (13)0.0461 (13)0.0406 (13)0.0017 (10)0.0098 (10)0.0123 (11)
O30.0450 (13)0.0298 (11)0.0605 (15)0.0014 (9)0.0011 (11)0.0065 (11)
O40.0484 (14)0.0511 (14)0.0449 (14)0.0014 (11)0.0049 (11)0.0193 (11)
O50.0645 (18)0.0561 (16)0.0593 (18)0.0083 (12)0.0054 (14)0.0165 (13)
O60.0653 (18)0.0734 (18)0.0604 (17)0.0333 (15)0.0068 (14)0.0132 (14)
N10.0314 (13)0.0384 (14)0.0350 (14)0.0029 (10)0.0049 (10)0.0071 (11)
N20.0419 (16)0.0411 (15)0.0520 (18)0.0050 (12)0.0104 (13)0.0079 (14)
C10.0263 (14)0.0366 (16)0.0317 (15)0.0057 (12)0.0044 (11)0.0058 (13)
C20.0276 (14)0.0300 (14)0.0271 (14)0.0056 (11)0.0050 (11)0.0025 (11)
C30.0319 (15)0.0309 (14)0.0272 (14)0.0068 (11)0.0037 (11)0.0021 (11)
C40.0436 (18)0.050 (2)0.0323 (16)0.0041 (14)0.0059 (13)0.0014 (14)
C50.057 (2)0.050 (2)0.0287 (16)0.0137 (16)0.0040 (14)0.0086 (14)
C60.052 (2)0.0372 (17)0.0374 (18)0.0081 (14)0.0151 (15)0.0062 (14)
C70.0376 (16)0.0327 (15)0.0378 (17)0.0021 (12)0.0104 (13)0.0008 (13)
C80.0303 (15)0.0302 (14)0.0320 (15)0.0046 (11)0.0012 (11)0.0001 (12)
C90.0390 (17)0.0404 (17)0.0334 (16)0.0044 (13)0.0010 (13)0.0055 (13)
C100.0435 (18)0.0437 (18)0.0284 (16)0.0035 (14)0.0040 (13)0.0014 (13)
C110.0320 (15)0.0344 (16)0.0380 (17)0.0003 (12)0.0049 (12)0.0034 (13)
C120.0373 (17)0.0449 (18)0.0401 (18)0.0048 (14)0.0063 (13)0.0047 (15)
C130.0397 (17)0.0492 (18)0.0299 (16)0.0012 (14)0.0040 (13)0.0024 (14)
Geometric parameters (Å, º) top
Ag1—O1i2.290 (2)C2—C7iv1.391 (4)
Ag1—O22.304 (2)C2—C31.411 (4)
Ag1—O1ii2.437 (2)C3—C41.396 (4)
Ag1—C62.551 (3)C4—C5iv1.381 (5)
Ag1—Ag1i3.2926 (3)C4—H40.93
Ag1—Ag1iii3.2926 (3)C5—C61.385 (5)
S1—O31.426 (2)C5—H50.93
S1—O31.426 (2)C6—C71.385 (4)
S1—O41.429 (2)C6—H60.93
S1—N11.624 (2)C7—H70.93
S1—C81.768 (3)C8—C131.380 (4)
O1—C11.260 (3)C8—C91.389 (4)
O2—C11.256 (3)C9—C101.373 (4)
O3—O30.000 (4)C9—H90.93
O5—N21.214 (4)C10—C111.373 (4)
O6—N21.226 (4)C10—H100.93
N1—C31.394 (4)C11—C121.372 (4)
N1—H1N0.8531C12—C131.381 (4)
N2—C111.476 (4)C12—H120.93
C1—C21.504 (4)C13—H130.93
O1i—Ag1—O2111.09 (8)C7iv—C2—C3118.5 (3)
O1i—Ag1—O1ii124.83 (6)C7iv—C2—C1117.9 (3)
O2—Ag1—O1ii99.39 (8)C3—C2—C1123.6 (3)
O1i—Ag1—C6104.70 (9)N1—C3—C4122.4 (3)
O2—Ag1—C6128.73 (10)N1—C3—C2118.3 (2)
O1ii—Ag1—C688.52 (9)C4—C3—C2119.3 (3)
O1i—Ag1—Ag1i85.46 (6)C5iv—C4—C3120.8 (3)
O2—Ag1—Ag1i137.59 (6)C5iv—C4—H4119.6
O1ii—Ag1—Ag1i44.04 (5)C3—C4—H4119.6
C6—Ag1—Ag1i79.27 (8)C4vi—C5—C6120.3 (3)
O1i—Ag1—Ag1iii47.72 (5)C4vi—C5—H5119.9
O2—Ag1—Ag1iii67.17 (5)C6—C5—H5119.9
O1ii—Ag1—Ag1iii115.69 (5)C7—C6—C5119.3 (3)
C6—Ag1—Ag1iii150.14 (7)C7—C6—Ag192.67 (19)
Ag1i—Ag1—Ag1iii105.420 (14)C5—C6—Ag185.7 (2)
O3—S1—O30.00 (18)C7—C6—H6120.3
O3—S1—O4120.67 (14)C5—C6—H6120.3
O3—S1—O4120.67 (14)Ag1—C6—H691.6
O3—S1—N1103.59 (13)C6—C7—C2vi121.7 (3)
O3—S1—N1103.59 (13)C6—C7—H7119.1
O4—S1—N1109.82 (14)C2vi—C7—H7119.1
O3—S1—C8108.40 (14)C13—C8—C9121.2 (3)
O3—S1—C8108.40 (14)C13—C8—S1120.0 (2)
O4—S1—C8107.19 (14)C9—C8—S1118.7 (2)
N1—S1—C8106.35 (13)C10—C9—C8119.6 (3)
C1—O1—Ag1iii117.37 (19)C10—C9—H9120.2
C1—O1—Ag1v120.41 (18)C8—C9—H9120.2
Ag1iii—O1—Ag1v88.24 (7)C9—C10—C11118.3 (3)
C1—O2—Ag1143.8 (2)C9—C10—H10120.8
O3—O3—S10 (10)C11—C10—H10120.8
C3—N1—S1130.8 (2)C12—C11—C10123.1 (3)
C3—N1—H1N110.5C12—C11—N2118.9 (3)
S1—N1—H1N118.1C10—C11—N2117.9 (3)
O5—N2—O6124.1 (3)C11—C12—C13118.5 (3)
O5—N2—C11118.6 (3)C11—C12—H12120.8
O6—N2—C11117.3 (3)C13—C12—H12120.8
O2—C1—O1124.2 (3)C8—C13—C12119.3 (3)
O2—C1—C2118.6 (3)C8—C13—H13120.4
O1—C1—C2117.3 (3)C12—C13—H13120.4
O4—S1—O3—O30.0 (6)C4vi—C5—C6—Ag192.3 (3)
N1—S1—O3—O30.0 (6)C5—C6—C7—C2vi0.2 (4)
C8—S1—O3—O30.0 (6)Ag1—C6—C7—C2vi86.7 (3)
O3—S1—N1—C3174.6 (3)O3—S1—C8—C13142.3 (2)
O3—S1—N1—C3174.6 (3)O3—S1—C8—C13142.3 (2)
O4—S1—N1—C344.4 (3)O4—S1—C8—C1310.5 (3)
C8—S1—N1—C371.3 (3)N1—S1—C8—C13106.9 (3)
Ag1—O2—C1—O120.5 (5)O3—S1—C8—C938.1 (3)
Ag1—O2—C1—C2158.7 (2)O3—S1—C8—C938.1 (3)
Ag1iii—O1—C1—O216.2 (4)O4—S1—C8—C9169.8 (2)
Ag1v—O1—C1—O289.1 (3)N1—S1—C8—C972.8 (3)
Ag1iii—O1—C1—C2163.05 (17)C13—C8—C9—C101.4 (5)
Ag1v—O1—C1—C291.7 (3)S1—C8—C9—C10178.3 (2)
O2—C1—C2—C7iv168.7 (2)C8—C9—C10—C110.3 (5)
O1—C1—C2—C7iv10.6 (4)C9—C10—C11—C121.0 (5)
O2—C1—C2—C39.4 (4)C9—C10—C11—N2177.8 (3)
O1—C1—C2—C3171.3 (2)O5—N2—C11—C12164.6 (3)
S1—N1—C3—C415.8 (4)O6—N2—C11—C1216.0 (4)
S1—N1—C3—C2165.0 (2)O5—N2—C11—C1014.3 (4)
C7iv—C2—C3—N1178.6 (2)O6—N2—C11—C10165.1 (3)
C1—C2—C3—N13.3 (4)C10—C11—C12—C131.1 (5)
C7iv—C2—C3—C42.2 (4)N2—C11—C12—C13177.7 (3)
C1—C2—C3—C4175.9 (3)C9—C8—C13—C121.3 (5)
N1—C3—C4—C5iv179.9 (3)S1—C8—C13—C12178.4 (2)
C2—C3—C4—C5iv0.7 (4)C11—C12—C13—C80.1 (5)
C4vi—C5—C6—C71.7 (5)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x, y+3/2, z1/2; (v) x, y1, z; (vi) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O30.932.653.457 (4)145
C13—H13···O5vii0.932.73.424 (4)136
C12—H12···O6viii0.932.493.369 (4)157
N1—H1N···O20.851.852.602 (3)146
C4—H4···O40.932.413.062 (4)127
Symmetry codes: (vii) x, y+1/2, z1/2; (viii) x, y, z.
Selected bonds lengths (Å) and angles (°) top
HLAgL
O1—C11.3128 (15)1.260 (3)
O2—C11.2368 (16)1.256 (3)
S1—O31.4293 (10)1.426 (2)
S1—O41.4271 (10)1.429 (2)
S1—N11.6287 (11)1.624 (2)
S1—C81.7733 (12)1.768 (3)
O5—N21.2226 (16)1.214 (4)
O6—N21.2232 (16)1.226 (4)
N1—C31.4109 (16)1.395 (4)
N2—C111.4742 (16)1.476 (4)
C1—C21.4745 (17)1.504 (4)
Ag1—O1i2.290 (2)
Ag1—O1ii2.437 (2)
Ag1—O22.304 (2)
Ag1—C62.551 (3)
Ag1—Ag1i3.2926 (3)
O3—S1—O4120.22 (6)120.67 (14)
O3—S1—N1104.49 (6)103.59 (13)
O4—S1—N1109.78 (6)109.82 (14)
O3—S1—C8108.39 (6)108.40 (14)
O4—S1—C8107.11 (6)107.19 (14)
N1—S1—C8106.03 (6)106.35 (13)
C3—N1—S1126.42 (8)130.8 (2)
O1i—Ag1—O2111.09 (8)
O1i—Ag1—O1ii124.83 (6)
O2—Ag1—O1ii99.39 (8)
O1i—Ag1—C6104.70 (9)
O2—Ag1—C6128.72 (10)
O1ii—Ag1—C688.52 (9)
Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) x, y+1, z.
Hydrogen-bond parameters (Å, °) for HL and AgL top
D—H···AD—HH···AD···AD—H···A
HL
N1—H1N···O20.851.942.655 (1)141
C4—H4···O40.932.413.0729 (2)128
O1—H1···O2i0.821.862.6766 (14)173.7
C5—H5···O4ii0.932.603.5150 (17)169.6
C9—H9···O6iii0.932.603.3511 (18)138.0
C12—H12···O3iv0.932.623.3042 (17)130.8
AgL
N1—H1N···O20.851.852.602 (3)146.2
C4—H4···O40.932.413.062 (4)127.2
C5—H5···O3v0.932.653.457 (4)145.0
C10—H10···O4vi0.932.563.2063 (1)157.0
C12—H12···O6vii0.932.493.369 (4)157.4
C13—H13···O5viii0.932.703.424 (4)135.7
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) x+1, y, z; (v) x, y, z; (vi) x, -y+3/2, z+1/2; (vii) -x, -y, -z; (viii) x, -y+1/2, z-1/2.
Stern–Volmer quenching constant (KSV), bimolecular quenching rate constant (kq), binding constant (Kb), number of binding sites per proteins (η) and free energy variation (ΔG) associated with the compound–HSA interaction in Tris-HCl Buffer (pH 7.2, λexc = 295 nm). top
CompoundsKSV (104 M-1)kq (1012 M-1 s-1)RaKb (104 M-1)ηRbΔG (kJ mol-1)
HL5.155.150.99871.890.9190.9973-24.39
AgL4.504.500.997634.961.1640.9917-31.64
Notes: Ra is the correlation coefficient for the KSV values and Rb is the correlation coefficient for the Kb values.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds