Download citation
Download citation
link to html
Three new metal(II)–cytosine (Cy)/5-fluoro­cytosine (5FC) complexes, namely bis­(4-amino-1,2-di­hydro­pyrimidin-2-one-κN3)di­iodido­cadmium(II) or bis­(cyto­sine)di­iodido­cadmium(II), [CdI2(C4H5N3O)2], (I), bis­(4-amino-1,2-di­hydro­py­rimi­din-2-one-κN3)bis­(nitrato-κ2O,O′)cadmium(II) or bis­(cytosine)bis­(ni­trato)cadmium(II), [Cd(NO3)2(C4H5N3O)2], (II), and (6-amino-5-fluoro-1,2-di­hydro­pyrimidin-2-one-κN3)aqua­dibromido­zinc(II)–6-amino-5-fluoro-1,2-di­hydro­py­rimidin-2-one (1/1) or (6-amino-5-fluoro­cytosine)aqua­dibromido­zinc(II)–4-amino-5-fluoro­cytosine (1/1), [ZnBr2(C4H5FN3O)(H2O)]·C4H5FN3O, (III), have been synthesized and characterized by single-crystal X-ray diffraction. In complex (I), the CdII ion is coordinated to two iodide ions and the endocyclic N atoms of the two cytosine mol­ecules, leading to a distorted tetra­hedral geometry. The structure is isotypic with [CdBr2(C4H5N3O)2] [Mu­thiah et al. (2001). Acta Cryst. E57, m558–m560]. In compound (II), each of the two cytosine mol­ecules coordinates to the CdII ion in a bidentate chelating mode via the endocyclic N atom and the O atom. Each of the two nitrate ions also coordinates in a bidentate chelating mode, forming a bicapped distorted octa­hedral geometry around cadmium. The typical inter­ligand N—H...O hydrogen bond involving two cytosine mol­ecules is also present. In compound (III), one zinc-coordinated 5FC ligand is cocrystallized with another uncoordinated 5FC mol­ecule. The ZnII atom coordinates to the N(1) atom (systematic numbering) of 5FC, displacing the proton to the N(3) position. This N(3)—H tautomer of 5FC mimics N(3)-protonated cytosine in forming a base pair (via three hydrogen bonds) with 5FC in the lattice, generating two fused R22(8) motifs. The distorted tetra­hedral geometry around zinc is completed by two bromide ions and a water mol­ecule. The coordinated and nonccordinated 5FCs are stacked over one another along the a-axis direction, forming the rungs of a ladder motif, whereas Zn—Br bonds and N—H...Br hydrogen bonds form the rails of the ladder. The coordinated water mol­ecules bridge the two types of 5FC molecules via O—H...O hydrogen bonds. The cytosine mol­ecules are coordinated directly to the metal ion in each of the complexes and are hydrogen bonded to the bromide, iodide or nitrate ions. In compound (III), the uncoordinated 5FC mol­ecule pairs with the coordinated 5FC ligand through three hydrogen bonds. The crystal structures are further stabilized by N—H...O, N—H...N, O—H...O, N—H...I and N—H...Br hydrogen bonds, and stacking inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618007672/qs3072sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618007672/qs3072Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618007672/qs3072IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618007672/qs3072IIIsup4.hkl
Contains datablock III

CCDC references: 1844813; 1844812; 1844811

Computing details top

For all structures, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015) and shelXle (Hübschle et al., 2011); molecular graphics: ORTEP-3 (Farrugia, 2012), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008). Software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip (2010) for (I), (II); PLATON (Spek, 2009) and publCIF (Westrip, 2010) for (III).

Bis(4-amino-1,2-dihydropyrimidin-2-one-κN3)diiodidocadmium(II) (I) top
Crystal data top
[CdI2(C4H5N3O)2]Z = 2
Mr = 588.42F(000) = 540
Triclinic, P1Dx = 2.712 Mg m3
a = 7.2911 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1724 (3) ÅCell parameters from 9533 reflections
c = 12.5766 (5) Åθ = 2.9–33.3°
α = 89.1090 (13)°µ = 5.81 mm1
β = 74.2345 (13)°T = 100 K
γ = 87.4815 (13)°Needle, colourless
V = 720.49 (5) Å30.37 × 0.16 × 0.09 mm
Data collection top
Bruker D8 Quest CMOS
diffractometer
4587 independent reflections
Radiation source: I-mu-S microsource X-ray tube4155 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.022
ω and phi scansθmax = 33.3°, θmin = 2.9°
Absorption correction: multi-scan
(APEX2; Bruker, 2014)
h = 1010
Tmin = 0.553, Tmax = 0.747k = 1012
13024 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0077P)2 + 1.3973P]
where P = (Fo2 + 2Fc2)/3
4587 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 1.68 e Å3
0 restraintsΔρmin = 0.95 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.87609 (2)0.14376 (2)0.25161 (2)0.01134 (4)
I10.59773 (2)0.08383 (2)0.32498 (2)0.01195 (4)
I21.19156 (2)0.03888 (2)0.12852 (2)0.01322 (4)
N1A0.6998 (3)0.4253 (3)0.55241 (17)0.0123 (4)
H1A0.5978960.4906430.5755260.015*
C2A0.7324 (3)0.3487 (3)0.4521 (2)0.0117 (4)
N3A0.8938 (3)0.2502 (3)0.41526 (17)0.0114 (4)
C4A1.0176 (3)0.2304 (3)0.4772 (2)0.0125 (4)
C5A0.9823 (4)0.3063 (3)0.5830 (2)0.0146 (5)
H5A1.0678870.2898550.6275810.017*
C6A0.8214 (3)0.4025 (3)0.6166 (2)0.0134 (5)
H6A0.7931170.4549910.6863970.016*
O2A0.6180 (3)0.3681 (2)0.39503 (15)0.0166 (4)
N4A1.1756 (3)0.1376 (3)0.43696 (19)0.0181 (4)
H4A11.1964180.0913940.3717840.022*
H4A21.2591350.1224670.4755980.022*
N1B0.8966 (3)0.6204 (3)0.10750 (17)0.0129 (4)
H1B0.9886840.6902270.0947250.016*
C2B0.9299 (3)0.4654 (3)0.14446 (19)0.0117 (4)
N3B0.7903 (3)0.3547 (3)0.15504 (17)0.0111 (4)
C4B0.6194 (3)0.4022 (3)0.13944 (19)0.0111 (4)
C5B0.5835 (4)0.5642 (3)0.1052 (2)0.0133 (4)
H5B0.4639150.5970200.0934260.016*
C6B0.7259 (4)0.6697 (3)0.0900 (2)0.0141 (5)
H6B0.7070550.7789350.0669310.017*
O2B1.0812 (2)0.4267 (2)0.16726 (15)0.0145 (3)
N4B0.4832 (3)0.2937 (3)0.15711 (19)0.0155 (4)
H4B10.5053800.1935090.1784980.019*
H4B20.3710920.3222590.1474170.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01133 (8)0.01104 (8)0.01197 (8)0.00050 (6)0.00382 (6)0.00056 (6)
I10.00921 (7)0.01284 (8)0.01333 (7)0.00011 (5)0.00230 (5)0.00055 (5)
I20.00990 (7)0.01115 (8)0.01762 (8)0.00074 (5)0.00193 (5)0.00161 (5)
N1A0.0104 (9)0.0144 (10)0.0117 (9)0.0021 (7)0.0028 (7)0.0022 (8)
C2A0.0105 (10)0.0129 (11)0.0117 (11)0.0006 (8)0.0028 (8)0.0010 (8)
N3A0.0111 (9)0.0102 (9)0.0123 (9)0.0018 (7)0.0026 (7)0.0003 (7)
C4A0.0094 (10)0.0123 (11)0.0149 (11)0.0002 (8)0.0022 (8)0.0006 (9)
C5A0.0141 (11)0.0167 (12)0.0138 (11)0.0008 (9)0.0054 (9)0.0025 (9)
C6A0.0136 (11)0.0153 (12)0.0118 (11)0.0021 (9)0.0043 (9)0.0003 (9)
O2A0.0149 (8)0.0196 (10)0.0163 (9)0.0062 (7)0.0066 (7)0.0050 (7)
N4A0.0131 (10)0.0221 (12)0.0194 (11)0.0073 (8)0.0060 (8)0.0048 (9)
N1B0.0142 (10)0.0110 (10)0.0130 (10)0.0033 (7)0.0024 (8)0.0003 (7)
C2B0.0120 (10)0.0120 (11)0.0100 (10)0.0018 (8)0.0011 (8)0.0021 (8)
N3B0.0099 (9)0.0118 (10)0.0116 (9)0.0013 (7)0.0028 (7)0.0004 (7)
C4B0.0110 (10)0.0134 (11)0.0095 (10)0.0007 (8)0.0034 (8)0.0005 (8)
C5B0.0145 (11)0.0142 (12)0.0121 (11)0.0026 (9)0.0054 (9)0.0009 (9)
C6B0.0199 (12)0.0117 (11)0.0108 (11)0.0019 (9)0.0046 (9)0.0019 (8)
O2B0.0122 (8)0.0160 (9)0.0162 (8)0.0011 (6)0.0051 (7)0.0015 (7)
N4B0.0119 (9)0.0147 (11)0.0218 (11)0.0025 (8)0.0076 (8)0.0037 (8)
Geometric parameters (Å, º) top
Cd1—N3B2.256 (2)N4A—H4A10.8800
Cd1—N3A2.285 (2)N4A—H4A20.8800
Cd1—I12.7732 (2)N1B—C6B1.365 (3)
Cd1—I22.7839 (2)N1B—C2B1.377 (3)
N1A—C6A1.357 (3)N1B—H1B0.8800
N1A—C2A1.375 (3)C2B—O2B1.240 (3)
N1A—H1A0.8800C2B—N3B1.369 (3)
C2A—O2A1.243 (3)N3B—C4B1.353 (3)
C2A—N3A1.371 (3)C4B—N4B1.331 (3)
N3A—C4A1.346 (3)C4B—C5B1.421 (3)
C4A—N4A1.333 (3)C5B—C6B1.350 (4)
C4A—C5A1.430 (3)C5B—H5B0.9500
C5A—C6A1.354 (4)C6B—H6B0.9500
C5A—H5A0.9500N4B—H4B10.8800
C6A—H6A0.9500N4B—H4B20.8800
N3B—Cd1—N3A106.32 (7)C4A—N4A—H4A1120.0
N3B—Cd1—I1114.42 (5)C4A—N4A—H4A2120.0
N3A—Cd1—I1101.10 (5)H4A1—N4A—H4A2120.0
N3B—Cd1—I2112.72 (5)C6B—N1B—C2B122.3 (2)
N3A—Cd1—I2117.58 (5)C6B—N1B—H1B118.8
I1—Cd1—I2104.413 (8)C2B—N1B—H1B118.8
C6A—N1A—C2A121.5 (2)O2B—C2B—N3B120.9 (2)
C6A—N1A—H1A119.3O2B—C2B—N1B121.3 (2)
C2A—N1A—H1A119.3N3B—C2B—N1B117.8 (2)
O2A—C2A—N3A120.2 (2)C4B—N3B—C2B120.3 (2)
O2A—C2A—N1A120.8 (2)C4B—N3B—Cd1131.29 (16)
N3A—C2A—N1A119.0 (2)C2B—N3B—Cd1105.05 (15)
C4A—N3A—C2A119.9 (2)N4B—C4B—N3B118.6 (2)
C4A—N3A—Cd1134.33 (16)N4B—C4B—C5B120.0 (2)
C2A—N3A—Cd1105.75 (15)N3B—C4B—C5B121.4 (2)
N4A—C4A—N3A118.0 (2)C6B—C5B—C4B117.5 (2)
N4A—C4A—C5A120.5 (2)C6B—C5B—H5B121.3
N3A—C4A—C5A121.5 (2)C4B—C5B—H5B121.3
C6A—C5A—C4A117.0 (2)C5B—C6B—N1B120.4 (2)
C6A—C5A—H5A121.5C5B—C6B—H6B119.8
C4A—C5A—H5A121.5N1B—C6B—H6B119.8
C5A—C6A—N1A121.2 (2)C4B—N4B—H4B1120.0
C5A—C6A—H6A119.4C4B—N4B—H4B2120.0
N1A—C6A—H6A119.4H4B1—N4B—H4B2120.0
C6A—N1A—C2A—O2A178.6 (2)C6B—N1B—C2B—O2B174.9 (2)
C6A—N1A—C2A—N3A1.6 (4)C6B—N1B—C2B—N3B5.3 (3)
O2A—C2A—N3A—C4A179.6 (2)O2B—C2B—N3B—C4B174.1 (2)
N1A—C2A—N3A—C4A0.2 (3)N1B—C2B—N3B—C4B6.1 (3)
O2A—C2A—N3A—Cd12.7 (3)O2B—C2B—N3B—Cd112.4 (3)
N1A—C2A—N3A—Cd1177.48 (18)N1B—C2B—N3B—Cd1167.72 (17)
C2A—N3A—C4A—N4A178.1 (2)C2B—N3B—C4B—N4B175.9 (2)
Cd1—N3A—C4A—N4A5.1 (4)Cd1—N3B—C4B—N4B19.7 (3)
C2A—N3A—C4A—C5A1.9 (4)C2B—N3B—C4B—C5B3.9 (3)
Cd1—N3A—C4A—C5A174.99 (18)Cd1—N3B—C4B—C5B160.09 (18)
N4A—C4A—C5A—C6A178.1 (2)N4B—C4B—C5B—C6B179.1 (2)
N3A—C4A—C5A—C6A1.8 (4)N3B—C4B—C5B—C6B0.7 (4)
C4A—C5A—C6A—N1A0.0 (4)C4B—C5B—C6B—N1B0.1 (4)
C2A—N1A—C6A—C5A1.7 (4)C2B—N1B—C6B—C5B2.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O2Ai0.881.872.741 (3)172
N1B—H1B···I2ii0.882.823.648 (2)158
N4A—H4A2···I1iii0.882.973.804 (2)158
N4B—H4B2···O2Biv0.882.203.051 (3)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+2, y, z+1; (iv) x1, y, z.
Bis(4-amino-1,2-dihydropyrimidin-2-one-κN3)bis(nitrato-κ2O,O')cadmium(II) (II) top
Crystal data top
[Cd(NO3)2(C4H5N3O)2]F(000) = 904
Mr = 458.64Dx = 2.093 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.9213 (5) ÅCell parameters from 7918 reflections
b = 8.5142 (3) Åθ = 2.9–30.5°
c = 13.6486 (6) ŵ = 1.57 mm1
β = 104.259 (1)°T = 100 K
V = 1455.29 (10) Å3Rod, colourless
Z = 40.27 × 0.11 × 0.10 mm
Data collection top
Bruker D8 Quest CMOS
diffractometer
4420 independent reflections
Radiation source: I-mu-S microsource X-ray tube3778 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.023
ω and phi scansθmax = 30.6°, θmin = 2.9°
Absorption correction: multi-scan
(APEX2; Bruker, 2014)
h = 1718
Tmin = 0.679, Tmax = 0.746k = 129
13686 measured reflectionsl = 1619
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0153P)2 + 1.5457P]
where P = (Fo2 + 2Fc2)/3
4420 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.25348 (2)0.67094 (2)0.13527 (2)0.01015 (4)
N10.26097 (13)0.53225 (19)0.32746 (13)0.0131 (3)
N20.13840 (13)0.57194 (19)0.05705 (12)0.0133 (3)
O10.33782 (11)0.61859 (17)0.31889 (11)0.0171 (3)
O20.17858 (11)0.52944 (17)0.25497 (10)0.0161 (3)
O30.26706 (12)0.45175 (17)0.40419 (11)0.0204 (3)
O40.12990 (13)0.51016 (18)0.02516 (11)0.0222 (3)
O50.19988 (11)0.68827 (16)0.05143 (10)0.0146 (3)
O60.08729 (13)0.52032 (18)0.13933 (11)0.0229 (3)
N1A0.52303 (12)0.38335 (19)0.14250 (12)0.0127 (3)
H1A0.5272840.2813780.1532590.015*
C2A0.42952 (15)0.4592 (2)0.14194 (14)0.0118 (4)
N3A0.42396 (12)0.61685 (19)0.12501 (12)0.0112 (3)
C4A0.50791 (15)0.6957 (2)0.10736 (14)0.0116 (4)
C5A0.60561 (15)0.6163 (2)0.10873 (15)0.0143 (4)
H5A0.6655080.6712760.0972370.017*
C6A0.60976 (15)0.4611 (2)0.12688 (14)0.0139 (4)
H6A0.6737700.4049130.1288330.017*
O2A0.35055 (11)0.38778 (17)0.15589 (12)0.0177 (3)
N4A0.49757 (13)0.84868 (19)0.08796 (13)0.0150 (3)
H4A10.4368380.8962630.0868670.018*
H4A20.5514570.9023640.0762250.018*
N1B0.19571 (13)1.14895 (19)0.14015 (13)0.0135 (3)
H1B0.2454681.2203600.1423440.016*
C2B0.22186 (15)0.9935 (2)0.14032 (13)0.0107 (3)
N3B0.14442 (13)0.88355 (19)0.13658 (12)0.0116 (3)
C4B0.04342 (15)0.9268 (2)0.13281 (14)0.0110 (3)
C5B0.01607 (15)1.0895 (2)0.13319 (14)0.0127 (4)
H5B0.0548821.1215000.1310710.015*
C6B0.09373 (15)1.1955 (2)0.13665 (14)0.0136 (4)
H6B0.0775501.3043670.1366570.016*
O2B0.31492 (11)0.94957 (16)0.14597 (11)0.0158 (3)
N4B0.03020 (13)0.8178 (2)0.12853 (13)0.0152 (3)
H4BA0.0129830.7178170.1281650.018*
H4BB0.0964880.8450510.1260420.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.00851 (6)0.00794 (6)0.01403 (7)0.00025 (5)0.00282 (4)0.00097 (5)
N10.0145 (8)0.0099 (7)0.0164 (8)0.0017 (6)0.0064 (6)0.0020 (6)
N20.0154 (8)0.0096 (7)0.0143 (8)0.0020 (6)0.0024 (6)0.0003 (6)
O10.0146 (7)0.0149 (7)0.0233 (8)0.0058 (6)0.0074 (6)0.0041 (6)
O20.0111 (6)0.0188 (7)0.0180 (7)0.0009 (6)0.0030 (5)0.0025 (6)
O30.0282 (8)0.0173 (7)0.0177 (7)0.0050 (6)0.0097 (6)0.0066 (6)
O40.0319 (8)0.0192 (7)0.0137 (7)0.0118 (7)0.0026 (6)0.0043 (6)
O50.0132 (6)0.0145 (7)0.0167 (7)0.0021 (5)0.0048 (5)0.0001 (5)
O60.0339 (9)0.0177 (7)0.0136 (7)0.0066 (7)0.0008 (6)0.0027 (6)
N1A0.0120 (8)0.0097 (7)0.0167 (8)0.0015 (6)0.0040 (6)0.0000 (6)
C2A0.0104 (8)0.0121 (9)0.0127 (9)0.0005 (7)0.0026 (7)0.0034 (7)
N3A0.0080 (7)0.0102 (7)0.0153 (8)0.0016 (6)0.0026 (6)0.0005 (6)
C4A0.0122 (8)0.0134 (9)0.0089 (8)0.0006 (7)0.0021 (6)0.0003 (7)
C5A0.0113 (9)0.0171 (9)0.0157 (9)0.0001 (7)0.0054 (7)0.0017 (7)
C6A0.0098 (8)0.0178 (10)0.0146 (9)0.0027 (7)0.0039 (7)0.0007 (7)
O2A0.0132 (7)0.0121 (6)0.0294 (8)0.0030 (6)0.0084 (6)0.0036 (6)
N4A0.0112 (7)0.0122 (8)0.0225 (9)0.0005 (6)0.0060 (6)0.0030 (7)
N1B0.0115 (7)0.0096 (8)0.0197 (8)0.0020 (6)0.0043 (6)0.0007 (6)
C2B0.0145 (8)0.0096 (8)0.0068 (8)0.0007 (7)0.0005 (6)0.0004 (7)
N3B0.0141 (8)0.0082 (7)0.0126 (8)0.0001 (6)0.0037 (6)0.0007 (6)
C4B0.0124 (8)0.0112 (8)0.0096 (8)0.0009 (7)0.0030 (7)0.0004 (7)
C5B0.0116 (9)0.0112 (9)0.0157 (9)0.0021 (7)0.0046 (7)0.0021 (7)
C6B0.0161 (9)0.0095 (9)0.0155 (9)0.0024 (7)0.0046 (7)0.0011 (7)
O2B0.0128 (7)0.0158 (7)0.0193 (7)0.0024 (6)0.0046 (5)0.0008 (6)
N4B0.0152 (8)0.0106 (7)0.0213 (8)0.0016 (7)0.0073 (6)0.0007 (7)
Geometric parameters (Å, º) top
Cd1—N3A2.2882 (15)C4A—C5A1.428 (3)
Cd1—N3B2.2968 (16)C5A—C6A1.343 (3)
Cd1—O42.3452 (15)C5A—H5A0.9500
Cd1—O22.4157 (14)C6A—H6A0.9500
Cd1—O52.4749 (14)N4A—H4A10.8800
Cd1—O2B2.4945 (14)N4A—H4A20.8800
Cd1—O12.5143 (15)N1B—C2B1.365 (2)
N1—O31.238 (2)N1B—C6B1.366 (2)
N1—O21.263 (2)N1B—H1B0.8800
N1—O11.264 (2)C2B—O2B1.244 (2)
N2—O61.235 (2)C2B—N3B1.362 (2)
N2—O51.260 (2)N3B—C4B1.345 (2)
N2—O41.268 (2)C4B—N4B1.320 (2)
N1A—C6A1.363 (2)C4B—C5B1.430 (3)
N1A—C2A1.369 (2)C5B—C6B1.342 (3)
N1A—H1A0.8800C5B—H5B0.9500
C2A—O2A1.242 (2)C6B—H6B0.9500
C2A—N3A1.361 (2)N4B—H4BA0.8800
N3A—C4A1.347 (2)N4B—H4BB0.8800
C4A—N4A1.330 (2)
N3A—Cd1—N3B139.54 (6)C4A—N3A—C2A120.71 (16)
N3A—Cd1—O4110.92 (6)C4A—N3A—Cd1137.79 (13)
N3B—Cd1—O498.21 (6)C2A—N3A—Cd1101.50 (11)
N3A—Cd1—O2119.54 (5)N4A—C4A—N3A118.55 (17)
N3B—Cd1—O292.24 (5)N4A—C4A—C5A120.76 (17)
O4—Cd1—O279.59 (5)N3A—C4A—C5A120.69 (17)
N3A—Cd1—O588.77 (5)C6A—C5A—C4A117.58 (18)
N3B—Cd1—O586.81 (5)C6A—C5A—H5A121.2
O4—Cd1—O553.22 (5)C4A—C5A—H5A121.2
O2—Cd1—O5131.98 (5)C5A—C6A—N1A120.64 (18)
N3A—Cd1—O2B84.13 (5)C5A—C6A—H6A119.7
N3B—Cd1—O2B55.74 (5)N1A—C6A—H6A119.7
O4—Cd1—O2B138.53 (5)C4A—N4A—H4A1120.0
O2—Cd1—O2B127.55 (5)C4A—N4A—H4A2120.0
O5—Cd1—O2B90.45 (5)H4A1—N4A—H4A2120.0
N3A—Cd1—O180.67 (5)C2B—N1B—C6B121.17 (16)
N3B—Cd1—O1104.37 (5)C2B—N1B—H1B119.4
O4—Cd1—O1126.50 (5)C6B—N1B—H1B119.4
O2—Cd1—O152.05 (4)O2B—C2B—N3B119.04 (17)
O5—Cd1—O1168.38 (5)O2B—C2B—N1B121.79 (17)
O2B—Cd1—O193.25 (5)N3B—C2B—N1B119.14 (17)
O3—N1—O2121.21 (17)C4B—N3B—C2B120.66 (16)
O3—N1—O1120.84 (17)C4B—N3B—Cd1143.82 (13)
O2—N1—O1117.94 (16)C2B—N3B—Cd195.49 (11)
O6—N2—O5121.53 (16)N4B—C4B—N3B119.40 (17)
O6—N2—O4120.90 (17)N4B—C4B—C5B120.35 (17)
O5—N2—O4117.57 (16)N3B—C4B—C5B120.25 (17)
N1—O1—Cd192.17 (11)C6B—C5B—C4B117.93 (17)
N1—O2—Cd196.87 (11)C6B—C5B—H5B121.0
N2—O4—Cd197.54 (11)C4B—C5B—H5B121.0
N2—O5—Cd191.61 (10)C5B—C6B—N1B120.84 (17)
C6A—N1A—C2A121.94 (17)C5B—C6B—H6B119.6
C6A—N1A—H1A119.0N1B—C6B—H6B119.6
C2A—N1A—H1A119.0C2B—O2B—Cd189.64 (11)
O2A—C2A—N3A119.87 (17)C4B—N4B—H4BA120.0
O2A—C2A—N1A121.70 (18)C4B—N4B—H4BB120.0
N3A—C2A—N1A118.43 (17)H4BA—N4B—H4BB120.0
O3—N1—O1—Cd1169.56 (15)N3A—C4A—C5A—C6A0.8 (3)
O2—N1—O1—Cd19.66 (16)C4A—C5A—C6A—N1A0.5 (3)
O3—N1—O2—Cd1169.09 (15)C2A—N1A—C6A—C5A1.0 (3)
O1—N1—O2—Cd110.12 (17)C6B—N1B—C2B—O2B178.22 (17)
O6—N2—O4—Cd1178.26 (15)C6B—N1B—C2B—N3B0.2 (3)
O5—N2—O4—Cd12.40 (18)O2B—C2B—N3B—C4B178.45 (17)
O6—N2—O5—Cd1178.41 (16)N1B—C2B—N3B—C4B0.0 (3)
O4—N2—O5—Cd12.26 (16)O2B—C2B—N3B—Cd13.02 (18)
C6A—N1A—C2A—O2A179.75 (18)N1B—C2B—N3B—Cd1178.50 (14)
C6A—N1A—C2A—N3A0.1 (3)C2B—N3B—C4B—N4B179.54 (17)
O2A—C2A—N3A—C4A178.41 (17)Cd1—N3B—C4B—N4B2.0 (3)
N1A—C2A—N3A—C4A1.2 (3)C2B—N3B—C4B—C5B0.3 (3)
O2A—C2A—N3A—Cd11.0 (2)Cd1—N3B—C4B—C5B177.84 (15)
N1A—C2A—N3A—Cd1179.36 (14)N4B—C4B—C5B—C6B179.37 (18)
C2A—N3A—C4A—N4A177.84 (17)N3B—C4B—C5B—C6B0.5 (3)
Cd1—N3A—C4A—N4A1.3 (3)C4B—C5B—C6B—N1B0.3 (3)
C2A—N3A—C4A—C5A1.7 (3)C2B—N1B—C6B—C5B0.0 (3)
Cd1—N3A—C4A—C5A179.13 (14)N3B—C2B—O2B—Cd12.77 (16)
N4A—C4A—C5A—C6A178.71 (18)N1B—C2B—O2B—Cd1178.79 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1i0.882.192.850 (2)132
C5A—H5A···O3ii0.952.543.322 (3)139
C6A—H6A···O1i0.952.553.043 (2)112
C6A—H6A···O5iii0.952.293.158 (2)151
N4A—H4A1···O2B0.881.992.803 (2)153
N4A—H4A2···N1ii0.882.693.426 (2)141
N4A—H4A2···O1ii0.882.543.176 (2)129
N4A—H4A2···O3ii0.882.333.142 (2)153
N1B—H1B···O2Aiv0.881.952.823 (2)175
C5B—H5B···O2v0.952.613.288 (2)129
C5B—H5B···O5vi0.952.513.328 (2)144
C6B—H6B···O2iv0.952.643.320 (2)129
C6B—H6B···O4iv0.952.523.172 (2)126
C6B—H6B···O6vi0.952.613.372 (3)138
N4B—H4BA···O6vii0.882.262.984 (2)139
N4B—H4BB···O3v0.882.323.193 (2)169
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x, y+1/2, z+1/2; (vi) x, y+2, z; (vii) x, y+1, z.
(6-Amino-5-fluoro-1,2-dihydropyrimidin-2-one-κN3)aquadibromidozinc(II)–4-amino-5-fluorocytosine (1/1) (III) top
Crystal data top
[ZnBr2(C4H5FN3O)(H2O)]·C4H5FN3OZ = 2
Mr = 501.41F(000) = 484
Triclinic, P1Dx = 2.361 Mg m3
a = 8.0586 (4) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.1383 (4) ÅCell parameters from 9809 reflections
c = 10.1842 (4) Åθ = 4.7–66.4°
α = 89.6438 (13)°µ = 9.52 mm1
β = 68.0189 (12)°T = 100 K
γ = 67.7878 (12)°Block, colourless
V = 705.39 (5) Å30.18 × 0.16 × 0.13 mm
Data collection top
Bruker Prospector CCD
diffractometer
2450 independent reflections
Radiation source: I-mu-S microsource X-ray tube2443 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.032
ω and phi scansθmax = 67.1°, θmin = 4.7°
Absorption correction: multi-scan
(APEX2; Bruker, 2014)
h = 99
Tmin = 0.542, Tmax = 0.753k = 1111
18184 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: mixed
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0096P)2 + 1.657P]
where P = (Fo2 + 2Fc2)/3
2450 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.66 e Å3
2 restraintsΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.44074 (5)0.99988 (4)0.75900 (4)0.00989 (9)
Br10.31345 (4)0.88345 (3)0.64335 (3)0.01187 (8)
O10.3172 (3)0.9713 (2)0.9638 (2)0.0150 (4)
H1O10.390 (4)0.927 (3)1.004 (3)0.023*
H2O10.238 (4)0.935 (4)0.976 (4)0.023*
Br20.78739 (4)0.88203 (3)0.67107 (3)0.01302 (8)
N1A0.3359 (3)1.2137 (2)0.7649 (2)0.0095 (4)
C2A0.3427 (4)1.2922 (3)0.8689 (3)0.0091 (5)
N3A0.2510 (3)1.4411 (2)0.8868 (2)0.0099 (4)
H3A0.2546141.4914780.9550250.012*
C4A0.1559 (4)1.5148 (3)0.8066 (3)0.0114 (5)
C5A0.1578 (4)1.4282 (3)0.6974 (3)0.0124 (5)
C6A0.2454 (4)1.2833 (3)0.6799 (3)0.0109 (5)
H6A0.2441291.2278330.6058160.013*
N4A0.0687 (3)1.6551 (2)0.8326 (3)0.0160 (5)
H4AA0.0708831.7034040.9029890.019*
H4AB0.0074871.7016080.7797740.019*
O2A0.4264 (3)1.23670 (19)0.94824 (19)0.0115 (4)
F1A0.0643 (2)1.49613 (17)0.61490 (17)0.0167 (3)
N1B0.1380 (3)1.1809 (2)0.7445 (2)0.0118 (4)
H1B0.0700811.0870470.7302070.014*
C2B0.1648 (4)1.2621 (3)0.8641 (3)0.0098 (5)
N3B0.2546 (3)1.4081 (2)0.8802 (2)0.0102 (4)
C4B0.3252 (4)1.4703 (3)0.7849 (3)0.0106 (5)
C5B0.3060 (4)1.3828 (3)0.6661 (3)0.0112 (5)
C6B0.2119 (4)1.2394 (3)0.6472 (3)0.0117 (5)
H6B0.1969861.1799620.5682930.014*
N4B0.4157 (3)1.6124 (2)0.8034 (2)0.0141 (5)
H4BA0.4291781.6654710.8777790.017*
H4BB0.4624221.6539520.7412520.017*
O2B0.1057 (3)1.19945 (19)0.9541 (2)0.0130 (4)
F1B0.3885 (2)1.45036 (17)0.57725 (17)0.0166 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01118 (18)0.00910 (18)0.01210 (18)0.00530 (14)0.00632 (14)0.00354 (13)
Br10.01221 (14)0.01155 (14)0.01430 (15)0.00509 (11)0.00757 (11)0.00104 (10)
O10.0211 (10)0.0178 (10)0.0135 (10)0.0129 (8)0.0094 (8)0.0076 (8)
Br20.01005 (14)0.01136 (14)0.01919 (15)0.00465 (11)0.00721 (11)0.00576 (11)
N1A0.0095 (10)0.0103 (11)0.0096 (10)0.0051 (9)0.0034 (9)0.0029 (8)
C2A0.0049 (11)0.0090 (12)0.0111 (12)0.0038 (10)0.0003 (10)0.0032 (10)
N3A0.0100 (11)0.0093 (11)0.0111 (11)0.0047 (9)0.0043 (9)0.0029 (8)
C4A0.0063 (12)0.0119 (13)0.0136 (13)0.0040 (10)0.0010 (10)0.0063 (10)
C5A0.0100 (12)0.0190 (14)0.0113 (13)0.0072 (11)0.0062 (10)0.0085 (11)
C6A0.0084 (12)0.0180 (14)0.0097 (12)0.0099 (11)0.0026 (10)0.0043 (10)
N4A0.0194 (12)0.0129 (12)0.0190 (12)0.0067 (10)0.0111 (10)0.0045 (9)
O2A0.0118 (9)0.0100 (9)0.0133 (9)0.0038 (7)0.0065 (8)0.0041 (7)
F1A0.0176 (8)0.0191 (8)0.0190 (8)0.0072 (7)0.0132 (7)0.0104 (7)
N1B0.0125 (11)0.0078 (11)0.0128 (11)0.0034 (9)0.0034 (9)0.0001 (8)
C2B0.0063 (12)0.0097 (13)0.0119 (13)0.0049 (10)0.0003 (10)0.0020 (10)
N3B0.0097 (10)0.0100 (11)0.0114 (11)0.0061 (9)0.0026 (9)0.0037 (8)
C4B0.0078 (12)0.0127 (13)0.0122 (13)0.0075 (10)0.0016 (10)0.0037 (10)
C5B0.0101 (12)0.0154 (14)0.0101 (12)0.0070 (11)0.0041 (10)0.0050 (10)
C6B0.0117 (13)0.0145 (14)0.0091 (12)0.0080 (11)0.0017 (10)0.0003 (10)
N4B0.0174 (12)0.0097 (11)0.0143 (11)0.0037 (9)0.0074 (10)0.0041 (9)
O2B0.0159 (9)0.0092 (9)0.0149 (9)0.0049 (8)0.0075 (8)0.0033 (7)
F1B0.0195 (8)0.0183 (8)0.0164 (8)0.0080 (7)0.0114 (7)0.0075 (6)
Geometric parameters (Å, º) top
Zn1—N1A1.999 (2)C6A—H6A0.9500
Zn1—O12.0200 (19)N4A—H4AA0.8800
Zn1—Br22.3770 (4)N4A—H4AB0.8800
Zn1—Br12.3811 (4)N1B—C6B1.362 (4)
O1—H1O10.828 (18)N1B—C2B1.373 (3)
O1—H2O10.820 (18)N1B—H1B0.8800
N1A—C2A1.358 (3)C2B—O2B1.250 (3)
N1A—C6A1.361 (3)C2B—N3B1.359 (3)
C2A—O2A1.242 (3)N3B—C4B1.341 (3)
C2A—N3A1.385 (3)C4B—N4B1.323 (4)
N3A—C4A1.357 (3)C4B—C5B1.430 (4)
N3A—H3A0.8800C5B—C6B1.337 (4)
C4A—N4A1.302 (4)C5B—F1B1.352 (3)
C4A—C5A1.413 (4)C6B—H6B0.9500
C5A—C6A1.347 (4)N4B—H4BA0.8800
C5A—F1A1.350 (3)N4B—H4BB0.8800
N1A—Zn1—O1104.91 (8)C5A—C6A—H6A118.9
N1A—Zn1—Br2114.89 (6)N1A—C6A—H6A118.9
O1—Zn1—Br2110.20 (6)C4A—N4A—H4AA120.0
N1A—Zn1—Br1113.44 (6)C4A—N4A—H4AB120.0
O1—Zn1—Br1100.93 (6)H4AA—N4A—H4AB120.0
Br2—Zn1—Br1111.302 (16)C6B—N1B—C2B122.9 (2)
Zn1—O1—H1O1119 (2)C6B—N1B—H1B118.6
Zn1—O1—H2O1113 (2)C2B—N1B—H1B118.6
H1O1—O1—H2O1107 (3)O2B—C2B—N3B122.2 (2)
C2A—N1A—C6A119.3 (2)O2B—C2B—N1B119.1 (2)
C2A—N1A—Zn1116.57 (17)N3B—C2B—N1B118.8 (2)
C6A—N1A—Zn1123.87 (18)C4B—N3B—C2B120.1 (2)
O2A—C2A—N1A123.1 (2)N4B—C4B—N3B119.5 (2)
O2A—C2A—N3A118.8 (2)N4B—C4B—C5B120.5 (2)
N1A—C2A—N3A118.1 (2)N3B—C4B—C5B120.0 (2)
C4A—N3A—C2A124.5 (2)C6B—C5B—F1B122.3 (2)
C4A—N3A—H3A117.7C6B—C5B—C4B120.0 (2)
C2A—N3A—H3A117.7F1B—C5B—C4B117.6 (2)
N4A—C4A—N3A120.9 (2)C5B—C6B—N1B118.0 (2)
N4A—C4A—C5A124.0 (2)C5B—C6B—H6B121.0
N3A—C4A—C5A115.1 (2)N1B—C6B—H6B121.0
C6A—C5A—F1A121.7 (2)C4B—N4B—H4BA120.0
C6A—C5A—C4A120.7 (2)C4B—N4B—H4BB120.0
F1A—C5A—C4A117.5 (2)H4BA—N4B—H4BB120.0
C5A—C6A—N1A122.2 (2)
C6A—N1A—C2A—O2A178.2 (2)Zn1—N1A—C6A—C5A172.59 (19)
Zn1—N1A—C2A—O2A7.1 (3)C6B—N1B—C2B—O2B174.4 (2)
C6A—N1A—C2A—N3A2.0 (3)C6B—N1B—C2B—N3B5.7 (4)
Zn1—N1A—C2A—N3A172.60 (17)O2B—C2B—N3B—C4B176.3 (2)
O2A—C2A—N3A—C4A179.5 (2)N1B—C2B—N3B—C4B3.8 (3)
N1A—C2A—N3A—C4A0.7 (4)C2B—N3B—C4B—N4B178.7 (2)
C2A—N3A—C4A—N4A178.2 (2)C2B—N3B—C4B—C5B0.0 (4)
C2A—N3A—C4A—C5A1.0 (4)N4B—C4B—C5B—C6B179.1 (2)
N4A—C4A—C5A—C6A177.7 (3)N3B—C4B—C5B—C6B2.2 (4)
N3A—C4A—C5A—C6A1.4 (4)N4B—C4B—C5B—F1B2.0 (4)
N4A—C4A—C5A—F1A0.5 (4)N3B—C4B—C5B—F1B176.7 (2)
N3A—C4A—C5A—F1A179.6 (2)F1B—C5B—C6B—N1B178.3 (2)
F1A—C5A—C6A—N1A178.3 (2)C4B—C5B—C6B—N1B0.6 (4)
C4A—C5A—C6A—N1A0.2 (4)C2B—N1B—C6B—C5B3.4 (4)
C2A—N1A—C6A—C5A1.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2Ai0.83 (2)1.97 (2)2.754 (3)159 (3)
O1—H2O1···O2Bii0.82 (2)2.01 (2)2.783 (3)158 (3)
N3A—H3A···N3Biii0.881.972.845 (3)175
N4A—H4AA···O2Biii0.881.922.800 (3)174
N4A—H4AB···Br2iv0.882.593.455 (2)168
N1B—H1B···Br10.882.783.511 (2)141
N1B—H1B···Br2v0.882.893.442 (2)123
C6B—H6B···Br1vi0.952.823.689 (3)153
N4B—H4BA···O2Aiii0.882.052.921 (3)172
N4B—H4BB···Br1iv0.882.793.611 (2)155
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+2; (iii) x, y+3, z+2; (iv) x1, y+1, z; (v) x1, y, z; (vi) x, y+2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds