Download citation
Download citation
link to html
A new unsymmetrical s-tetra­zine derivative, namely 4-({2-[6-(3,5-dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetra­zin-3-yl]hydrazin-1-yl­idene}meth­yl)phenol (DPHM), C14H14N8O, was synthesized based on 3-(3,5-di­methyl­pyrazol-1-yl)-6-hydrazinyl-s-tetra­zine (DPHT). The structure was characterized by elemental analysis and single-crystal X-ray diffraction. Crystal structure determination shows that DPHM crystallizes in the monoclinic P21/c space group with high coplanarity and a zigzag layered structure. In addition, its thermal behaviour was investigated by DSC and TG–DTG methods. The thermal safety of DPHM was evaluated by self-accelerating decomposition temperature (TSADT), critical temperature of thermal explosion (Tb), entropy of activation (ΔS^{\neq}), enthalpy of activation (ΔH^{\neq}) and free energy of activation (ΔG^{\neq}). Meanwhile, the kinetic parameters and specific heat capacity of DPHM were also determined. The results show that DPHM has better stability and detonation properties than 3-(2-benzyl­idenehydrazin-1-yl)-6-(3,5-di­methyl­pyrazol-1-yl)-s-tetra­zine (DAHBTz), due to the introduction of a hy­droxy group, which increases the number of hydrogen-bond inter­actions and improves the stability and density of DPHM. This study demonstrates that the performance of an explosive can be optimized through structural modification.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618006617/qs3070sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618006617/qs3070Isup2.hkl
Contains datablock I

CCDC reference: 1815376

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-({2-[6-(3,5-Dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazin-3-yl]hydrazin-1-ylidene}methyl)phenol top
Crystal data top
C14H14N8OF(000) = 648
Mr = 310.33Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.8043 (16) ÅCell parameters from 1328 reflections
b = 31.562 (9) Åθ = 2.7–23.3°
c = 7.898 (2) ŵ = 0.10 mm1
β = 95.860 (6)°T = 296 K
V = 1439.3 (7) Å3Block, red
Z = 40.36 × 0.27 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
1640 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 25.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 66
Tmin = 0.679, Tmax = 0.746k = 3736
7247 measured reflectionsl = 98
2552 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.0822P)2 + 0.8073P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2552 reflectionsΔρmax = 0.36 e Å3
209 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Unit cell dimensions were obtained with least-squares refinements and semi-empirical absorption corrections were applied using the SADABS program (Sheldrick, 2008a). The structure was solved by direct methods and refined by full-matrix least squares techniques based on F2 with the SHELXTL and OLEX2 program (Sheldrick, 2008b; Dolomanov et al., 2009). All non-hydrogen atoms were obtained from the difference Fourier map and refined with atomic anisotropic thermal parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4725 (4)0.17854 (8)0.9759 (4)0.0458 (7)
N20.6592 (4)0.15510 (8)1.0433 (3)0.0394 (6)
N30.4779 (4)0.09682 (8)0.9071 (3)0.0437 (7)
N40.4834 (4)0.05731 (8)0.8544 (3)0.0435 (7)
N50.8530 (4)0.08987 (8)1.0552 (3)0.0397 (6)
N60.8598 (4)0.04984 (8)1.0057 (3)0.0403 (7)
N70.7035 (4)0.00418 (8)0.8395 (4)0.0438 (7)
H70.82730.01840.86940.053*
N80.5285 (4)0.02186 (8)0.7307 (3)0.0424 (7)
O10.0617 (4)0.15167 (8)0.2356 (3)0.0628 (7)
H10.17970.13840.20400.094*
C10.3394 (7)0.25160 (11)0.9954 (5)0.0625 (11)
H1A0.39350.27721.05180.094*
H1B0.32270.25610.87450.094*
H1C0.19220.24391.03180.094*
C20.5100 (5)0.21682 (10)1.0389 (4)0.0450 (8)
C30.7182 (6)0.21879 (10)1.1458 (5)0.0499 (9)
H30.78010.24251.20400.060*
C40.8124 (5)0.17896 (9)1.1475 (4)0.0416 (8)
C51.0308 (6)0.16287 (11)1.2399 (5)0.0542 (9)
H5A1.04850.13341.21470.081*
H5B1.15970.17841.20460.081*
H5C1.02540.16641.36020.081*
C60.6658 (5)0.11239 (9)0.9989 (4)0.0355 (7)
C70.6805 (5)0.03535 (9)0.8988 (4)0.0365 (7)
C80.5669 (5)0.05909 (10)0.6790 (4)0.0414 (8)
H80.70650.07220.71580.050*
C90.3971 (5)0.08178 (9)0.5631 (4)0.0391 (7)
C100.4444 (5)0.12280 (10)0.5134 (4)0.0457 (8)
H100.58380.13530.55500.055*
C110.2902 (6)0.14537 (10)0.4042 (4)0.0486 (8)
H110.32600.17280.37230.058*
C120.0809 (5)0.12707 (11)0.3418 (4)0.0442 (8)
C130.0292 (5)0.08607 (10)0.3881 (4)0.0442 (8)
H130.11010.07370.34540.053*
C140.1856 (5)0.06362 (10)0.4980 (4)0.0427 (8)
H140.15000.03620.52910.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0389 (15)0.0446 (16)0.0509 (17)0.0087 (12)0.0098 (13)0.0000 (13)
N20.0338 (14)0.0378 (14)0.0441 (16)0.0018 (11)0.0079 (12)0.0006 (12)
N30.0362 (15)0.0416 (15)0.0504 (18)0.0002 (12)0.0095 (13)0.0018 (12)
N40.0372 (15)0.0399 (15)0.0504 (17)0.0006 (11)0.0097 (13)0.0015 (12)
N50.0359 (14)0.0373 (14)0.0435 (16)0.0001 (11)0.0078 (12)0.0024 (12)
N60.0372 (14)0.0364 (14)0.0449 (16)0.0001 (11)0.0074 (12)0.0014 (12)
N70.0377 (15)0.0371 (15)0.0529 (18)0.0005 (11)0.0131 (13)0.0055 (12)
N80.0384 (15)0.0412 (15)0.0447 (16)0.0052 (12)0.0094 (12)0.0022 (12)
O10.0475 (15)0.0693 (17)0.0659 (17)0.0054 (12)0.0220 (13)0.0176 (14)
C10.059 (2)0.050 (2)0.076 (3)0.0151 (18)0.007 (2)0.0031 (19)
C20.0427 (19)0.0389 (18)0.052 (2)0.0051 (15)0.0001 (16)0.0059 (15)
C30.047 (2)0.0385 (18)0.062 (2)0.0008 (15)0.0065 (17)0.0014 (16)
C40.0390 (17)0.0351 (17)0.048 (2)0.0022 (14)0.0066 (15)0.0008 (14)
C50.044 (2)0.0443 (19)0.068 (2)0.0015 (15)0.0216 (18)0.0049 (17)
C60.0334 (16)0.0363 (16)0.0353 (17)0.0016 (13)0.0036 (13)0.0018 (13)
C70.0327 (16)0.0383 (17)0.0364 (18)0.0027 (13)0.0059 (14)0.0038 (13)
C80.0351 (17)0.0406 (18)0.046 (2)0.0015 (13)0.0070 (15)0.0001 (15)
C90.0354 (16)0.0430 (18)0.0373 (18)0.0031 (14)0.0044 (14)0.0018 (14)
C100.0359 (17)0.0485 (19)0.050 (2)0.0055 (14)0.0114 (15)0.0051 (15)
C110.0457 (19)0.0410 (18)0.056 (2)0.0016 (15)0.0080 (16)0.0108 (16)
C120.0364 (17)0.056 (2)0.0382 (19)0.0075 (15)0.0069 (14)0.0036 (15)
C130.0305 (16)0.053 (2)0.046 (2)0.0032 (15)0.0082 (15)0.0045 (16)
C140.0372 (17)0.0407 (18)0.049 (2)0.0018 (14)0.0043 (15)0.0020 (15)
Geometric parameters (Å, º) top
N1—N21.373 (3)C2—C31.403 (4)
N1—C21.317 (4)C3—H30.9300
N2—C41.373 (4)C3—C41.370 (4)
N2—C61.395 (4)C4—C51.486 (4)
N3—N41.316 (3)C5—H5A0.9600
N3—C61.340 (4)C5—H5B0.9600
N4—C71.353 (4)C5—H5C0.9600
N5—N61.324 (3)C8—H80.9300
N5—C61.336 (4)C8—C91.462 (4)
N6—C71.351 (4)C9—C101.388 (4)
N7—H70.8600C9—C141.404 (4)
N7—N81.380 (3)C10—H100.9300
N7—C71.344 (4)C10—C111.376 (4)
N8—C81.271 (4)C11—H110.9300
O1—H10.8200C11—C121.389 (5)
O1—C121.360 (4)C12—C131.386 (4)
C1—H1A0.9600C13—H130.9300
C1—H1B0.9600C13—C141.385 (4)
C1—H1C0.9600C14—H140.9300
C1—C21.495 (4)
C2—N1—N2104.7 (3)H5A—C5—H5B109.5
N1—N2—C6117.7 (2)H5A—C5—H5C109.5
C4—N2—N1112.0 (2)H5B—C5—H5C109.5
C4—N2—C6130.4 (3)N3—C6—N2116.7 (3)
N4—N3—C6118.3 (3)N5—C6—N2118.2 (3)
N3—N4—C7116.8 (3)N5—C6—N3125.1 (3)
N6—N5—C6117.2 (3)N6—C7—N4124.4 (3)
N5—N6—C7117.6 (2)N7—C7—N4119.8 (3)
N8—N7—H7120.0N7—C7—N6115.8 (3)
C7—N7—H7120.0N8—C8—H8119.2
C7—N7—N8120.0 (3)N8—C8—C9121.6 (3)
C8—N8—N7115.6 (3)C9—C8—H8119.2
C12—O1—H1109.5C10—C9—C8119.6 (3)
H1A—C1—H1B109.5C10—C9—C14117.9 (3)
H1A—C1—H1C109.5C14—C9—C8122.5 (3)
H1B—C1—H1C109.5C9—C10—H10119.2
C2—C1—H1A109.5C11—C10—C9121.7 (3)
C2—C1—H1B109.5C11—C10—H10119.2
C2—C1—H1C109.5C10—C11—H11120.1
N1—C2—C1120.4 (3)C10—C11—C12119.7 (3)
N1—C2—C3111.5 (3)C12—C11—H11120.1
C3—C2—C1128.0 (3)O1—C12—C11115.9 (3)
C2—C3—H3126.8O1—C12—C13124.1 (3)
C4—C3—C2106.5 (3)C13—C12—C11120.0 (3)
C4—C3—H3126.8C12—C13—H13120.1
N2—C4—C5125.1 (3)C14—C13—C12119.8 (3)
C3—C4—N2105.3 (3)C14—C13—H13120.1
C3—C4—C5129.6 (3)C9—C14—H14119.6
C4—C5—H5A109.5C13—C14—C9120.9 (3)
C4—C5—H5B109.5C13—C14—H14119.6
C4—C5—H5C109.5
N1—N2—C4—C30.1 (4)C1—C2—C3—C4179.2 (3)
N1—N2—C4—C5179.8 (3)C2—N1—N2—C40.2 (3)
N1—N2—C6—N36.3 (4)C2—N1—N2—C6179.6 (3)
N1—N2—C6—N5176.0 (3)C2—C3—C4—N20.0 (4)
N1—C2—C3—C40.1 (4)C2—C3—C4—C5179.7 (3)
N2—N1—C2—C1179.2 (3)C4—N2—C6—N3173.4 (3)
N2—N1—C2—C30.2 (4)C4—N2—C6—N54.3 (5)
N3—N4—C7—N66.7 (5)C6—N2—C4—C3179.6 (3)
N3—N4—C7—N7175.5 (3)C6—N2—C4—C50.1 (5)
N4—N3—C6—N2176.0 (3)C6—N3—N4—C70.4 (4)
N4—N3—C6—N56.4 (5)C6—N5—N6—C71.8 (4)
N5—N6—C7—N47.9 (4)C7—N7—N8—C8178.9 (3)
N5—N6—C7—N7174.2 (3)C8—C9—C10—C11179.8 (3)
N6—N5—C6—N2177.3 (3)C8—C9—C14—C13179.8 (3)
N6—N5—C6—N35.2 (4)C9—C10—C11—C120.3 (5)
N7—N8—C8—C9180.0 (3)C10—C9—C14—C130.2 (5)
N8—N7—C7—N41.4 (4)C10—C11—C12—O1179.6 (3)
N8—N7—C7—N6179.5 (3)C10—C11—C12—C130.7 (5)
N8—C8—C9—C10178.4 (3)C11—C12—C13—C140.7 (5)
N8—C8—C9—C141.9 (5)C12—C13—C14—C90.2 (5)
O1—C12—C13—C14179.6 (3)C14—C9—C10—C110.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.452.895 (4)115
O1—H1···N3i0.822.283.090 (4)172
N7—H7···N6ii0.862.213.060 (4)169
C5—H5A···N50.962.112.863 (4)134
C13—H13···N4i0.932.603.490 (4)161
Symmetry codes: (i) x, y, z+1; (ii) x+2, y, z+2.
Kinetic parameters of the exothermic decomposition reaction for DAHBTz and DPHM at various heating rates top
CompoundDAHBTzDPHM
Heating rates β (K min-1)Te (K)Tp (K)Te (K)Tp (K)
5468.78469.76496.76497.70
10474.07476.02502.81504.15
15478.74480.25507.20507.87
20480.29481.85510.17511.36
25483.06485.01511.44513.89
30513.08515.42
Kissinger method
Ek (kJ mol-1)194.14204.05
log (Ak s-1)19.5419.34
Linear correlation coefficient (rk)0.9980.999
Ozawa method
Eo (kJ mol-1)192.18202.05
Linear correlation coefficient (ro)0.9980.999
¯E (kJ mol-1)193.16203.05
TSADT = Te0 (K)463.15490.11
Tp0 (K)463.95491.37
Tb (K)473.66501.73
Notes: Te is the onset temperature in the DSC curve; Tp is the maximum peak temperature; TSADT is the self-accelerating decomposition temperature; Tb is the critical temperature of thermal explosion; E is the apparent activation energy; A is the pre-exponential constant; r is the linear correlation coefficient, with subscript `k' indicating data obtained by the Kissinger method and subscript `o' indicating data obtained by the Ozawa method.
Nitrogen equivalents of different detonation products top
Detonation productN2H2OCOCO2CH2
Nitrogen equivalent index10.540.781.350.150.29
Detonation velocity (D) and detonation pressure (P) of DPHM and DAHBTz top
CompoundΣND (m s-1)P (GPa)
DPHM2.706348.8515.75
DAHBTz2.766332.2115.33
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds