Download citation
Download citation
link to html
Single crystals of calcium bromide enneahydrate, CaBr2·9H2O, calcium iodide octa­hydrate, CaI2·8H2O, calcium iodide hepta­hydrate, CaI2·7H2O, and calcium iodide 6.5-hydrate, CaI2·6.5H2O, were grown from their aqueous solutions at and below room temperature according to the solid-liquid phase diagram. The crystal structure of CaI2·6.5H2O was redetermined. All four structures are built up from distorted Ca(H2O)8 anti­prisms. The anti­prisms of the iodide hydrate structures are connected either via trigonal-plane-sharing or edge-sharing, forming dimeric units. The anti­prisms in calcium bromide enneahydrate are monomeric.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614018002/qs3039sup1.cif
Contains datablocks CaBr2_9H2O_100K, CaI2_8H2O_100K, CaI2_7H2O_200K, CaI2_6H2O_153K, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018002/qs3039CaBr2_9H2O_100Ksup2.hkl
Contains datablock CaBr2_9H2O_100K

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018002/qs3039CaBr2_9H2O_100Ksup6.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018002/qs3039CaI2_8H2O_100Ksup3.hkl
Contains datablock CaI2_8H2O_100K

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018002/qs3039CaI2_8H2O_100Ksup7.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018002/qs3039CaI2_7H2O_200Ksup4.hkl
Contains datablock CaI2_7H2O_200K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018002/qs3039a_CaI2_6halbH2O_153Ksup5.hkl
Contains datablock a_CaI2_6halbH2O_153K

CCDC references: 1018007; 1018008; 1018009; 1018010

Introduction top

The ongoing discussion about the possibilities of the existence of aqueous salt solutions and hydrates on the surface of our neighbour planet Mars at temperatures down to 193 K (Renno et al., 2009) made clear that the present knowledge on salt–water systems at very low temperatures is insufficient for profound explanations and predictions. Examples of water–salt systems with deep eutectic temperatures have been published (Brass, 1980; Möhlmann & Thomsen, 2011); however, often the water content of the corresponding solid–liquid equilibrium is uncertain or not known, because the water-rich hydrates crystallizing below 273 K are difficult to separate completely from the viscous mother liquor. For many simple water–salt systems, the solid–liquid equilibria are not known down to the eutectic temperature. We began a program for the systematic study of such equilibria taking care particularly to study the composition and structure of water-rich hydrates. Apart from application aspects in planetary science, in the fields of cold-climate and tropospheric research, the structures of water-rich hydrates can give hints for tendencies to nucleation and structure formation in concentrated salt solutions.

In a first communication, we reported crystal structures of magnesium halide hydrates (MgCl2.8H2O, MgCl2.12H2O, MgBr2.6H2O, MgBr2.9H2O, MgI2.8H2O and MgI2.9H2O; Hennings et al., 2013) and discussed the stepwise build-up of a second hydration shell around the cation, when the hydrates contain more than six waters. In this second part, we report the crystal structures of calcium halide hydrates, which are formed under equilibrium conditions from aqueous solutions at low temperatures. Since the CaCl2–H2O system has been investigated several times, down to the eutectic temperature of 218 K, we did not reinvestigate this system, and accept the fact that the hexahydrate represents the stable solid phase at low temperatures (Roozeboom, 1889). For the bromide and iodide systems, the reported solid–liquid phase diagrams at low temperatures (Kremers, 1858; Jones & Getman, 1904; Milikan, 1917; Rakowsky & Garrett, 1954) were incomplete. Therefore a reinvestigation seemed to be worthwhile. At room temperature, Leclaire & Borel (1977) found for the bromide a hexahydrate isostructural with the corresponding chloride. However, in the case of iodide, the crystal structure analysis (Thiele & Putzas, 1984) revealed a CaI2.6.5H2O. Furthermore, these authors pointed out that attempts to prepare a hexahydrate of the iodide were not successful. At lower temperatures, we isolated the higher hydrates CaBr2.9H2O, CaI2.7H2O and CaI2.8H2O, and these structures shall be discussed below. The structure of CaI2.6.5H2O was re-investigated to include the H-atom positions.

Experimental top

Synthesis and crystallization top

CaI2.6.5H2O was crystallized from an aqueous solution of 69.7 wt% CaI2 at 298 K for 1 d, CaI2.7H2O from a solution of 61.3 wt% CaI2 at 233 K for 3 d, and CaI2.8H2O from an aqueous solution of 53.7 wt% CaI2 at 187 K for 1 d. For the preparation of these aqueous solutions, calcium iodide tetra­hydrate (CaI2.4H2O, Acros Organics, 99%) was used. CaBr2.9H2O was crystallized from an aqueous solution of 45.7 wt% CaBr2 (CaBr2.H2O, Merck, pA) at 228 K for 20 d. The Ca2+ content of all solutions was analyzed by complexometric titration with ethyl­enedi­amine­tetra­acetic acid (EDTA). All crystals showed no changes during an observations period of four weeks as saturated solutions. Crystal shape and size is given in Table 1 for all determined structures.

The samples were stored in a freezer or a cryostat at low temperatures. CaI2.6.5H2O crystallized at room temperature. The crystals were separated and embedded in perflourinated ether (Galden 1438OB, Solvay Solexis) for X-ray analysis.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms in each structure were placed in the positions indicated by difference Fourier maps and refined isotropically. Distance restraints were applied for all water molecule geometries for all water molecules, with O—H and H···H distance restraints of 0.82 (1) and 1.32 (1) Å, respectively.

Results and discussion top

Calcium bromide enneahydrate CaBr\\\\\\\~2\\\\\\\~.9H\\\\\\\~2\\\\\\\Õ top

Calcium bromide enneahydrate represents the water-richest calcium salt hydrate prepared to date. Although nine water molecules would be available for Ca2+, the primary coordination sphere is formed only by eight water molecules, as can be seen in Fig. 1. The excess water is accommodated between the isolated cation polyhedra. A search in the ICSD (Inorganic Crystal Structure Database; 2014; https://icsd.fiz-karlsruhe.de/icsd/) for water-rich calcium salts also confirmed that a hydration number of eight is never exceeded with water, even in the presence of large anions [CaO2.8H2O (Shineman & King, 1951), CaB12H12.8H2O (Tiritiris & Schleid, 2001) and Ca(I5)2.7H2O (Thomas & Moore, 1981)]. The hydration polyhedron takes the form of a quadratic anti­prism (Fig. 1b). Along the b axis, nearest edges of the prisms are connected through 2.18 Å hydrogen bonds, forming zigzag chains (Table 2 and Fig. 2a; chains are highlighted). Perpendicular to the bc plane, the lattice water atom O9 connects the chains within the ab plane, as highlighted in Fig. 3(a). The hydrogen-bond network of the calcium aqua complexes is completed through the bromide ions located between the layers of anti­prisms. Every bromide ion forms four (Br1) or five (Br2) Br···H bonds when considering distances between 2.4 and 2.6 Å (Table 2 and Fig. 2b).

Calcium iodide hydrates CaI\\\\\\\~2\\\\\\\~.8H\\\\\\\~2\\\\\\\Õ, CaI\\\\\\\~.7H\\\\\\\~2\\\\\\\Õ and CaI\\\\\\\~2\\\\\\\~.6.5H\\\\\\\~2\\\\\\\Õ top

The unit-cell parameters of the iodide and bromide hydrates are included in Table 1. Our redetermination of the 6.5-hydrate confirms the data of Thiele & Putzas (1984) with respect to the space group. The unit-cell parameters and atomic coordinates of Ca, I and O of Thiele & Putzas (1984) deviate from our results since the authors stated an `approximate determination by film methods', and used a different measurement temperature. We included and refined the H atoms in the final model. In all three hydrates, the Ca2+ ion is coordinated by eight molecules of water (Fig. 4). The structure of the heptahydrate contains two crystallographically distinct Ca2+ positions, while the other hydrates contain only one. The geometry of the hydration spheres of calcium are illustrated in Fig. 5. In each hydrate, the polyhedron formed by water molecules around Ca2+ can be described to a good approximation as a quadratic anti­prism. It is inter­esting to note that these prisms are dimers in all three hydrates. In case of the 6.5-hydrate, the anti­prisms share a trigonal face, whereas the anti­prisms of the other two hydrates share a common edge. Although the o­cta­hydrate contains enough water for the formation of isolated o­cta­aqua complexes, the dimer structure is preferred by the calcium ions with the consequence of an extra lattice water outside the primary hydration sphere of Ca2+. The structural reason for the dimerization is not clear, since in other examples of o­cta­hydrates with large anions, noted in the Introduction (section 1), the hydration spheres of Ca2+ are monomeric. A more detailed inspection of the structural features reveals that the mean Ca—O distances and its range in the hydration complexes does not vary systematically for the different hydrates including the bromide (Table 2). The mean distance remains remarkably constant, independent on the water content. It seems that the quadratic anti­prism represents a quite stable hydration geometry for calcium, even if the squares are not exact planes, since the kinks ruffling is not pronounced enough for a transition to a tridodecahedron. Particularly, for the 6.5-hydrate, one would expect some structural similarity to the well-known hexahydrate structures of the bromide and chloride of calcium (Leclaire & Borel, 1977). Indeed, one could imagine a depolymerization of the trigonal tricapped [Ca(H2O)6/2(H2O)3] columns by the additional water in a transition from the 6.0- to the 6.5-hydrate, as shown in Fig. 6.

Whereas the structure of CaI.6.5H2O still resembles the original highly symmetric structure of CaBr2.6H2O (at least in the view direction shown in in Fig. 6), this similarity is lost in the higher hydrates. For the higher hydrates, a tendency for separation of the large anions and the hydrated cations in distinguished layers can be recognized (Fig. 7). Although, hydrogen-bond distances between I and H atoms are present, they do not seem to control the structure, as was pointed out already by Thiele & Putzas (1984). Apparently, efficient packing is more important. This can be seen also in the orientation of the lattice water molecules in CaI2.8H2O and CaBr2.9H2O, as shown in Fig. 3. The water is oriented so as to optimize the hydrogen bonding to the calcium aqua complexes, the remaining hydrogen bond to the bromide or iodide is merely an effect of packing.

Summarizing the structural findings on water-rich calcium halide hydrates, it is surprising that in CaCl2.6H2O, with only six water of hydration, the Ca2+ ion maintains a primary hydration sphere including nine water molecules sharing six along trigonal–prismatic columns (Agron & Busing, 1986; Leclaire & Borel, 1977). In all other halides that are richer in water, the coordination number of Ca2+ is eight, even if there is excess water available, as in the nonahydrates. Probably the peculiar geometrical coincidence of radii of about 1.3 Å for Ca2+ (Shannon, 1976) and water on one side and 1.7 Å for Cl- on the other side enables this extensive sharing of coordinated water accompanied by an effective hydrogen-bonding network in CaCl2.6H2O. The particular stability of this structure and the associated radii could also explain why even at the eutectic temperature of 218 K no higher hydrate could be crystallized for CaCl2. In case of the bromide, a hexahydrate isostructural with the chloride is crystallized; however, the lattice energy is obviously not as favourable as for the chloride. Thus, at temperatures below 252 K, a nonahydrate crystallizes from bromide solutions (Hennings & Voigt, 2014).

Related literature top

For related literature, see: Agron & Busing (1986); Brass (1980); Hennings & Voigt (2014); Hennings et al. (2013); Jones & Getman (1904); Kremers (1858); Leclaire & Borel (1977); Möhlmann & Thomsen (2011); Milikan (1917); Rakowsky & Garrett (1954); Renno (2009); Roozeboom (1889); Shannon (1976); Shineman & King (1951); Thiele & Putzas (1984); Thomas & Moore (1981); Tiritiris & Schleid (2001).

Computing details top

For all compounds, data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: SHELXL2012 (Sheldrick, 2008); software used to prepare material for publication: SHELXL2012 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. (a) The asymmetric unit and (b) the quadratic antiprism as the coordination polyhedron in CaBr2.9H2O. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. (a) The formation of chains along b (Br atoms not shown for clarity). (b) The location and coordination of Br atoms by hydrogen bonds in the bc plane. Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. The asymmetric unit of (a) CaI2.6.5H2O [symmetry code: (i) -x+1, y, -z+1/2], (b) CaI2.7H2O and (c) CaI2.8H2O. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. The arrangement of I atoms in a distance up to 3.05 Å from water H atoms around dimers in (a) CaI2.6.5H2O, (b) CaI2.7H2O and (c) CaI2.8H2O.
[Figure 5] Fig. 5. Structural similarities between CaBr2.6H2O (Leclaire & Borel, 1977) and CaI2.6.5H2O.
[Figure 6] Fig. 6. The formation of layers in (a) CaI2.7H2O and (b) CaI2.8H2O.
[Figure 7] Fig. 7. The hydrogen-bonding scheme for free water molecules in (a) CaBr2.H2O and, in comparison, (b) for CaI2.8H2O. Dashed lines indicate hydrogen bonds.
(CaBr2_9H2O_100K) Calcium bromide nonahydrate top
Crystal data top
CaBr2·9H2OF(000) = 720
Mr = 362.02Dx = 1.956 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.8354 (8) ÅCell parameters from 2310 reflections
b = 8.7538 (5) Åθ = 2.3–29.6°
c = 18.2615 (18) ŵ = 7.03 mm1
β = 101.041 (8)°T = 100 K
V = 1229.36 (19) Å3Prismatic, colourless
Z = 40.6 × 0.34 × 0.27 mm
Data collection top
Stoe IPDS 2T
diffractometer
3495 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2968 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.100
rotation method scansθmax = 27.3°, θmin = 2.6°
Absorption correction: integration
(Coppens, 1970)
h = 1010
Tmin = 0.081, Tmax = 0.297k = 1012
3495 measured reflectionsl = 2525
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0365P)2 + 1.2235P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 1.10Δρmax = 1.33 e Å3
2826 reflectionsΔρmin = 1.45 e Å3
166 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
25 restraintsExtinction coefficient: 0.0023 (5)
Crystal data top
CaBr2·9H2OV = 1229.36 (19) Å3
Mr = 362.02Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8354 (8) ŵ = 7.03 mm1
b = 8.7538 (5) ÅT = 100 K
c = 18.2615 (18) Å0.6 × 0.34 × 0.27 mm
β = 101.041 (8)°
Data collection top
Stoe IPDS 2T
diffractometer
3495 independent reflections
Absorption correction: integration
(Coppens, 1970)
2968 reflections with I > 2σ(I)
Tmin = 0.081, Tmax = 0.297Rint = 0.100
3495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03625 restraints
wR(F2) = 0.084Only H-atom coordinates refined
S = 1.10Δρmax = 1.33 e Å3
2826 reflectionsΔρmin = 1.45 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.52307 (4)0.71505 (3)0.22957 (2)0.01504 (11)
Br20.00258 (4)0.19104 (3)0.87402 (2)0.01546 (11)
Ca10.41441 (7)0.23986 (6)0.10287 (3)0.00879 (14)
O70.1079 (3)0.2300 (2)0.05865 (13)0.0147 (4)
H7A0.039 (4)0.292 (3)0.069 (2)0.018*
H7B0.069 (5)0.202 (3)0.0161 (9)0.005 (8)*
O80.3610 (3)0.5185 (2)0.06304 (12)0.0138 (4)
H8A0.285 (3)0.522 (4)0.0251 (10)0.017*
H8B0.320 (4)0.561 (4)0.0959 (12)0.017*
O60.4201 (3)0.2468 (2)0.03275 (12)0.0126 (4)
H6A0.324 (3)0.239 (4)0.0596 (18)0.015*
H6B0.472 (5)0.316 (3)0.050 (2)0.015*
O20.6532 (3)0.3952 (2)0.17140 (12)0.0140 (4)
H2A0.723 (4)0.347 (3)0.2019 (15)0.017*
H2B0.627 (5)0.472 (3)0.1919 (18)0.036 (13)*
O10.2750 (3)0.3823 (2)0.19272 (12)0.0149 (4)
H1A0.201 (3)0.336 (4)0.2104 (17)0.018*
H1B0.343 (4)0.419 (4)0.2280 (13)0.018*
O40.6901 (3)0.1232 (3)0.08975 (12)0.0170 (4)
H4B0.708 (5)0.083 (4)0.0516 (13)0.020*
H4A0.778 (3)0.102 (4)0.1200 (17)0.020*
O50.3302 (3)0.0246 (2)0.06151 (12)0.0140 (4)
H5A0.252 (3)0.060 (4)0.081 (2)0.017*
H5B0.414 (3)0.083 (3)0.073 (2)0.017*
O30.4753 (3)0.0966 (2)0.21596 (12)0.0198 (5)
H3A0.487 (5)0.0038 (12)0.2188 (18)0.024*
H3B0.474 (6)0.129 (3)0.2579 (10)0.024*
O90.1293 (3)0.5406 (2)0.92976 (12)0.0154 (4)
H9A0.087 (4)0.457 (2)0.9169 (18)0.018*
H9B0.187 (4)0.566 (4)0.8988 (16)0.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01305 (17)0.01404 (15)0.01665 (19)0.00043 (10)0.00059 (12)0.00486 (10)
Br20.01464 (17)0.01936 (16)0.00992 (18)0.00484 (10)0.00385 (12)0.00137 (10)
Ca10.0083 (3)0.0107 (2)0.0061 (3)0.00029 (19)0.0018 (2)0.00007 (19)
O70.0113 (10)0.0188 (10)0.0125 (11)0.0016 (8)0.0018 (8)0.0030 (8)
O80.0145 (10)0.0163 (9)0.0092 (9)0.0003 (8)0.0011 (8)0.0002 (8)
O60.0112 (10)0.0162 (9)0.0085 (10)0.0007 (8)0.0029 (8)0.0022 (8)
O20.0116 (9)0.0130 (9)0.0149 (10)0.0036 (7)0.0037 (8)0.0026 (8)
O10.0122 (10)0.0210 (10)0.0111 (10)0.0022 (8)0.0014 (8)0.0031 (8)
O40.0104 (10)0.0249 (11)0.0135 (11)0.0061 (8)0.0028 (8)0.0029 (9)
O50.0117 (10)0.0136 (9)0.0164 (10)0.0012 (8)0.0018 (8)0.0013 (8)
O30.0346 (13)0.0135 (9)0.0104 (10)0.0017 (9)0.0019 (9)0.0004 (8)
O90.0145 (10)0.0153 (10)0.0151 (11)0.0003 (8)0.0001 (8)0.0013 (8)
Geometric parameters (Å, º) top
Ca1—O12.475 (2)Ca1—O52.485 (2)
Ca1—O22.453 (2)Ca1—O62.486 (2)
Ca1—O32.385 (2)Ca1—O72.384 (2)
Ca1—O42.442 (2)Ca1—O82.557 (2)
O7—Ca1—O3107.20 (9)O1—Ca1—O5123.05 (7)
O7—Ca1—O4143.51 (8)O7—Ca1—O682.68 (8)
O3—Ca1—O480.28 (8)O3—Ca1—O6146.79 (7)
O7—Ca1—O2144.41 (7)O4—Ca1—O674.19 (7)
O3—Ca1—O280.97 (8)O2—Ca1—O6109.70 (7)
O4—Ca1—O271.31 (7)O1—Ca1—O6137.94 (7)
O7—Ca1—O172.48 (7)O5—Ca1—O676.97 (7)
O3—Ca1—O174.41 (8)O7—Ca1—O880.73 (7)
O4—Ca1—O1141.88 (8)O3—Ca1—O8137.96 (7)
O2—Ca1—O176.88 (7)O4—Ca1—O8118.08 (8)
O7—Ca1—O570.82 (7)O2—Ca1—O871.56 (7)
O3—Ca1—O576.75 (7)O1—Ca1—O868.84 (7)
O4—Ca1—O576.64 (7)O5—Ca1—O8141.52 (7)
O2—Ca1—O5143.48 (7)O6—Ca1—O874.12 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9B···O2i0.82 (1)1.98 (1)2.800 (3)173 (4)
O9—H9A···Br20.82 (1)2.50 (1)3.316 (2)172 (3)
O3—H3B···Br2ii0.82 (1)2.62 (1)3.405 (2)162 (3)
O3—H3A···Br1iii0.82 (1)2.55 (1)3.365 (2)179 (3)
O5—H5B···O6iv0.82 (1)2.16 (2)2.878 (3)146 (3)
O5—H5A···Br2v0.82 (1)2.57 (1)3.388 (2)173 (4)
O4—H4B···O5iv0.82 (1)2.09 (2)2.869 (3)159 (4)
O1—H1B···Br2ii0.82 (1)2.88 (3)3.506 (2)134 (3)
O1—H1A···Br1vi0.82 (1)2.48 (1)3.298 (2)176 (3)
O2—H2B···Br10.82 (1)2.42 (1)3.228 (2)169 (3)
O2—H2A···Br1vii0.82 (1)2.43 (1)3.230 (2)166 (4)
O6—H6B···O8viii0.82 (1)2.00 (2)2.798 (3)164 (4)
O6—H6A···Br2ix0.82 (1)2.61 (1)3.422 (2)170 (4)
O8—H8B···O10.82 (1)2.44 (3)2.845 (3)112 (3)
O8—H8A···O9ix0.82 (1)1.93 (1)2.750 (3)173 (4)
O7—H7B···Br2ix0.82 (1)2.55 (2)3.332 (2)161 (3)
O7—H7A···O9x0.82 (1)1.97 (1)2.772 (3)167 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z1/2; (iii) x, y1, z; (iv) x+1, y, z; (v) x, y, z+1; (vi) x+1/2, y1/2, z+1/2; (vii) x+3/2, y1/2, z+1/2; (viii) x+1, y+1, z; (ix) x, y, z1; (x) x, y+1, z+1.
(CaI2_8H2O_100K) Calcium iodide octahydrate top
Crystal data top
CaI2·8H2OZ = 2
Mr = 438.01F(000) = 412
Triclinic, P1Dx = 2.230 Mg m3
a = 7.4521 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6127 (19) ÅCell parameters from 13177 reflections
c = 10.725 (2) Åθ = 2.3–59.5°
α = 86.048 (17)°µ = 5.22 mm1
β = 84.184 (16)°T = 100 K
γ = 72.427 (16)°Plate, colourless
V = 652.3 (2) Å30.32 × 0.22 × 0.12 mm
Data collection top
Stoe IPDS 2T
diffractometer
2994 independent reflections
Radiation source: 'sealed X-ray tube, 12 x 0.4 mm long-fine focus'2846 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.069
rotation method scansθmax = 27.5°, θmin = 2.9°
Absorption correction: integration
(Coppens, 1970)
h = 99
Tmin = 0.262, Tmax = 0.544k = 1111
7283 measured reflectionsl = 1313
Refinement top
Refinement on F222 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0545P)2 + 3.5145P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
2986 reflectionsΔρmax = 2.13 e Å3
164 parametersΔρmin = 2.04 e Å3
Crystal data top
CaI2·8H2Oγ = 72.427 (16)°
Mr = 438.01V = 652.3 (2) Å3
Triclinic, P1Z = 2
a = 7.4521 (14) ÅMo Kα radiation
b = 8.6127 (19) ŵ = 5.22 mm1
c = 10.725 (2) ÅT = 100 K
α = 86.048 (17)°0.32 × 0.22 × 0.12 mm
β = 84.184 (16)°
Data collection top
Stoe IPDS 2T
diffractometer
2994 independent reflections
Absorption correction: integration
(Coppens, 1970)
2846 reflections with I > 2σ(I)
Tmin = 0.262, Tmax = 0.544Rint = 0.069
7283 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03522 restraints
wR(F2) = 0.096All H-atom parameters refined
S = 1.18Δρmax = 2.13 e Å3
2986 reflectionsΔρmin = 2.04 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.70973 (4)0.71365 (4)0.00068 (3)0.01542 (11)
I20.41474 (4)0.29786 (4)0.38847 (3)0.01461 (11)
O10.2479 (5)0.9555 (5)0.2414 (4)0.0192 (8)
O50.1516 (6)0.9170 (5)0.1003 (4)0.0200 (8)
O60.1900 (5)0.9987 (4)0.5039 (3)0.0148 (7)
O70.1061 (5)0.6852 (5)0.4887 (3)0.0175 (7)
Ca10.05899 (13)0.88510 (11)0.32050 (9)0.01136 (19)
O40.0032 (5)1.1833 (5)0.2750 (4)0.0160 (7)
O80.2502 (5)0.6948 (5)0.0963 (4)0.0189 (7)
O30.3979 (5)0.7686 (6)0.2948 (4)0.0238 (8)
O20.0588 (6)0.6331 (5)0.2293 (4)0.0226 (8)
H4A0.079 (7)1.231 (7)0.245 (6)0.016 (16)*
H5A0.155 (11)1.002 (4)0.063 (6)0.028 (19)*
H6A0.238 (8)0.931 (6)0.538 (7)0.04 (2)*
H6B0.274 (7)1.080 (5)0.486 (8)0.04 (2)*
H7B0.084 (11)0.713 (8)0.562 (2)0.04 (2)*
H7A0.175 (13)0.591 (5)0.489 (7)0.07 (3)*
H1A0.345 (6)1.030 (6)0.254 (6)0.027 (19)*
H1B0.251 (10)0.919 (9)0.174 (4)0.05 (3)*
H3A0.468 (10)0.749 (12)0.230 (4)0.06 (3)*
H5B0.208 (15)0.843 (6)0.054 (6)0.08 (4)*
H2A0.001 (12)0.620 (11)0.172 (8)0.08 (4)*
H3B0.464 (10)0.749 (15)0.354 (5)0.09 (4)*
H2B0.150 (9)0.552 (7)0.235 (9)0.06 (3)*
H8B0.354 (5)0.683 (9)0.136 (6)0.018 (17)*
H8A0.250 (11)0.602 (4)0.073 (7)0.024 (18)*
H4B0.044 (14)1.186 (13)0.208 (5)0.06 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01371 (17)0.01851 (18)0.01503 (17)0.00563 (12)0.00141 (11)0.00335 (12)
I20.00936 (16)0.01374 (17)0.01892 (18)0.00038 (11)0.00382 (11)0.00194 (12)
O10.0092 (16)0.0234 (19)0.025 (2)0.0009 (14)0.0058 (14)0.0127 (15)
O50.0221 (19)0.0190 (19)0.0172 (18)0.0040 (15)0.0007 (14)0.0014 (14)
O60.0079 (15)0.0166 (17)0.0186 (17)0.0008 (13)0.0034 (13)0.0000 (13)
O70.0170 (17)0.0147 (17)0.0165 (18)0.0020 (14)0.0008 (14)0.0036 (13)
Ca10.0080 (4)0.0120 (4)0.0132 (4)0.0009 (3)0.0029 (3)0.0018 (3)
O40.0140 (17)0.0163 (17)0.0184 (18)0.0051 (13)0.0033 (14)0.0010 (14)
O80.0167 (18)0.0169 (18)0.0231 (19)0.0051 (14)0.0012 (15)0.0004 (15)
O30.0100 (17)0.038 (2)0.0198 (19)0.0011 (16)0.0003 (14)0.0023 (17)
O20.025 (2)0.0156 (18)0.027 (2)0.0017 (15)0.0123 (16)0.0065 (15)
Geometric parameters (Å, º) top
Ca1—O12.409 (4)Ca1—O62.588 (4)
Ca1—O22.442 (4)Ca1—O6i2.593 (4)
Ca1—O32.414 (4)Ca1—O72.383 (4)
Ca1—O42.496 (4)Ca1—O6i2.593 (4)
Ca1—O52.413 (4)Ca1—Ca1i4.339 (2)
Ca1—O6—Ca1i113.76 (13)O3—Ca1—O6136.08 (13)
O7—Ca1—O1114.68 (15)O2—Ca1—O6118.41 (14)
O7—Ca1—O5140.93 (14)O4—Ca1—O680.31 (12)
O1—Ca1—O581.07 (14)O7—Ca1—O6i73.43 (13)
O7—Ca1—O379.41 (14)O1—Ca1—O6i132.70 (12)
O1—Ca1—O3151.32 (14)O5—Ca1—O6i123.34 (13)
O5—Ca1—O373.52 (14)O3—Ca1—O6i74.09 (13)
O7—Ca1—O274.52 (14)O2—Ca1—O6i143.70 (13)
O1—Ca1—O276.94 (13)O4—Ca1—O6i71.54 (12)
O5—Ca1—O274.97 (15)O6—Ca1—O6i66.24 (13)
O3—Ca1—O283.70 (15)O7—Ca1—Ca1i69.26 (9)
O7—Ca1—O4141.83 (13)O1—Ca1—Ca1i103.02 (10)
O1—Ca1—O479.94 (13)O5—Ca1—Ca1i145.08 (11)
O5—Ca1—O473.51 (13)O3—Ca1—Ca1i105.41 (11)
O3—Ca1—O4104.77 (14)O2—Ca1—Ca1i139.94 (12)
O2—Ca1—O4143.25 (14)O4—Ca1—Ca1i73.17 (9)
O7—Ca1—O672.05 (12)O6—Ca1—Ca1i33.16 (8)
O1—Ca1—O672.44 (12)O6i—Ca1—Ca1i33.08 (8)
O5—Ca1—O6145.51 (13)
Symmetry code: (i) x, y+2, z+1.
(CaI2_7H2O_200K) Calccium iodide heptahydrate top
Crystal data top
CaI2·7H2OF(000) = 1568
Mr = 419.99Dx = 2.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.841 (2) ÅCell parameters from 1295 reflections
b = 16.530 (5) Åθ = 1.9–29.2°
c = 14.639 (5) ŵ = 5.71 mm1
β = 92.17 (2)°T = 200 K
V = 2379.7 (12) Å3Needle, colurless
Z = 80.57 × 0.37 × 0.16 mm
Data collection top
Stoe IPDS 2
diffractometer
5066 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.116
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 1.9°
rotation scansh = 1111
4198 measured reflectionsk = 1919
5443 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0411P)2 + 5.2685P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max = 0.001
S = 1.16Δρmax = 2.25 e Å3
5443 reflectionsΔρmin = 2.00 e Å3
294 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
39 restraintsExtinction coefficient: 0.00101 (10)
Crystal data top
CaI2·7H2OV = 2379.7 (12) Å3
Mr = 419.99Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.841 (2) ŵ = 5.71 mm1
b = 16.530 (5) ÅT = 200 K
c = 14.639 (5) Å0.57 × 0.37 × 0.16 mm
β = 92.17 (2)°
Data collection top
Stoe IPDS 2
diffractometer
5066 reflections with I > 2σ(I)
4198 measured reflectionsRint = 0.116
5443 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03039 restraints
wR(F2) = 0.075All H-atom parameters refined
S = 1.16Δρmax = 2.25 e Å3
5443 reflectionsΔρmin = 2.00 e Å3
294 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.14520 (3)0.13652 (2)0.41798 (2)0.02303 (8)
I20.33768 (3)0.41725 (2)0.55691 (2)0.02378 (8)
I30.17568 (3)0.65594 (2)0.44244 (2)0.02195 (8)
I40.35412 (3)0.61134 (2)0.08217 (2)0.02417 (8)
Ca10.03595 (7)0.10355 (4)0.75322 (4)0.01394 (14)
Ca20.45274 (7)0.15255 (4)0.73346 (4)0.01367 (13)
O10.2431 (3)0.16424 (15)0.83506 (16)0.0157 (5)
O20.2471 (3)0.08905 (15)0.65216 (16)0.0159 (5)
O30.4368 (3)0.20886 (17)0.58156 (17)0.0228 (6)
O40.5820 (3)0.05073 (17)0.64744 (18)0.0213 (5)
O50.1843 (3)0.04501 (19)0.77474 (19)0.0266 (6)
O60.5528 (3)0.1703 (3)0.8822 (2)0.0367 (8)
O70.6700 (3)0.2140 (2)0.7149 (2)0.0295 (7)
O80.0835 (3)0.23422 (18)0.6800 (2)0.0270 (6)
O90.4100 (3)0.01968 (18)0.8038 (2)0.0264 (6)
O100.0411 (3)0.04969 (17)0.90690 (17)0.0217 (5)
O110.0688 (3)0.0827 (2)0.60647 (19)0.0319 (7)
O120.1111 (4)0.03795 (19)0.7466 (2)0.0369 (8)
O130.0896 (3)0.21002 (17)0.83495 (18)0.0221 (5)
O140.3732 (5)0.29358 (19)0.7455 (2)0.0405 (9)
H4A0.544 (6)0.008 (2)0.632 (4)0.08 (3)*
H2B0.239 (7)0.113 (3)0.6027 (18)0.056 (19)*
H2A0.263 (5)0.0413 (10)0.641 (3)0.034 (14)*
H12B0.116 (8)0.070 (3)0.790 (3)0.07 (2)*
H6A0.539 (7)0.141 (4)0.926 (3)0.07 (2)*
H5A0.199 (5)0.013 (2)0.816 (2)0.031 (14)*
H7A0.688 (5)0.244 (3)0.673 (2)0.040 (15)*
H11B0.038 (7)0.106 (3)0.562 (3)0.07 (2)*
H1B0.226 (4)0.2111 (10)0.849 (3)0.018 (11)*
H14B0.384 (8)0.328 (5)0.706 (6)0.08 (2)*
H1A0.259 (8)0.139 (3)0.8828 (19)0.08 (3)*
H4B0.624 (5)0.066 (3)0.603 (2)0.038 (15)*
H3A0.471 (6)0.186 (3)0.539 (2)0.046 (17)*
H13B0.037 (6)0.247 (3)0.846 (4)0.08 (3)*
H13A0.121 (5)0.196 (3)0.8838 (19)0.042 (16)*
H9A0.456 (5)0.004 (3)0.844 (3)0.06 (2)*
H7B0.733 (4)0.217 (3)0.753 (3)0.044 (16)*
H10B0.016 (7)0.077 (4)0.950 (3)0.07 (2)*
H10A0.098 (6)0.017 (3)0.928 (4)0.08 (2)*
H5B0.247 (4)0.041 (3)0.737 (3)0.052 (18)*
H12A0.085 (13)0.064 (4)0.701 (3)0.18 (6)*
H8A0.148 (4)0.264 (3)0.694 (5)0.08 (3)*
H8B0.031 (4)0.261 (3)0.647 (3)0.036 (15)*
H14A0.385 (12)0.313 (7)0.800 (8)0.15 (4)*
H3B0.410 (6)0.2529 (19)0.563 (3)0.06 (2)*
H11A0.102 (8)0.040 (2)0.588 (4)0.09 (3)*
H6B0.605 (7)0.206 (4)0.899 (4)0.11 (3)*
H9B0.354 (6)0.013 (3)0.783 (4)0.08 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03021 (14)0.02335 (14)0.01554 (12)0.00095 (9)0.00105 (9)0.00512 (9)
I20.03266 (14)0.02348 (14)0.01462 (12)0.00927 (10)0.00691 (9)0.00515 (8)
I30.02795 (14)0.02280 (13)0.01493 (12)0.00576 (9)0.00134 (9)0.00436 (8)
I40.03271 (15)0.01948 (13)0.02083 (13)0.00062 (9)0.00771 (10)0.00445 (9)
Ca10.0150 (3)0.0171 (3)0.0097 (3)0.0004 (2)0.0005 (2)0.0010 (2)
Ca20.0159 (3)0.0163 (3)0.0087 (3)0.0010 (2)0.0005 (2)0.0006 (2)
O10.0185 (11)0.0162 (12)0.0123 (11)0.0016 (9)0.0013 (9)0.0007 (9)
O20.0216 (12)0.0151 (11)0.0107 (11)0.0014 (10)0.0008 (9)0.0014 (9)
O30.0359 (15)0.0205 (13)0.0123 (11)0.0069 (11)0.0029 (11)0.0006 (10)
O40.0225 (13)0.0244 (14)0.0173 (12)0.0012 (11)0.0033 (10)0.0018 (10)
O50.0233 (14)0.0378 (16)0.0184 (13)0.0109 (12)0.0017 (11)0.0097 (12)
O60.0310 (16)0.063 (2)0.0159 (14)0.0126 (16)0.0041 (12)0.0004 (14)
O70.0241 (14)0.0415 (18)0.0227 (14)0.0144 (13)0.0009 (11)0.0097 (13)
O80.0309 (15)0.0227 (14)0.0273 (15)0.0048 (12)0.0007 (12)0.0096 (12)
O90.0374 (16)0.0222 (14)0.0192 (13)0.0037 (12)0.0034 (12)0.0073 (11)
O100.0285 (14)0.0228 (14)0.0137 (12)0.0043 (11)0.0003 (10)0.0040 (10)
O110.0315 (16)0.050 (2)0.0137 (13)0.0127 (14)0.0021 (11)0.0010 (13)
O120.066 (2)0.0197 (14)0.0262 (16)0.0043 (15)0.0208 (16)0.0030 (12)
O130.0239 (13)0.0248 (14)0.0176 (12)0.0005 (11)0.0029 (10)0.0021 (11)
O140.085 (3)0.0156 (14)0.0228 (15)0.0001 (15)0.0273 (17)0.0007 (12)
Geometric parameters (Å, º) top
Ca1—O12.532 (3)Ca2—O22.536 (3)
Ca1—O22.607 (3)Ca2—O32.410 (3)
Ca1—O52.406 (3)Ca2—O42.481 (3)
Ca1—O82.464 (3)Ca2—O62.373 (3)
Ca1—O102.418 (3)Ca2—O72.392 (3)
Ca1—O112.373 (3)Ca2—O92.469 (3)
Ca1—O122.456 (3)Ca2—O142.468 (3)
Ca1—O132.484 (3)Ca1—Ca24.2017 (13)
Ca2—O12.596 (3)
O11—Ca1—O572.38 (11)O6—Ca2—O3143.97 (12)
O11—Ca1—O10141.45 (11)O7—Ca2—O376.02 (11)
O5—Ca1—O1073.59 (10)O6—Ca2—O1486.51 (14)
O11—Ca1—O1286.96 (13)O7—Ca2—O1483.92 (13)
O5—Ca1—O1284.05 (12)O3—Ca2—O1472.03 (10)
O10—Ca1—O1271.97 (10)O6—Ca2—O978.39 (12)
O11—Ca1—O879.43 (12)O7—Ca2—O9126.33 (11)
O5—Ca1—O8126.61 (11)O3—Ca2—O9136.24 (10)
O10—Ca1—O8136.87 (10)O14—Ca2—O9138.69 (11)
O12—Ca1—O8139.04 (11)O6—Ca2—O4110.28 (12)
O11—Ca1—O13109.39 (11)O7—Ca2—O475.70 (11)
O5—Ca1—O1375.80 (11)O3—Ca2—O479.08 (10)
O10—Ca1—O1378.82 (10)O14—Ca2—O4147.91 (10)
O12—Ca1—O13148.21 (10)O9—Ca2—O472.95 (10)
O8—Ca1—O1372.21 (10)O6—Ca2—O2141.05 (11)
O11—Ca1—O1143.17 (10)O7—Ca2—O2145.43 (10)
O5—Ca1—O1144.16 (9)O3—Ca2—O272.78 (10)
O10—Ca1—O173.59 (9)O14—Ca2—O2100.08 (12)
O12—Ca1—O199.09 (12)O9—Ca2—O271.46 (9)
O8—Ca1—O172.29 (9)O4—Ca2—O284.05 (9)
O13—Ca1—O184.12 (9)O6—Ca2—O177.08 (10)
O11—Ca1—O278.54 (10)O7—Ca2—O1140.05 (10)
O5—Ca1—O2141.17 (10)O3—Ca2—O1118.32 (9)
O10—Ca1—O2120.32 (9)O14—Ca2—O168.12 (10)
O12—Ca1—O269.05 (10)O9—Ca2—O171.08 (9)
O8—Ca1—O270.44 (9)O4—Ca2—O1140.81 (9)
O13—Ca1—O2139.49 (9)O2—Ca2—O170.26 (8)
O1—Ca1—O270.14 (8)O6—Ca2—Ca1109.44 (9)
O11—Ca1—Ca2110.95 (8)O7—Ca2—Ca1165.65 (9)
O5—Ca1—Ca2166.78 (8)O3—Ca2—Ca196.22 (8)
O10—Ca1—Ca298.56 (7)O14—Ca2—Ca182.18 (10)
O12—Ca1—Ca283.38 (10)O9—Ca2—Ca167.52 (8)
O8—Ca1—Ca266.37 (7)O4—Ca2—Ca1115.13 (7)
O13—Ca1—Ca2113.67 (7)O2—Ca2—Ca135.79 (6)
O1—Ca1—Ca235.49 (6)O1—Ca2—Ca134.48 (6)
O2—Ca1—Ca234.66 (6)Ca1—O1—Ca2110.03 (9)
O6—Ca2—O773.14 (11)Ca2—O2—Ca1109.55 (9)
(CaI2_6H2O_153K) Calcium iodide 6.5-hydrate top
Crystal data top
CaI2·6.5H2OF(000) = 1528
Mr = 200.99Dx = 2.387 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.466 (3) ÅCell parameters from 4977 reflections
b = 8.2919 (11) Åθ = 2.8–29.6°
c = 17.947 (3) ŵ = 5.93 mm1
β = 111.045 (12)°T = 153 K
V = 2286.9 (7) Å3Plate, colourless
Z = 80.54 × 0.30 × 0.06 mm
Data collection top
Stoe IPDS 2
diffractometer
2603 independent reflections
Radiation source: fine-focus sealed tube2329 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.081
rotation method scansθmax = 27.5°, θmin = 2.4°
Absorption correction: integration
(Coppens, 1970)
h = 2121
Tmin = 0.136, Tmax = 0.698k = 1010
2626 measured reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0397P)2 + 14.5175P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.95 e Å3
2603 reflectionsΔρmin = 1.18 e Å3
140 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
18 restraintsExtinction coefficient: 0.00069 (7)
Crystal data top
CaI2·6.5H2OV = 2286.9 (7) Å3
Mr = 200.99Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.466 (3) ŵ = 5.93 mm1
b = 8.2919 (11) ÅT = 153 K
c = 17.947 (3) Å0.54 × 0.30 × 0.06 mm
β = 111.045 (12)°
Data collection top
Stoe IPDS 2
diffractometer
2603 independent reflections
Absorption correction: integration
(Coppens, 1970)
2329 reflections with I > 2σ(I)
Tmin = 0.136, Tmax = 0.698Rint = 0.081
2626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02618 restraints
wR(F2) = 0.072All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0397P)2 + 14.5175P]
where P = (Fo2 + 2Fc2)/3
2603 reflectionsΔρmax = 0.95 e Å3
140 parametersΔρmin = 1.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.18634 (2)0.68576 (3)0.09222 (2)0.01950 (10)
I20.05829 (2)0.18735 (3)0.13858 (2)0.02066 (10)
Ca10.39445 (4)0.20464 (8)0.15575 (4)0.01167 (15)
O10.30981 (19)0.3519 (4)0.22079 (17)0.0200 (6)
O20.44427 (18)0.0993 (3)0.29529 (16)0.0153 (5)
O30.50000.3963 (4)0.25000.0137 (7)
O40.36041 (19)0.4564 (3)0.07631 (18)0.0200 (6)
O50.24556 (18)0.1607 (4)0.08098 (18)0.0220 (6)
O60.4276 (2)0.1424 (4)0.03938 (18)0.0236 (6)
O70.38139 (19)0.0824 (3)0.1467 (2)0.0230 (6)
H6A0.413 (5)0.060 (5)0.013 (3)0.06 (2)*
H3A0.520 (3)0.455 (5)0.224 (3)0.029 (14)*
H4B0.405 (2)0.503 (6)0.078 (4)0.048 (19)*
H4A0.329 (3)0.524 (5)0.085 (4)0.040 (17)*
H1B0.302 (3)0.348 (7)0.2634 (17)0.033 (15)*
H5A0.209 (4)0.173 (10)0.102 (5)0.08 (3)*
H6B0.446 (4)0.206 (5)0.014 (3)0.037 (17)*
H5B0.214 (3)0.126 (8)0.0375 (19)0.041 (17)*
H7A0.3327 (12)0.122 (5)0.129 (3)0.027 (14)*
H7B0.416 (2)0.152 (4)0.147 (3)0.034 (16)*
H1A0.275 (4)0.418 (7)0.193 (3)0.06 (2)*
H2A0.423 (4)0.136 (5)0.326 (3)0.033 (15)*
H2B0.443 (4)0.0005 (13)0.299 (3)0.043 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01961 (15)0.02108 (15)0.02089 (15)0.00331 (9)0.01099 (10)0.00263 (9)
I20.02118 (15)0.01815 (15)0.02717 (16)0.00126 (9)0.01415 (11)0.00527 (9)
Ca10.0107 (3)0.0124 (3)0.0114 (3)0.0003 (2)0.0033 (3)0.0005 (2)
O10.0228 (14)0.0227 (14)0.0167 (14)0.0058 (11)0.0097 (12)0.0014 (11)
O20.0177 (12)0.0161 (13)0.0145 (12)0.0020 (10)0.0087 (10)0.0021 (10)
O30.0178 (17)0.0088 (16)0.0150 (17)0.0000.0066 (14)0.000
O40.0204 (13)0.0164 (13)0.0231 (14)0.0008 (11)0.0076 (11)0.0008 (11)
O50.0128 (13)0.0322 (16)0.0193 (14)0.0016 (12)0.0035 (11)0.0052 (12)
O60.0312 (16)0.0253 (15)0.0177 (14)0.0001 (13)0.0130 (12)0.0005 (12)
O70.0189 (13)0.0146 (13)0.0352 (16)0.0022 (11)0.0094 (12)0.0038 (12)
Geometric parameters (Å, º) top
Ca1—O12.442 (3)Ca1—O62.397 (3)
Ca1—O22.496 (3)Ca1—O72.390 (3)
Ca1—O2i2.629 (3)Ca1—Ca1i3.8834 (16)
Ca1—O32.509 (2)O2—Ca1i2.629 (3)
Ca1—O42.476 (3)O3—Ca1i2.509 (2)
Ca1—O52.363 (3)
O5—Ca1—O776.00 (11)O4—Ca1—O379.23 (9)
O5—Ca1—O689.24 (11)O2—Ca1—O369.31 (8)
O7—Ca1—O676.68 (11)O5—Ca1—O2i148.90 (10)
O5—Ca1—O172.22 (10)O7—Ca1—O2i75.37 (9)
O7—Ca1—O1118.52 (11)O6—Ca1—O2i72.59 (10)
O6—Ca1—O1150.66 (11)O1—Ca1—O2i133.45 (9)
O5—Ca1—O480.14 (11)O4—Ca1—O2i117.72 (9)
O7—Ca1—O4143.53 (11)O2—Ca1—O2i67.66 (10)
O6—Ca1—O475.82 (10)O3—Ca1—O2i67.23 (8)
O1—Ca1—O478.68 (10)O5—Ca1—Ca1i156.41 (8)
O5—Ca1—O2114.58 (10)O7—Ca1—Ca1i95.15 (8)
O7—Ca1—O273.08 (10)O6—Ca1—Ca1i110.26 (9)
O6—Ca1—O2134.69 (10)O1—Ca1—Ca1i93.99 (7)
O1—Ca1—O274.56 (9)O4—Ca1—Ca1i116.64 (7)
O4—Ca1—O2142.89 (10)O2—Ca1—Ca1i42.03 (6)
O5—Ca1—O3143.80 (10)O3—Ca1—Ca1i39.29 (6)
O7—Ca1—O3134.44 (10)O2i—Ca1—Ca1i39.48 (6)
O6—Ca1—O3113.84 (9)Ca1—O2—Ca1i98.49 (9)
O1—Ca1—O374.76 (8)Ca1i—O3—Ca1101.41 (13)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

(CaBr2_9H2O_100K)(CaI2_8H2O_100K)(CaI2_7H2O_200K)(CaI2_6H2O_153K)
Crystal data
Chemical formulaCaBr2·9H2OCaI2·8H2OCaI2·7H2OCaI2·6.5H2O
Mr362.02438.01419.99200.99
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Monoclinic, P21/cMonoclinic, C2/c
Temperature (K)100100200153
a, b, c (Å)7.8354 (8), 8.7538 (5), 18.2615 (18)7.4521 (14), 8.6127 (19), 10.725 (2)9.841 (2), 16.530 (5), 14.639 (5)16.466 (3), 8.2919 (11), 17.947 (3)
α, β, γ (°)90, 101.041 (8), 9086.048 (17), 84.184 (16), 72.427 (16)90, 92.17 (2), 9090, 111.045 (12), 90
V3)1229.36 (19)652.3 (2)2379.7 (12)2286.9 (7)
Z4288
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)7.035.225.715.93
Crystal size (mm)0.6 × 0.34 × 0.270.32 × 0.22 × 0.120.57 × 0.37 × 0.160.54 × 0.30 × 0.06
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Stoe IPDS 2T
diffractometer
Stoe IPDS 2
diffractometer
Stoe IPDS 2
diffractometer
Absorption correctionIntegration
(Coppens, 1970)
Integration
(Coppens, 1970)
Integration
(Coppens, 1970)
Tmin, Tmax0.081, 0.2970.262, 0.5440.136, 0.698
No. of measured, independent and
observed [I > 2σ(I)] reflections
3495, 3495, 2968 7283, 2994, 2846 4198, 5443, 5066 2626, 2603, 2329
Rint0.1000.0690.1160.081
(sin θ/λ)max1)0.6440.6500.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.084, 1.10 0.035, 0.096, 1.18 0.030, 0.075, 1.16 0.026, 0.072, 1.11
No. of reflections2826298654432603
No. of parameters166164294140
No. of restraints25223918
H-atom treatmentOnly H-atom coordinates refinedAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
w = 1/[σ2(Fo2) + (0.0365P)2 + 1.2235P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0545P)2 + 3.5145P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0411P)2 + 5.2685P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0397P)2 + 14.5175P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.33, 1.452.13, 2.042.25, 2.000.95, 1.18

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (CaBr2_9H2O_100K) top
D—H···AD—HH···AD···AD—H···A
O9—H9B···O2i0.822 (10)1.983 (12)2.800 (3)173 (4)
O9—H9A···Br20.821 (10)2.502 (12)3.316 (2)172 (3)
O3—H3B···Br2ii0.816 (10)2.619 (13)3.405 (2)162 (3)
O3—H3A···Br1iii0.818 (10)2.547 (10)3.365 (2)179 (3)
O5—H5B···O6iv0.824 (10)2.16 (2)2.878 (3)146 (3)
O5—H5A···Br2v0.822 (10)2.571 (11)3.388 (2)173 (4)
O4—H4B···O5iv0.816 (10)2.093 (18)2.869 (3)159 (4)
O1—H1B···Br2ii0.819 (10)2.88 (3)3.506 (2)134 (3)
O1—H1A···Br1vi0.824 (10)2.477 (11)3.298 (2)176 (3)
O2—H2B···Br10.816 (10)2.423 (11)3.228 (2)169 (3)
O2—H2A···Br1vii0.819 (10)2.429 (13)3.230 (2)166 (4)
O6—H6B···O8viii0.822 (10)2.001 (15)2.798 (3)164 (4)
O6—H6A···Br2ix0.821 (10)2.610 (12)3.422 (2)170 (4)
O8—H8B···O10.824 (10)2.44 (3)2.845 (3)112 (3)
O8—H8A···O9ix0.823 (10)1.932 (11)2.750 (3)173 (4)
O7—H7B···Br2ix0.817 (10)2.548 (15)3.332 (2)161 (3)
O7—H7A···O9x0.816 (10)1.972 (14)2.772 (3)167 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z1/2; (iii) x, y1, z; (iv) x+1, y, z; (v) x, y, z+1; (vi) x+1/2, y1/2, z+1/2; (vii) x+3/2, y1/2, z+1/2; (viii) x+1, y+1, z; (ix) x, y, z1; (x) x, y+1, z+1.
Selected bond lengths (Å) for (CaBr2_9H2O_100K) top
Ca1—O12.475 (2)Ca1—O52.485 (2)
Ca1—O22.453 (2)Ca1—O62.486 (2)
Ca1—O32.385 (2)Ca1—O72.384 (2)
Ca1—O42.442 (2)Ca1—O82.557 (2)
Selected bond lengths (Å) for (CaI2_8H2O_100K) top
Ca1—O12.409 (4)Ca1—O52.413 (4)
Ca1—O22.442 (4)Ca1—O62.588 (4)
Ca1—O32.414 (4)Ca1—O6i2.593 (4)
Ca1—O42.496 (4)Ca1—O72.383 (4)
Symmetry code: (i) x, y+2, z+1.
Selected bond lengths (Å) for (CaI2_7H2O_200K) top
Ca1—O12.532 (3)Ca2—O12.596 (3)
Ca1—O22.607 (3)Ca2—O22.536 (3)
Ca1—O52.406 (3)Ca2—O32.410 (3)
Ca1—O82.464 (3)Ca2—O42.481 (3)
Ca1—O102.418 (3)Ca2—O62.373 (3)
Ca1—O112.373 (3)Ca2—O72.392 (3)
Ca1—O122.456 (3)Ca2—O92.469 (3)
Ca1—O132.484 (3)Ca2—O142.468 (3)
Selected bond lengths (Å) for (CaI2_6H2O_153K) top
Ca1—O12.442 (3)Ca1—O42.476 (3)
Ca1—O22.496 (3)Ca1—O52.363 (3)
Ca1—O2i2.629 (3)Ca1—O62.397 (3)
Ca1—O32.509 (2)Ca1—O72.390 (3)
Symmetry code: (i) x+1, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds