Download citation
Download citation
link to html
A novel nitride, Sr2−yEuyB2−2xSi2+3xAl2−xN8+x (x ≃ 0.12, y ≃ 0.10) (distrontium europium diboron disilicon dialuminium octa­nitride), with the space group P\overline{6}2c, was synthesized from Sr3N2, EuN, Si3N4, AlN and BN under nitro­gen gas pressure. The structure consists of a host framework with Sr/Eu atoms accommodated in the cavities. The host framework is constructed by the linkage of MN4 tetra­hedra (M = Si, Al) and BN3 triangles, and contains substitutional disorder described by the alternative occupation of B2 or Si2N on the (0, 0, z) axis. The B2:Si2N ratio contained in an entire crystal is about 9:1.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614007414/qs3038sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614007414/qs3038Isup2.hkl
Contains datablock I

CCDC reference: 995203

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Distrontium europium diboron disilicon dialiminium octanitride top
Crystal data top
Sr1.90Eu0.10B1.76Si2.36Al1.88N8.12Dx = 3.675 Mg m3
Mr = 431.65Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P62cCell parameters from 2142 reflections
Hall symbol: P -6c -2cθ = 4.2–44.5°
a = 4.7988 (1) ŵ = 14.33 mm1
c = 9.7802 (2) ÅT = 299 K
V = 195.05 (1) Å3Plate, clear yellow
Z = 10.02 × 0.02 × 0.01 mm
F(000) = 201.7
Data collection top
Bruker APEXII CCD area-detector
diffractometer
544 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode469 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.021
Detector resolution: 8.333 pixels mm-1θmax = 44.2°, θmin = 4.2°
ω scansh = 98
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 99
Tmin = 0.593, Tmax = 0.653l = 1917
4348 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0122P)2 + 0.0443P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.038(Δ/σ)max < 0.001
S = 1.16Δρmax = 0.92 e Å3
538 reflectionsΔρmin = 0.45 e Å3
24 parametersAbsolute structure: Flack (1983), with how many Friedel pairs?
1 restraintAbsolute structure parameter: 0.032 (16)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr10.66670.33330.75000.01161 (6)0.949 (4)
Eu10.66670.33330.75000.01161 (6)0.051 (4)
Si10.66670.33330.42708 (4)0.00704 (10)0.5300 (8)
Al10.66670.33330.42708 (4)0.00704 (10)0.4700 (8)
N10.66670.33330.25000.0192 (4)
N20.3100 (3)0.3100 (3)0.50000.0127 (3)
B11.00000.00000.50000.0082 (4)0.880 (3)
Si21.00000.00000.4231 (7)0.0031 (12)0.0600 (17)
N31.00000.00000.25000.011 (5)0.0600 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01317 (7)0.01317 (7)0.00849 (8)0.00658 (3)0.0000.000
Eu10.01317 (7)0.01317 (7)0.00849 (8)0.00658 (3)0.0000.000
Si10.00731 (13)0.00731 (13)0.00652 (19)0.00365 (6)0.0000.000
Al10.00731 (13)0.00731 (13)0.00652 (19)0.00365 (6)0.0000.000
N10.0232 (6)0.0232 (6)0.0114 (8)0.0116 (3)0.0000.000
N20.0084 (4)0.0084 (4)0.0199 (7)0.0030 (4)0.0006 (2)0.0006 (2)
B10.0062 (5)0.0062 (5)0.0123 (13)0.0031 (3)0.0000.000
Si20.0029 (14)0.0029 (14)0.004 (3)0.0014 (7)0.0000.000
N30.010 (7)0.010 (7)0.013 (12)0.005 (3)0.0000.000
Geometric parameters (Å, º) top
Sr1—N1i2.7706N1—Sr1iii2.7706
Sr1—N3ii2.7706N1—Sr1iv2.7706
Sr1—N3iii2.7706N2—B1x1.4874 (14)
Sr1—N3iv2.7706N2—Si2x1.667 (3)
Sr1—N1iv2.7706N2—Si2iii1.667 (3)
Sr1—N1iii2.7706N2—Al1i1.8053 (7)
Sr1—N22.9545 (4)N2—Si1i1.8053 (7)
Sr1—N2v2.9545 (4)N2—Sr1i2.9545 (4)
Sr1—N2vi2.9545 (4)B1—N2xiii1.4874 (14)
Sr1—N2vii2.9545 (4)B1—N2xiv1.4874 (14)
Sr1—N2viii2.9545 (4)B1—N2vi1.4874 (14)
Sr1—N2ix2.9545 (4)Si2—N2xiii1.667 (3)
Si1—N11.7319 (4)Si2—N2xiv1.667 (3)
Si1—N21.8054 (7)Si2—N2vi1.667 (3)
Si1—N2viii1.8054 (7)Si2—N31.693 (6)
Si1—N2vi1.8054 (7)Si2—Si1xiii2.7708 (1)
Si1—Si22.7706 (1)Si2—Si1xv2.7708 (1)
Si1—Si2x2.7710 (1)Si2—Sr1iii3.247 (3)
Si1—Si2xi2.7709 (1)N3—Si2xii1.693 (6)
Si1—Sr1i3.2678 (2)N3—Sr1iii2.7706
Si1—Sr1iii3.2674 (2)N3—Sr1iv2.7706
N1—Si1xii1.7319 (4)N3—Sr1ii2.7706
N1—Sr1i2.7706
N1i—Sr1—N3ii180.0Si2x—Si1—Sr190.80 (13)
N1i—Sr1—N3iii60.0Si2xi—Si1—Sr190.80 (13)
N3ii—Sr1—N3iii120.0N1—Si1—Sr1i57.990 (6)
N1i—Sr1—N3iv60.0N2—Si1—Sr1i63.815 (12)
N3ii—Sr1—N3iv120.0N2viii—Si1—Sr1i99.42 (4)
N3iii—Sr1—N3iv120.0N2vi—Si1—Sr1i154.91 (3)
N1i—Sr1—N1iv120.0Si2—Si1—Sr1i147.19 (13)
N3ii—Sr1—N1iv60.0Si2x—Si1—Sr1i64.45 (8)
N3iii—Sr1—N1iv180.0Si2xi—Si1—Sr1i64.45 (8)
N3iv—Sr1—N1iv60.0Sr1—Si1—Sr1i122.010 (6)
N1i—Sr1—N1iii120.0N1—Si1—Sr1iii57.990 (6)
N3ii—Sr1—N1iii60.0N2—Si1—Sr1iii99.42 (4)
N3iii—Sr1—N1iii60.0N2viii—Si1—Sr1iii154.91 (3)
N3iv—Sr1—N1iii180.0N2vi—Si1—Sr1iii63.815 (12)
N1iv—Sr1—N1iii120.0Si2—Si1—Sr1iii64.44 (8)
N1i—Sr1—N262.039 (4)Si2x—Si1—Sr1iii64.45 (8)
N3ii—Sr1—N2117.961 (4)Si2xi—Si1—Sr1iii147.19 (13)
N3iii—Sr1—N259.88 (2)Sr1—Si1—Sr1iii122.010 (6)
N3iv—Sr1—N291.88 (2)Sr1i—Si1—Sr1iii94.505 (9)
N1iv—Sr1—N2120.12 (2)Si1—N1—Si1xii180.0
N1iii—Sr1—N288.12 (2)Si1—N1—Sr1i90.0
N1i—Sr1—N2v88.12 (2)Si1xii—N1—Sr1i90.0
N3ii—Sr1—N2v91.88 (2)Si1—N1—Sr1iii90.0
N3iii—Sr1—N2v117.961 (5)Si1xii—N1—Sr1iii90.0
N3iv—Sr1—N2v59.88 (2)Sr1i—N1—Sr1iii120.0
N1iv—Sr1—N2v62.039 (5)Si1—N1—Sr1iv90.0
N1iii—Sr1—N2v120.12 (2)Si1xii—N1—Sr1iv90.0
N2—Sr1—N2v147.398 (11)Sr1i—N1—Sr1iv120.0
N1i—Sr1—N2vi120.12 (2)Sr1iii—N1—Sr1iv120.0
N3ii—Sr1—N2vi59.88 (2)B1x—N2—Si2x26.8 (2)
N3iii—Sr1—N2vi91.88 (2)B1x—N2—Si2iii26.8 (2)
N3iv—Sr1—N2vi117.961 (5)Si2x—N2—Si2iii53.6 (4)
N1iv—Sr1—N2vi88.11 (2)B1x—N2—Si1i120.34 (4)
N1iii—Sr1—N2vi62.038 (5)Si2x—N2—Si1i128.98 (5)
N2—Sr1—N2vi58.18 (2)Si2iii—N2—Si1i105.82 (12)
N2v—Sr1—N2vi147.398 (11)B1x—N2—Si1120.34 (4)
N1i—Sr1—N2vii120.12 (2)Si2x—N2—Si1105.82 (12)
N3ii—Sr1—N2vii59.88 (2)Si2iii—N2—Si1128.98 (5)
N3iii—Sr1—N2vii91.88 (2)Si1i—N2—Si1119.32 (8)
N3iv—Sr1—N2vii117.961 (5)B1x—N2—Sr1i107.98 (3)
N1iv—Sr1—N2vii88.11 (2)Si2x—N2—Sr1i84.38 (17)
N1iii—Sr1—N2vii62.038 (5)Si2iii—N2—Sr1i130.46 (16)
N2—Sr1—N2vii147.398 (10)Si1i—N2—Sr1i79.12 (3)
N2v—Sr1—N2vii58.18 (2)Si1—N2—Sr1i82.93 (3)
N2vi—Sr1—N2vii111.70 (2)B1x—N2—Sr1107.98 (3)
N1i—Sr1—N2viii88.12 (2)Si2x—N2—Sr1130.46 (16)
N3ii—Sr1—N2viii91.88 (2)Si2iii—N2—Sr184.38 (17)
N3iii—Sr1—N2viii117.961 (5)Si1i—N2—Sr182.93 (3)
N3iv—Sr1—N2viii59.88 (2)Si1—N2—Sr179.12 (3)
N1iv—Sr1—N2viii62.039 (5)Sr1i—N2—Sr1144.04 (5)
N1iii—Sr1—N2viii120.12 (2)N2xiii—B1—N2xiv120.0
N2—Sr1—N2viii58.18 (2)N2xiii—B1—N2vi120.0
N2v—Sr1—N2viii111.70 (3)N2xiv—B1—N2vi120.000 (1)
N2vi—Sr1—N2viii58.18 (2)N2xiii—Si2—N2xiv101.2 (2)
N2vii—Sr1—N2viii147.398 (10)N2xiii—Si2—N2vi101.2 (2)
N1i—Sr1—N2ix62.039 (4)N2xiv—Si2—N2vi101.2 (2)
N3ii—Sr1—N2ix117.961 (4)N2xiii—Si2—N3116.8 (2)
N3iii—Sr1—N2ix59.88 (2)N2xiv—Si2—N3116.8 (2)
N3iv—Sr1—N2ix91.88 (2)N2vi—Si2—N3116.8 (2)
N1iv—Sr1—N2ix120.12 (2)N2xiii—Si2—Si1xiii38.82 (3)
N1iii—Sr1—N2ix88.12 (2)N2xiv—Si2—Si1xiii89.64 (6)
N2—Sr1—N2ix111.70 (2)N2vi—Si2—Si1xiii140.0 (2)
N2v—Sr1—N2ix58.18 (2)N3—Si2—Si1xiii90.80 (13)
N2vi—Sr1—N2ix147.398 (12)N2xiii—Si2—Si1xv140.0 (2)
N2vii—Sr1—N2ix58.18 (2)N2xiv—Si2—Si1xv38.82 (3)
N2viii—Sr1—N2ix147.398 (11)N2vi—Si2—Si1xv89.64 (6)
N1—Si1—N2113.267 (16)N3—Si2—Si1xv90.80 (13)
N1—Si1—N2viii113.267 (16)Si1xiii—Si2—Si1xv119.981 (7)
N2—Si1—N2viii105.423 (18)N2xiii—Si2—Si189.64 (6)
N1—Si1—N2vi113.267 (16)N2xiv—Si2—Si1140.0 (2)
N2—Si1—N2vi105.424 (18)N2vi—Si2—Si138.82 (3)
N2viii—Si1—N2vi105.424 (18)N3—Si2—Si190.80 (13)
N1—Si1—Si289.20 (13)Si1xiii—Si2—Si1119.980 (7)
N2—Si1—Si2140.60 (8)Si1xv—Si2—Si1119.980 (7)
N2viii—Si1—Si293.40 (7)N2xiii—Si2—Sr1iii153.48 (6)
N2vi—Si1—Si235.36 (10)N2xiv—Si2—Sr1iii103.61 (6)
N1—Si1—Si2x89.20 (13)N2vi—Si2—Sr1iii64.90 (9)
N2—Si1—Si2x35.36 (10)N3—Si2—Sr1iii58.57 (10)
N2viii—Si1—Si2x140.60 (8)Si1xiii—Si2—Sr1iii149.4 (2)
N2vi—Si1—Si2x93.40 (7)Si1xv—Si2—Sr1iii65.21 (5)
Si2—Si1—Si2x119.980 (8)Si1—Si2—Sr1iii65.21 (5)
N1—Si1—Si2xi89.20 (13)Si2—N3—Si2xii180.0
N2—Si1—Si2xi93.40 (7)Si2—N3—Sr1iii90.0
N2viii—Si1—Si2xi35.36 (10)Si2xii—N3—Sr1iii90.0
N2vi—Si1—Si2xi140.60 (8)Si2—N3—Sr1iv90.0
Si2—Si1—Si2xi119.980 (7)Si2xii—N3—Sr1iv90.0
Si2x—Si1—Si2xi119.980 (7)Sr1iii—N3—Sr1iv120.0
N1—Si1—Sr1180.0Si2—N3—Sr1ii90.0
N2—Si1—Sr166.733 (16)Si2xii—N3—Sr1ii90.0
N2viii—Si1—Sr166.733 (16)Sr1iii—N3—Sr1ii120.0
N2vi—Si1—Sr166.733 (16)Sr1iv—N3—Sr1ii120.0
Si2—Si1—Sr190.80 (13)
Symmetry codes: (i) y, x, z+1; (ii) y+1, x1, z+1; (iii) y, x1, z+1; (iv) y+1, x, z+1; (v) x+y+1, x+1, z+3/2; (vi) y+1, xy, z; (vii) y+1, xy, z+3/2; (viii) x+y+1, x+1, z; (ix) x, y, z+3/2; (x) x1, y, z; (xi) x, y+1, z; (xii) x, y, z+1/2; (xiii) x+1, y, z; (xiv) x+y+1, x, z; (xv) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds