Download citation
Download citation
link to html
In the title coordination polymer, [Ag2(C4H4O4S)], each AgI cation is four-coordinated by three of the four carboxyl­ate O atoms and the S atom from symmetry-related sulfane­di­yl­di­acetate ligands, thus defining a distorted tetra­hedral geometry at the metal centre. The AgI cations are bridged by sulfane­di­yl­di­acetate groups, leading to a two-dimensional layer structure. These layers are interconnected via Ag-S bonds to form a three-dimensional coordination polymer network overall.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113017319/qs3025sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113017319/qs3025Isup2.hkl
Contains datablock I

CCDC reference: 958904

Introduction top

Current inter­est in metal–organic coordination polymers is expanding rapidly due to their intriguing architectures and potential applications (Žurowska et al., 2006; Eddaoudi et al., 2005; Ye et al., 2006). In an effort to establish strategies aimed at designing novel metal–organic frameworks, we have chosen ligands with carboxyl­ate groups, such as naphthalene­acetate (Duan et al., 2007), 3-hy­droxy­benzoate (Liu & Ng, 2007), di­chloro­phen­oxy­acetate (Gu et al., 2006) and methyl benzoate (Song et al., 2007), to bind metal centres into novel metal–organic networks. In this work, we chose sulfanediyldi­acetic acid (also known as 2,2-thio­diglycolic acid) as a ligand to prepare a coordination polymer since it has, surprisingly, not been used as a ligand previously (Alarcón-Payer et al., 2005; Wu et al., 2005). This organic carboxyl­ate ligand, which has various coordination modes, can link metal centres through its carboxyl­ate groups or/and the S atom to form different extended architectures, and so is regarded as a good candidate for constructing various metal–organic coordination polymers. We report here the crystal structure of the title three-dimensional coordination polymer, (I).

Synthesis and crystallization top

Experimental details are summarized in Table 1.

Sulfanediyldi­acetic acid was commercially available and was used without further purification. The title complex was prepared by the addition of AgNO3 (3.40 g, 20 mmol) and methenamine (1.40 g, 10 mmol) to a hot aqueous solution of sulfanediyldi­acetic acid (10 ml, 10 mmol); the pH was adjusted to 6 using 0.1 M potassium hydroxide. The solution was left to evaporate at room temperature. Blue [Colourless given in CIF table - please clarify] prismatic crystals of (I) were separated from the filtered solution after three weeks. Analysis, calculated for C4H4Ag2O4S: C 13.27, H 1.11%; found: C 13.29, H 1.10%.

Refinement top

H atoms [on C atoms?] were placed in calculated positions, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C), and were refined in the riding-model approximation. Water [Carboxyl­ate?] H atoms were located in a difference Fourier map and refined with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Results and discussion top

Each AgII cation of (I) (Fig. 1) displays a distorted tetra­hedral geometry defined by three of the four carboxyl­ate O atoms and one S atom from different sulfanediyldi­acetate ligands. The Ag—O bond lengths (Table 2) vary from 2.223 (4) to 2.488 (4) Å.

Fig. 2 shows part of the two-dimensional network of (I). The two types of carboxyl­ate O atom of the sulfanediyldi­acetate ligand are distinguished by two coordination modes, one mode being monodentate, always via a carbonyl O atom, and the other bidentate. Thus, the AgI cations are linked by monodentate sulfanediyldi­acetate ligands to form a one-dimensional chain displaying eight-membered chelate rings. The chains are assembled by bidentate sulfanediyldi­acetate ligands into a two-dimensional infinite layer structure displaying four- and 16-membered chelate rings. The layers are further connected by S atoms, giving rise to a three-dimensional network (Fig. 3).

Related literature top

For related literature, see: Alarcón-Payer, Pivetta, Choquesillo-Lazarte, González-Pérez, Crisponi, Castiñeiras & Niclós-Gutiérrez (2005); Duan et al. (2007); Eddaoudi et al. (2005); Gu et al. (2006); Liu & Ng (2007); Song et al. (2007); Wu et al. (2005); Ye et al. (2006); Žurowska et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The projection is approximately down the c axis. [Symmetry codes: (i) -x + 1, y + 1/2, -z + 3/2; (ii) -x + 2, y + 1/2, -z + 3/2; (iii) x, -y + 3/2, z - 1/2; (iv) x - 1, y, z; (v) x, -y + 3/2, z + 1/2; (viii) Missing?].
[Figure 2] Fig. 2. Part of the two-dimensional layer structure of (I). The projection is approximately down the c axis.
[Figure 3] Fig. 3. A packing diagram for (I).
Poly[µ7-sulfanediyldiacetato-disilver(I)] top
Crystal data top
[Ag2(C4H4O4S)]F(000) = 680
Mr = 363.87Dx = 3.565 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3598 reflections
a = 5.2113 (10) Åθ = 2.0–25.0°
b = 20.355 (4) ŵ = 6.04 mm1
c = 6.7616 (13) ÅT = 296 K
β = 109.045 (2)°Prism, colourless
V = 678.0 (2) Å30.32 × 0.24 × 0.18 mm
Z = 4
Data collection top
Bruker P4
diffractometer
1187 independent reflections
Radiation source: fine-focus sealed tube1136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.000 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 66
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2000)
k = 2418
Tmin = 0.192, Tmax = 0.337l = 87
3598 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0846P)2 + 1.5664P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1187 reflectionsΔρmax = 1.25 e Å3
101 parametersΔρmin = 1.61 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0126 (15)
Crystal data top
[Ag2(C4H4O4S)]V = 678.0 (2) Å3
Mr = 363.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.2113 (10) ŵ = 6.04 mm1
b = 20.355 (4) ÅT = 296 K
c = 6.7616 (13) Å0.32 × 0.24 × 0.18 mm
β = 109.045 (2)°
Data collection top
Bruker P4
diffractometer
1187 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2000)
1136 reflections with I > 2σ(I)
Tmin = 0.192, Tmax = 0.337Rint = 0.033
3598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.09Δρmax = 1.25 e Å3
1187 reflectionsΔρmin = 1.61 e Å3
101 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.62899 (9)0.90487 (2)0.62428 (8)0.0290 (3)
Ag20.33036 (9)0.84612 (2)0.89651 (8)0.0312 (3)
S10.6706 (3)0.62535 (6)0.7634 (2)0.0202 (4)
O10.8938 (8)0.4435 (2)0.7245 (8)0.0327 (11)
O20.5327 (9)0.4932 (2)0.7633 (8)0.0353 (11)
O30.8654 (8)0.8112 (2)0.8005 (7)0.0271 (10)
O40.4941 (10)0.7543 (2)0.7806 (8)0.0344 (11)
C10.8924 (11)0.5601 (3)0.7306 (9)0.0228 (12)
C20.8985 (11)0.6949 (3)0.8066 (9)0.0214 (12)
C30.7627 (11)0.4934 (3)0.7392 (9)0.0214 (12)
C40.7400 (11)0.7585 (3)0.7942 (8)0.0191 (12)
H1A0.92250.56510.59730.027*
H1B1.06670.56280.84070.027*
H2A1.03620.69130.94320.026*
H2B0.98870.69530.70180.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0269 (4)0.0250 (4)0.0377 (4)0.00393 (17)0.0140 (3)0.00127 (18)
Ag20.0222 (4)0.0245 (4)0.0444 (4)0.00268 (17)0.0075 (3)0.0009 (2)
S10.0212 (8)0.0157 (8)0.0242 (8)0.0008 (5)0.0079 (6)0.0002 (5)
O10.023 (2)0.019 (2)0.053 (3)0.0001 (17)0.007 (2)0.006 (2)
O20.033 (2)0.022 (2)0.059 (3)0.0039 (19)0.028 (2)0.000 (2)
O30.023 (2)0.013 (2)0.042 (2)0.0007 (16)0.0070 (17)0.0025 (18)
O40.027 (2)0.027 (3)0.054 (3)0.0044 (19)0.020 (2)0.008 (2)
C10.021 (3)0.022 (3)0.027 (3)0.001 (2)0.009 (2)0.002 (2)
C20.024 (3)0.017 (3)0.023 (3)0.002 (2)0.008 (2)0.002 (2)
C30.024 (3)0.017 (3)0.022 (3)0.001 (2)0.005 (2)0.002 (2)
C40.024 (3)0.016 (3)0.018 (3)0.000 (2)0.008 (2)0.003 (2)
Geometric parameters (Å, º) top
Ag1—Ag23.0182 (8)O3—Ag2viii2.403 (4)
Ag1—S1i2.5936 (16)C1—S11.821 (6)
Ag1—O1ii2.488 (4)C1—C31.527 (7)
Ag1—O2iii2.223 (4)C1—H1A0.9700
Ag1—O32.370 (4)C1—H1B0.9700
Ag2—S1iv2.6007 (16)C2—S11.810 (6)
Ag2—O1iii2.311 (4)C2—C41.524 (7)
Ag2—O3v2.403 (4)C2—H2A0.9700
Ag2—O42.296 (4)C2—H2B0.9700
S1—Ag1iv2.5936 (16)C3—O11.245 (7)
S1—Ag2i2.6007 (16)C3—O21.261 (7)
O1—Ag2vi2.311 (4)C4—O31.248 (7)
O1—Ag1vii2.488 (4)C4—O41.258 (7)
O2—Ag1vi2.223 (4)
Ag1iv—S1—Ag2i135.24 (6)S1—C2—H2B109.7
Ag2vi—O1—Ag1vii101.32 (15)O1—C3—O2125.3 (6)
Ag1—O3—Ag2viii102.15 (15)O1—C3—C1117.4 (5)
S1i—Ag1—Ag2134.27 (4)O2—C3—C1117.2 (5)
S1iv—Ag2—Ag199.58 (4)O3—C4—O4124.8 (5)
O1ii—Ag1—S1i94.73 (12)O3—C4—C2117.4 (5)
O1ii—Ag1—Ag2121.32 (11)O4—C4—C2117.8 (5)
O1iii—Ag2—S1iv104.76 (12)C1—S1—Ag1iv101.11 (19)
O1iii—Ag2—O3v79.02 (15)C1—S1—Ag2i108.0 (2)
O1iii—Ag2—Ag175.29 (12)C2—S1—Ag1iv106.6 (2)
O2iii—Ag1—Ag277.50 (12)C2—S1—Ag2i100.76 (19)
O2iii—Ag1—S1i132.15 (14)C2—S1—C1100.5 (3)
O2iii—Ag1—O1ii92.47 (16)C3—O1—Ag1vii136.5 (4)
O2iii—Ag1—O3132.22 (18)C3—O1—Ag2vi120.0 (4)
O3—Ag1—Ag270.20 (11)C3—O2—Ag1vi121.9 (4)
O3—Ag1—S1i95.34 (12)C3—C1—S1109.8 (4)
O3—Ag1—O1ii76.23 (14)C3—C1—H1A109.7
O3v—Ag2—Ag1128.89 (11)C3—C1—H1B109.7
O3v—Ag2—S1iv129.60 (12)C4—O3—Ag1119.6 (4)
O4—Ag2—Ag177.96 (12)C4—O3—Ag2viii137.2 (4)
O4—Ag2—S1iv107.07 (14)C4—O4—Ag2113.7 (4)
O4—Ag2—O1iii141.15 (19)C4—C2—S1109.9 (4)
O4—Ag2—O3v96.96 (16)C4—C2—H2A109.7
S1—C1—H1A109.7C4—C2—H2B109.7
S1—C1—H1B109.7H1A—C1—H1B108.2
S1—C2—H2A109.7H2A—C2—H2B108.2
Ag1—Ag2—O4—C446.6 (4)O2iii—Ag1—Ag2—O4179.74 (19)
Ag2—Ag1—O3—Ag2viii139.47 (17)O2iii—Ag1—O3—Ag2viii89.1 (2)
Ag2—Ag1—O3—C450.5 (4)O2iii—Ag1—O3—C4100.9 (4)
S1i—Ag1—Ag2—S1iv147.25 (7)O2—C3—O1—Ag2vi25.7 (8)
S1i—Ag1—Ag2—O1iii109.88 (13)O2—C3—O1—Ag1vii134.2 (5)
S1i—Ag1—Ag2—O3v47.58 (14)O3—Ag1—Ag2—O436.03 (17)
S1i—Ag1—Ag2—O441.68 (15)O3—Ag1—Ag2—S1iv69.54 (11)
S1i—Ag1—O3—Ag2viii85.18 (14)O3—Ag1—Ag2—O1iii172.41 (15)
S1i—Ag1—O3—C484.8 (4)O3—Ag1—Ag2—O3v125.3 (2)
S1iv—Ag2—O4—C449.8 (5)O3v—Ag2—O4—C4175.0 (4)
S1—C1—C3—O1178.2 (5)O3—C4—O4—Ag223.1 (8)
S1—C1—C3—O20.9 (7)O4—C4—O3—Ag130.9 (8)
S1—C2—C4—O3173.2 (4)C1—C3—O1—Ag1vii44.8 (8)
S1—C2—C4—O47.5 (7)C1—C3—O1—Ag2vi155.3 (4)
O1ii—Ag1—Ag2—S1iv10.54 (12)C1—C3—O2—Ag1vi160.8 (4)
O1ii—Ag1—Ag2—O1iii113.4 (2)C2—C4—O3—Ag1149.9 (4)
O1ii—Ag1—Ag2—O3v175.71 (16)O4—C4—O3—Ag2viii163.6 (4)
O1ii—Ag1—Ag2—O495.03 (18)C2—C4—O3—Ag2viii15.6 (8)
O1ii—Ag1—O3—Ag2viii8.40 (16)C2—C4—O4—Ag2156.2 (4)
O1ii—Ag1—O3—C4178.4 (5)C3—C1—S1—Ag1iv58.3 (4)
O1iii—Ag2—O4—C493.9 (5)C3—C1—S1—Ag2i87.3 (4)
O1—C3—O2—Ag1vi18.2 (8)C3—C1—S1—C2167.7 (4)
O2iii—Ag1—Ag2—S1iv74.69 (14)C4—C2—S1—Ag1iv86.5 (4)
O2iii—Ag1—Ag2—O1iii28.18 (18)C4—C2—S1—Ag2i57.6 (4)
O2iii—Ag1—Ag2—O3v90.48 (18)C4—C2—S1—C1168.4 (4)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1/2, z+3/2; (iv) x, y+3/2, z+1/2; (v) x1, y, z; (vi) x+1, y1/2, z+3/2; (vii) x+2, y1/2, z+3/2; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ag2(C4H4O4S)]
Mr363.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.2113 (10), 20.355 (4), 6.7616 (13)
β (°) 109.045 (2)
V3)678.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)6.04
Crystal size (mm)0.32 × 0.24 × 0.18
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.192, 0.337
No. of measured, independent and
observed [I > 2σ(I)] reflections
3598, 1187, 1136
Rint0.033
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.120, 1.09
No. of reflections1187
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.25, 1.61

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds