Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title mixed-ligand metal-organic polymeric compound, {[Cd(C14H8O6S)(C16H16N2)]·3H2O}n, the asymmetric unit contains a crystallographically unique CdII atom, one doubly deprotonated 4,4'-sulfonyl­dibenzoic acid (H2SDBA) ligand, one 3,4,7,8-tetra­methyl-1,10-phenanthroline (TMPHEN) mol­ecule and three solvent water mol­ecules. Each CdII centre is six-coordinated by two O atoms from a chelating carboxyl­ate group of a SDBA2- ligand, two O atoms from monodentate carboxyl­ate groups of two different SDBA2- ligands and two N atoms from a chelating TMPHEN ligand. There are two coordination patterns for the carboxyl­ate groups of the SDBA2- ligand, with one in a [mu]1-[eta]1:[eta]1 chelating mode and the other in a [mu]2-[eta]1:[eta]1 bis-monodentate mode. Single-crystal X-ray diffraction analysis revealed that the title compound is a one-dimensional double-chain polymer containing 28-membered rings based on the [Cd2(CO2)2] rhomboid subunit. More inter­estingly, a chair-shaped water hexa­mer cluster is observed in the compound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113001352/qs3020sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113001352/qs3020Isup2.hkl
Contains datablock I

CCDC reference: 934557

Comment top

The design and synthesis of metal–organic compounds has been flourishing in recent years, not only due to their diverse topology and intriguing structures but also owing to their potential applications in areas such as gas storage, ion exchange and catalysis (Kitagawa et al., 2004; Ferey et al., 2005; Roy et al., 2009; Zhang et al., 2009; Jiang et al., 2009). It is well known that the construction of metal–organic compounds is usually influenced by several factors in the self-assembly process, such as the solvent system, temperature, the organic ligands and the metal atoms (Kan et al., 2012; Liu et al., 2012). Among these factors, the organic ligands play a key role in determining the final architectures. The main method for constructing coordination polymers is to utilize carboxylate-containing ligands, since the carboxylate groups have an excellent coordination capability and flexible coordination patterns. As an important family of multidentate O-donor ligands, semi-rigid V-shaped dicarboxylate ligands, such as 4,4'-oxybis(benzoic acid) (H2OBA), 4,4'-(hexafluoroisopropylidene)bis(benzoic acid) (H2FA), 4,4'-sulfonyldibenzoic acid (H2SDBA), have been used extensively in constructing new metal–organic compounds (Zhuang et al., 2007; Lian et al., 2008; Xiao et al., 2008; Chen et al., 2009; Liu et al., 2009; Li et al., 2010). However, to the best of our knowledge, coordination polymers constructed from 4,4'-sulfonyldibenzoic acid (H2SDBA) and 3,4,7,8-tetramethyl-1,10-phenanthroline (TMPHEN) ligands have not been reported so far. We report here the structure of the CdII coordination polymer {[Cd(SDBA)(TMPHEN)].3H2O}n, (I) (Fig. 1).

Compound (I) crystallizes in the monoclinic space group P21/c, and the asymmetric unit contains a crystallographically unique CdII atom, one fully deprotonated H2SDBA ligand, one TMPHEN molecule and three solvent water molecules. Each CdII centre is six-coordinated by two O atoms from a chelating carboxylate group of a SDBA2- ligand, two O atoms from monodentate carboxylate groups of two different SDBA2- ligands and two N atoms from a chelating TMPHEN ligand (Table 1). The average Cd—O and Cd—N distances (Table 1) in (I) are comparable with those in other reported CdII-based compounds (Wang et al., 2011, 2012).

In the SDBA2- ligand in (I), the dihedral angle between the two benzene rings is 86.0 (3)° and the C23–S1–C24 angle is 104.8 (2)°. The dihedral angles between the carboxylate groups and their adjacent benzene rings are 159.8(s.u.?) and 6.2(s.u.?)°. It is worth noting that the SDBA2- ligand links three CdII atoms and there are two coordination patterns for the carboxylate groups, with one in a µ1-η1:η1 chelating mode and the other in a µ2-η1:η1 bis-monodentate mode. Two crystallographically equivalent CdII atoms are bridged by atoms O5, O6 and C30 to form a binuclear [Cd2(CO2)2] motif; the Cd···Cd separation is 3.1383 (7) Å. The [Cd2(CO2)2] rhomboid subunit is further bridged by an SDBA2 ligand into a one-dimensional double chain containing 28-membered rings, with SDBA2- ligands as bridges arranged parallel to the a direction (Fig. 2). The TMPHEN ligands are extended on both sides of the chain. In addition, the chains are connected by two types of the hydrogen bonds (O—H···O and C—H···O) and by ππ and SO···π interactions to form a three-dimensional supramolecular structure (Fig. 3). Approximately 12.2% of the crystal volume is occupied by the solvent molecules, with a volume of ~353.0 Å3 in each unit cell (2883.4 Å3), based on a PLATON calculation (Spek, 2009).

Interestingly, six lattice water molecules [O7, O7v, O8, O8v, O9 and O9v; symmetry code: (v) -x+1, -y+1, -z+1] related by a twofold axis form a chair-shaped water hexamer via hydrogen bonds (Table 2). The average O···O distance within the hexamer is 2.96 Å, which is significantly longer than the corresponding value of 2.85 Å in liquid water. The O···O···O angles range from 63.7(s.u.?) to 125.9(s.u.?)°, deviating considerably from the preferred ideal tetrahedral geometry of water (Fig. 4). Such hexamers are fixed to the framework through numerous hydrogen bonds involving solvent water O atoms and carboxylate (O2 and O5) and sulfonyl (O3 and O4) O atoms.

In conclusion, we have synthesized a one-dimensional double-chain polymer containing 28-membered rings based on the [Cd2(CO2)2] rhomboid subunit. More interestingly, there exists a chair-shaped water hexamer cluster.

Related literature top

For related literature, see: Chen (2009); Ferey et al. (2005); Jiang (2009); Kan et al. (2012); Kitagawa et al. (2004); Li et al. (2010); Lian et al. (2008); Liu et al. (2009, 2012); Roy et al. (2009); Spek (2009); Wang et al. (2011, 2012); Xiao et al. (2008); Zhang et al. (2009); Zhuang et al. (2007).

Experimental top

A mixture of Cd(NO3)2.6H2O (34.5 mg, 0.1 mmol), H2SDBA (30.6 mg, 0.1 mmol), TMPHEN (35.4 mg, 0.15 mmol) and NaOH (6.0 mg, 0.15 mmol) in H2O (10 ml) was sealed in a 16 ml Teflon-lined stainless steel container and heated at 453 K for 72 h. After cooling to room temperature, white block-shaped crystals of (I) were collected by filtration and washed water water and ethanol several times (yield 7.3%, based on H2SDBA). Elemental analysis for C30H30CdN2O9S: C 50.96, N 3.96, H 4.28%; found: C 51.08, N 3.97, H 4.31%.

Refinement top

H atoms bonded to C atoms were placed in calculated positions and treated using a riding-model approximation, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for the tert-butyl H atoms. Water H atoms were located in difference Fourier maps and were refined with a distance restraint of O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the CdII cations in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z.]
[Figure 2] Fig. 2. A view of one-dimensional double-chain framework in (I).
[Figure 3] Fig. 3. A perspective view of the three-dimensional supramolecular structure of (I), incorporating SO···π and C—H···π interactions (dashed lines).
[Figure 4] Fig. 4. Perspective view of the hexameric water cluster in (I), showing the hydrogen bonding. [Symmetry code: (v) -x+1, -y+1, -z+1.]
catena-Poly[[[(3,4,7,8-tetramethyl-1,10-phenanthroline)cadmium(II)]-µ3-4,4'-sulfonyldibenzoato] trihydrate] top
Crystal data top
[Cd(C14H8O6S)(C16H16N2)]·3H2OF(000) = 1440
Mr = 707.04Dx = 1.629 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2821 reflections
a = 13.5444 (14) Åθ = 2.4–22.9°
b = 11.9489 (13) ŵ = 0.89 mm1
c = 18.518 (2) ÅT = 173 K
β = 105.826 (1)°Block, white
V = 2883.4 (5) Å30.23 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5135 independent reflections
Radiation source: fine-focus sealed tube3389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
phi and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1614
Tmin = 0.815, Tmax = 0.852k = 1114
15734 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0424P)2]
where P = (Fo2 + 2Fc2)/3
5135 reflections(Δ/σ)max < 0.001
392 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Cd(C14H8O6S)(C16H16N2)]·3H2OV = 2883.4 (5) Å3
Mr = 707.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5444 (14) ŵ = 0.89 mm1
b = 11.9489 (13) ÅT = 173 K
c = 18.518 (2) Å0.23 × 0.20 × 0.18 mm
β = 105.826 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5135 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3389 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.852Rint = 0.073
15734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.00Δρmax = 0.53 e Å3
5135 reflectionsΔρmin = 0.68 e Å3
392 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.94398 (3)0.15673 (3)0.01535 (2)0.03252 (14)
C11.0405 (4)0.2585 (5)0.1159 (3)0.0380 (13)
H11.06860.18530.11330.046*
C21.0679 (4)0.3352 (5)0.1645 (3)0.0398 (14)
C31.1362 (5)0.2969 (5)0.2113 (3)0.0564 (17)
H3A1.10120.30810.26450.085*
H3B1.15200.21730.20190.085*
H3C1.20010.34020.19790.085*
C41.0315 (4)0.4420 (5)0.1669 (3)0.0387 (14)
C51.0595 (5)0.5286 (5)0.2171 (3)0.0570 (17)
H5A1.13280.52290.21360.085*
H5B1.04460.60350.20110.085*
H5C1.01940.51590.26910.085*
C60.9643 (4)0.4696 (4)0.1222 (3)0.0345 (13)
C70.9393 (4)0.3845 (4)0.0777 (3)0.0314 (12)
C80.8659 (4)0.4066 (4)0.0349 (3)0.0320 (12)
C90.9193 (4)0.5774 (5)0.1209 (3)0.0441 (15)
H90.93740.63620.14930.053*
C100.8520 (4)0.5986 (5)0.0808 (3)0.0445 (15)
H100.82340.67140.08230.053*
C110.8224 (4)0.5141 (4)0.0361 (3)0.0379 (13)
C120.7495 (4)0.5319 (5)0.0055 (3)0.0429 (14)
C130.7015 (5)0.6461 (5)0.0062 (3)0.0576 (17)
H13A0.65550.64440.03890.086*
H13B0.66230.66620.04490.086*
H13C0.75560.70170.02500.086*
C140.6456 (5)0.4514 (6)0.0880 (4)0.075 (2)
H14A0.66540.51150.12520.113*
H14B0.64330.38020.11380.113*
H14C0.57780.46760.05420.113*
C150.7234 (4)0.4437 (5)0.0431 (3)0.0485 (16)
C160.7713 (4)0.3418 (5)0.0412 (3)0.0490 (15)
H160.75230.28150.06810.059*
C170.8401 (5)0.0875 (6)0.1140 (4)0.0481 (16)
C180.7704 (4)0.0540 (5)0.1622 (3)0.0406 (14)
C190.7058 (4)0.0363 (5)0.1433 (3)0.0473 (15)
H190.70570.07920.10010.057*
C200.6407 (4)0.0656 (5)0.1865 (3)0.0483 (15)
H200.59680.12870.17370.058*
C210.7713 (4)0.1161 (5)0.2249 (3)0.0441 (15)
H210.81740.17710.23910.053*
C220.7045 (4)0.0891 (5)0.2672 (3)0.0419 (14)
H220.70290.13360.30940.050*
C230.6409 (4)0.0016 (5)0.2481 (3)0.0363 (13)
C240.4325 (4)0.0131 (4)0.2411 (3)0.0328 (12)
C250.4014 (4)0.0952 (5)0.2221 (3)0.0408 (14)
H250.44580.15620.24110.049*
C260.3045 (4)0.1136 (5)0.1750 (3)0.0406 (14)
H260.28300.18800.16090.049*
C270.3683 (4)0.1023 (5)0.2146 (3)0.0451 (15)
H270.39060.17680.22760.054*
C280.2707 (4)0.0814 (5)0.1688 (3)0.0445 (14)
H280.22520.14220.15140.053*
C290.2384 (4)0.0257 (4)0.1480 (3)0.0290 (12)
C300.1323 (4)0.0472 (5)0.0983 (3)0.0318 (12)
N10.9788 (3)0.2800 (4)0.0735 (2)0.0346 (10)
N20.8417 (3)0.3211 (4)0.0049 (2)0.0398 (11)
O10.9131 (3)0.1514 (4)0.1399 (2)0.0547 (11)
O20.8159 (3)0.0532 (3)0.0472 (2)0.0579 (11)
O30.5725 (3)0.0429 (3)0.36227 (19)0.0498 (10)
O40.5655 (3)0.1540 (3)0.3190 (2)0.0505 (10)
O50.1095 (3)0.1462 (3)0.0778 (2)0.0431 (10)
O60.0711 (2)0.0331 (3)0.08092 (18)0.0378 (9)
O70.5072 (7)0.2427 (7)0.4235 (5)0.219 (4)
H7A0.53830.19220.40590.263*
H7B0.54500.30060.43280.263*
O80.5974 (5)0.4537 (8)0.4635 (4)0.190 (4)
H8A0.66050.45800.48720.228*
H8B0.57380.51960.45400.228*
O90.4977 (8)0.6674 (8)0.4236 (6)0.250 (5)
H9A0.49470.73230.40420.300*
H9B0.45840.66520.45240.300*
S10.55609 (10)0.03595 (13)0.30184 (7)0.0389 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0322 (2)0.0300 (2)0.0350 (2)0.00160 (19)0.00865 (16)0.00311 (19)
C10.039 (3)0.032 (3)0.044 (3)0.002 (3)0.012 (3)0.001 (3)
C20.035 (3)0.051 (4)0.033 (3)0.004 (3)0.008 (2)0.000 (3)
C30.062 (4)0.065 (4)0.048 (4)0.004 (4)0.025 (3)0.004 (3)
C40.040 (3)0.039 (4)0.032 (3)0.006 (3)0.002 (2)0.003 (3)
C50.069 (4)0.054 (4)0.052 (4)0.008 (4)0.022 (3)0.009 (3)
C60.038 (3)0.028 (3)0.032 (3)0.003 (3)0.001 (2)0.004 (2)
C70.033 (3)0.027 (3)0.031 (3)0.001 (3)0.002 (2)0.001 (2)
C80.034 (3)0.025 (3)0.033 (3)0.001 (3)0.001 (2)0.001 (2)
C90.057 (4)0.028 (3)0.039 (3)0.003 (3)0.000 (3)0.004 (3)
C100.049 (4)0.028 (3)0.046 (4)0.009 (3)0.005 (3)0.001 (3)
C110.039 (3)0.031 (3)0.036 (3)0.004 (3)0.002 (2)0.006 (3)
C120.045 (3)0.041 (4)0.036 (3)0.010 (3)0.000 (3)0.007 (3)
C130.065 (4)0.054 (4)0.050 (4)0.020 (4)0.009 (3)0.010 (3)
C140.069 (5)0.082 (6)0.086 (5)0.023 (4)0.040 (4)0.003 (4)
C150.043 (4)0.052 (4)0.050 (4)0.015 (3)0.012 (3)0.003 (3)
C160.045 (3)0.057 (4)0.049 (4)0.010 (3)0.019 (3)0.009 (3)
C170.048 (4)0.048 (4)0.054 (4)0.019 (3)0.023 (3)0.020 (3)
C180.032 (3)0.045 (4)0.045 (3)0.009 (3)0.011 (3)0.016 (3)
C190.054 (4)0.048 (4)0.046 (3)0.008 (3)0.023 (3)0.001 (3)
C200.050 (4)0.045 (4)0.052 (4)0.006 (3)0.017 (3)0.001 (3)
C210.038 (3)0.052 (4)0.041 (3)0.004 (3)0.008 (3)0.007 (3)
C220.038 (3)0.050 (4)0.036 (3)0.002 (3)0.008 (3)0.000 (3)
C230.028 (3)0.043 (4)0.039 (3)0.005 (3)0.009 (2)0.010 (3)
C240.028 (3)0.034 (3)0.036 (3)0.005 (3)0.008 (2)0.006 (3)
C250.033 (3)0.030 (3)0.055 (4)0.005 (3)0.005 (3)0.000 (3)
C260.037 (3)0.025 (3)0.057 (4)0.005 (3)0.006 (3)0.010 (3)
C270.044 (4)0.026 (3)0.061 (4)0.008 (3)0.008 (3)0.009 (3)
C280.040 (3)0.031 (3)0.057 (4)0.004 (3)0.005 (3)0.001 (3)
C290.028 (3)0.026 (3)0.034 (3)0.003 (3)0.010 (2)0.004 (2)
C300.035 (3)0.033 (3)0.028 (3)0.001 (3)0.010 (2)0.002 (2)
N10.037 (3)0.030 (3)0.037 (2)0.003 (2)0.010 (2)0.001 (2)
N20.041 (3)0.037 (3)0.042 (3)0.004 (2)0.013 (2)0.003 (2)
O10.046 (3)0.069 (3)0.054 (3)0.000 (2)0.023 (2)0.020 (2)
O20.065 (3)0.058 (3)0.063 (3)0.004 (2)0.039 (2)0.005 (2)
O30.045 (2)0.067 (3)0.036 (2)0.004 (2)0.0073 (17)0.001 (2)
O40.047 (2)0.050 (3)0.054 (2)0.010 (2)0.0107 (19)0.024 (2)
O50.032 (2)0.033 (2)0.058 (2)0.0011 (19)0.0008 (17)0.009 (2)
O60.037 (2)0.035 (2)0.041 (2)0.0051 (19)0.0098 (17)0.0061 (18)
O70.225 (9)0.155 (8)0.287 (12)0.042 (7)0.087 (9)0.017 (8)
O80.145 (6)0.289 (11)0.132 (6)0.008 (7)0.033 (5)0.048 (7)
O90.240 (11)0.263 (13)0.275 (13)0.069 (9)0.119 (10)0.027 (9)
S10.0312 (8)0.0459 (9)0.0389 (8)0.0062 (7)0.0086 (6)0.0105 (7)
Geometric parameters (Å, º) top
Cd1—O5i2.228 (3)C16—N21.333 (6)
Cd1—O6ii2.281 (3)C16—H160.9500
Cd1—O22.334 (4)C17—O11.238 (7)
Cd1—N12.351 (4)C17—O21.259 (7)
Cd1—N22.380 (4)C17—C181.519 (7)
Cd1—O12.455 (4)C18—C191.373 (8)
C1—N11.318 (6)C18—C211.374 (7)
C1—C21.404 (7)C19—C201.388 (7)
C1—H10.9500C19—H190.9500
C2—C41.365 (7)C20—C231.372 (7)
C2—C31.500 (7)C20—H200.9500
C3—H3A0.9800C21—C221.387 (7)
C3—H3B0.9800C21—H210.9500
C3—H3C0.9800C22—C231.370 (7)
C4—C61.427 (7)C22—H220.9500
C4—C51.506 (7)C23—S11.761 (5)
C5—H5A0.9800C24—C251.377 (7)
C5—H5B0.9800C24—C271.378 (7)
C5—H5C0.9800C24—S11.765 (5)
C6—C71.407 (7)C25—C261.380 (7)
C6—C91.427 (7)C25—H250.9500
C7—N11.352 (6)C26—C291.382 (7)
C7—C81.454 (7)C26—H260.9500
C8—N21.352 (6)C27—C281.385 (7)
C8—C111.411 (7)C27—H270.9500
C9—C101.347 (7)C28—C291.373 (7)
C9—H90.9500C28—H280.9500
C10—C111.431 (7)C29—C301.503 (6)
C10—H100.9500C30—O61.251 (6)
C11—C121.424 (7)C30—O51.255 (6)
C12—C151.363 (8)O3—S11.433 (4)
C12—C131.512 (7)O4—S11.443 (4)
C13—H13A0.9800O5—Cd1iii2.228 (3)
C13—H13B0.9800O6—Cd1ii2.281 (3)
C13—H13C0.9800O7—H7A0.8500
C14—C151.513 (8)O7—H7B0.8500
C14—H14A0.9800O8—H8A0.8501
C14—H14B0.9800O8—H8B0.8500
C14—H14C0.9800O9—H9A0.8500
C15—C161.384 (8)O9—H9B0.8500
O5i—Cd1—O6ii103.42 (13)H14B—C14—H14C109.5
O5i—Cd1—O2123.44 (14)C12—C15—C16118.7 (5)
O6ii—Cd1—O286.56 (14)C12—C15—C14123.4 (6)
O5i—Cd1—N191.88 (13)C16—C15—C14118.0 (6)
O6ii—Cd1—N181.45 (14)N2—C16—C15125.5 (6)
O2—Cd1—N1144.53 (14)N2—C16—H16117.2
O5i—Cd1—N2124.71 (14)C15—C16—H16117.2
O6ii—Cd1—N2123.00 (13)O1—C17—O2123.3 (6)
O2—Cd1—N290.11 (15)O1—C17—C18119.6 (6)
N1—Cd1—N269.47 (15)O2—C17—C18117.0 (6)
O5i—Cd1—O185.19 (14)C19—C18—C21119.8 (5)
O6ii—Cd1—O1135.70 (14)C19—C18—C17120.8 (6)
O2—Cd1—O154.53 (14)C21—C18—C17119.3 (6)
N1—Cd1—O1142.39 (15)C18—C19—C20120.8 (5)
N2—Cd1—O181.57 (14)C18—C19—H19119.6
N1—C1—C2125.2 (5)C20—C19—H19119.6
N1—C1—H1117.4C23—C20—C19118.8 (5)
C2—C1—H1117.4C23—C20—H20120.6
C4—C2—C1118.3 (5)C19—C20—H20120.6
C4—C2—C3122.7 (5)C18—C21—C22119.7 (5)
C1—C2—C3118.9 (5)C18—C21—H21120.1
C2—C3—H3A109.5C22—C21—H21120.1
C2—C3—H3B109.5C23—C22—C21119.9 (5)
H3A—C3—H3B109.5C23—C22—H22120.0
C2—C3—H3C109.5C21—C22—H22120.0
H3A—C3—H3C109.5C22—C23—C20120.9 (5)
H3B—C3—H3C109.5C22—C23—S1120.0 (4)
C2—C4—C6118.7 (5)C20—C23—S1119.1 (4)
C2—C4—C5120.9 (5)C25—C24—C27121.0 (5)
C6—C4—C5120.5 (5)C25—C24—S1118.6 (4)
C4—C5—H5A109.5C27—C24—S1120.3 (4)
C4—C5—H5B109.5C24—C25—C26118.9 (5)
H5A—C5—H5B109.5C24—C25—H25120.5
C4—C5—H5C109.5C26—C25—H25120.5
H5A—C5—H5C109.5C25—C26—C29121.2 (5)
H5B—C5—H5C109.5C25—C26—H26119.4
C7—C6—C4117.8 (5)C29—C26—H26119.4
C7—C6—C9118.1 (5)C24—C27—C28118.9 (5)
C4—C6—C9124.1 (5)C24—C27—H27120.5
N1—C7—C6123.1 (5)C28—C27—H27120.5
N1—C7—C8117.1 (5)C29—C28—C27121.1 (5)
C6—C7—C8119.8 (5)C29—C28—H28119.4
N2—C8—C11122.3 (5)C27—C28—H28119.4
N2—C8—C7117.6 (5)C28—C29—C26118.8 (5)
C11—C8—C7120.1 (5)C28—C29—C30120.6 (5)
C10—C9—C6122.3 (5)C26—C29—C30120.6 (5)
C10—C9—H9118.8O6—C30—O5123.6 (5)
C6—C9—H9118.8O6—C30—C29118.9 (5)
C9—C10—C11121.6 (5)O5—C30—C29117.5 (5)
C9—C10—H10119.2C1—N1—C7116.8 (4)
C11—C10—H10119.2C1—N1—Cd1125.1 (4)
C8—C11—C12118.5 (5)C7—N1—Cd1117.8 (3)
C8—C11—C10118.0 (5)C16—N2—C8116.6 (5)
C12—C11—C10123.5 (5)C16—N2—Cd1126.4 (4)
C15—C12—C11118.3 (5)C8—N2—Cd1116.5 (3)
C15—C12—C13121.5 (5)C17—O1—Cd188.5 (4)
C11—C12—C13120.2 (5)C17—O2—Cd193.6 (4)
C12—C13—H13A109.5C30—O5—Cd1iii109.9 (3)
C12—C13—H13B109.5C30—O6—Cd1ii127.5 (3)
H13A—C13—H13B109.5H7A—O7—H7B108.8
C12—C13—H13C109.5H8A—O8—H8B108.6
H13A—C13—H13C109.5H9A—O9—H9B109.1
H13B—C13—H13C109.5O3—S1—O4119.0 (2)
C15—C14—H14A109.5O3—S1—C23107.6 (3)
C15—C14—H14B109.5O4—S1—C23108.7 (2)
H14A—C14—H14B109.5O3—S1—C24108.3 (2)
C15—C14—H14C109.5O4—S1—C24107.6 (2)
H14A—C14—H14C109.5C23—S1—C24104.8 (2)
N1—C1—C2—C42.5 (8)C26—C29—C30—O55.5 (7)
N1—C1—C2—C3177.9 (5)C2—C1—N1—C70.0 (7)
C1—C2—C4—C62.3 (7)C2—C1—N1—Cd1174.5 (4)
C3—C2—C4—C6178.0 (5)C6—C7—N1—C12.6 (7)
C1—C2—C4—C5179.0 (5)C8—C7—N1—C1176.0 (4)
C3—C2—C4—C50.7 (8)C6—C7—N1—Cd1172.4 (4)
C2—C4—C6—C70.0 (7)C8—C7—N1—Cd19.0 (5)
C5—C4—C6—C7178.7 (5)O5i—Cd1—N1—C158.1 (4)
C2—C4—C6—C9178.6 (5)O6ii—Cd1—N1—C145.2 (4)
C5—C4—C6—C90.1 (8)O2—Cd1—N1—C1116.8 (4)
C4—C6—C7—N12.6 (7)N2—Cd1—N1—C1175.3 (4)
C9—C6—C7—N1178.7 (5)O1—Cd1—N1—C1142.6 (4)
C4—C6—C7—C8176.0 (4)O5i—Cd1—N1—C7116.4 (3)
C9—C6—C7—C82.7 (7)O6ii—Cd1—N1—C7140.3 (3)
N1—C7—C8—N20.8 (7)O2—Cd1—N1—C768.7 (4)
C6—C7—C8—N2177.8 (4)N2—Cd1—N1—C710.2 (3)
N1—C7—C8—C11179.3 (4)O1—Cd1—N1—C731.9 (4)
C6—C7—C8—C112.1 (7)C15—C16—N2—C81.9 (8)
C7—C6—C9—C102.2 (8)C15—C16—N2—Cd1169.9 (4)
C4—C6—C9—C10176.5 (5)C11—C8—N2—C162.5 (7)
C6—C9—C10—C110.8 (8)C7—C8—N2—C16177.4 (5)
N2—C8—C11—C121.0 (7)C11—C8—N2—Cd1170.1 (4)
C7—C8—C11—C12178.9 (4)C7—C8—N2—Cd110.0 (6)
N2—C8—C11—C10179.2 (4)O5i—Cd1—N2—C16104.7 (5)
C7—C8—C11—C100.7 (7)O6ii—Cd1—N2—C16113.4 (4)
C9—C10—C11—C80.1 (8)O2—Cd1—N2—C1627.4 (5)
C9—C10—C11—C12178.2 (5)N1—Cd1—N2—C16177.8 (5)
C8—C11—C12—C151.3 (7)O1—Cd1—N2—C1626.6 (4)
C10—C11—C12—C15176.8 (5)O5i—Cd1—N2—C867.0 (4)
C8—C11—C12—C13179.6 (5)O6ii—Cd1—N2—C874.8 (4)
C10—C11—C12—C132.3 (8)O2—Cd1—N2—C8160.8 (4)
C11—C12—C15—C162.0 (8)N1—Cd1—N2—C810.5 (3)
C13—C12—C15—C16179.0 (5)O1—Cd1—N2—C8145.1 (4)
C11—C12—C15—C14178.9 (5)O2—C17—O1—Cd12.0 (6)
C13—C12—C15—C140.1 (9)C18—C17—O1—Cd1173.6 (5)
C12—C15—C16—N20.4 (9)O5i—Cd1—O1—C17138.7 (3)
C14—C15—C16—N2179.6 (5)O6ii—Cd1—O1—C1734.4 (4)
O1—C17—C18—C19163.7 (5)O2—Cd1—O1—C171.1 (3)
O2—C17—C18—C1920.5 (8)N1—Cd1—O1—C17134.4 (3)
O1—C17—C18—C2117.2 (8)N2—Cd1—O1—C1795.1 (3)
O2—C17—C18—C21158.6 (5)O1—C17—O2—Cd12.1 (6)
C21—C18—C19—C200.4 (8)C18—C17—O2—Cd1173.6 (4)
C17—C18—C19—C20178.7 (5)O5i—Cd1—O2—C1754.7 (4)
C18—C19—C20—C230.9 (8)O6ii—Cd1—O2—C17158.5 (3)
C19—C18—C21—C222.1 (8)N1—Cd1—O2—C17131.5 (4)
C17—C18—C21—C22177.0 (5)N2—Cd1—O2—C1778.5 (3)
C18—C21—C22—C232.5 (8)O1—Cd1—O2—C171.1 (3)
C21—C22—C23—C201.2 (8)O6—C30—O5—Cd1iii4.4 (6)
C21—C22—C23—S1179.9 (4)C29—C30—O5—Cd1iii174.0 (3)
C19—C20—C23—C220.5 (8)O5—C30—O6—Cd1ii96.5 (5)
C19—C20—C23—S1178.4 (4)C29—C30—O6—Cd1ii85.1 (5)
C27—C24—C25—C260.8 (8)C22—C23—S1—O31.5 (5)
S1—C24—C25—C26179.6 (4)C20—C23—S1—O3179.6 (4)
C24—C25—C26—C291.2 (8)C22—C23—S1—O4131.6 (4)
C25—C24—C27—C280.6 (8)C20—C23—S1—O449.6 (5)
S1—C24—C27—C28178.1 (4)C22—C23—S1—C24113.6 (4)
C24—C27—C28—C291.8 (9)C20—C23—S1—C2465.2 (5)
C27—C28—C29—C261.4 (8)C25—C24—S1—O344.1 (5)
C27—C28—C29—C30180.0 (5)C27—C24—S1—O3134.7 (4)
C25—C26—C29—C280.1 (8)C25—C24—S1—O4174.0 (4)
C25—C26—C29—C30178.5 (5)C27—C24—S1—O44.8 (5)
C28—C29—C30—O65.5 (7)C25—C24—S1—C2370.4 (5)
C26—C29—C30—O6173.0 (5)C27—C24—S1—C23110.8 (5)
C28—C29—C30—O5176.0 (5)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O30.852.062.883 (10)162
O7—H7B···O80.851.992.811 (13)163
O8—H8B···O90.852.052.889 (14)172
C22—H22···O30.952.492.884 (6)105
C27—H27···O40.952.522.905 (6)104
O8—H8A···O2iv0.852.102.944 (8)173
O9—H9A···O4v0.852.473.182 (11)142
O9—H9B···O7vi0.852.483.046 (13)125
O9—H9B···O8vi0.852.383.096 (12)143
C10—H10···O5vii0.952.353.092 (7)134
C13—H13B···O4viii0.982.513.454 (7)162
C20—H20···O7ix0.952.493.344 (10)150
C25—H25···O4x0.952.513.155 (7)125
Symmetry codes: (iv) x, y+1/2, z+1/2; (v) x, y+1, z; (vi) x+1, y+1, z+1; (vii) x+1, y+1, z; (viii) x, y+1/2, z1/2; (ix) x+1, y1/2, z+1/2; (x) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C14H8O6S)(C16H16N2)]·3H2O
Mr707.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.5444 (14), 11.9489 (13), 18.518 (2)
β (°) 105.826 (1)
V3)2883.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.23 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.815, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
15734, 5135, 3389
Rint0.073
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.00
No. of reflections5135
No. of parameters392
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.68

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Cd1—O5i2.228 (3)Cd1—N12.351 (4)
Cd1—O6ii2.281 (3)Cd1—N22.380 (4)
Cd1—O22.334 (4)Cd1—O12.455 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O30.852.062.883 (10)162.2
O7—H7B···O80.851.992.811 (13)162.7
O8—H8B···O90.852.052.889 (14)171.8
C22—H22···O30.952.492.884 (6)105.0
C27—H27···O40.952.522.905 (6)104.1
O8—H8A···O2iii0.852.102.944 (8)172.8
O9—H9A···O4iv0.852.473.182 (11)142.2
O9—H9B···O7v0.852.483.046 (13)125.3
O9—H9B···O8v0.852.383.096 (12)142.6
C10—H10···O5vi0.952.353.092 (7)134.2
C13—H13B···O4vii0.982.513.454 (7)162.4
C20—H20···O7viii0.952.493.344 (10)149.6
C25—H25···O4ix0.952.513.155 (7)125.0
Symmetry codes: (iii) x, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x+1, y+1, z; (vii) x, y+1/2, z1/2; (viii) x+1, y1/2, z+1/2; (ix) x+1, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds