Download citation
Download citation
link to html
In the title compound, {[Tb(C12H8NO2)3(H2O)2]·H2O}n, the TbIII cation is in an eight-coordinate environment, ligated by six carboxyl­ate O atoms from five 3-(pyridin-4-yl)benzoate (L) ligands and by two O atoms from water mol­ecules. The cations are bridged by the carboxyl­ate O atoms of the L ligands to form a two-stranded polymeric chain which is assembled into a three-dimensional supra­molecular network through regular inter­chain O-H...N hydrogen bonding. On excitation at 320 nm, the title compound displays a series of emissions, which were assigned to the characteristic electronic transitions of TbIII.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112040310/qs3018sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112040310/qs3018Isup2.hkl
Contains datablock I

CCDC reference: 914637

Comment top

In recent years, aromatic carboxylic acid ligands have been extensively investigated for the construction of metal–organic frameworks (MOFs) with attracting topologies and properties (Huang et al., 2007). In particular, lanthanide MOFs of aromatic carboxylic acid ligands which have potential applications in medical imaging, sensors and electro-optical devices have drawn considerable current attention (Amghouz et al., 2012). 3-(Pyridin-4-yl)benzoic acid (HL), with both a pyridyl group and a benzoic acid group, is a typical unsymmetrical spacer, and up to now only a series of its transition metal coordination complexes have been synthesized and characterized (Wu et al., 2011). We report here the synthesis, structure and photoluminescence of the first lanthanide complex of HL, the title complex, (I).

In complex (I), the TbIII cation is in an eight-coordinate environment, ligated by six carboxylate O atoms from five L ligands and by two O atoms from water molecules (Fig. 1). The Tb—O bonds fall in the normal range [2.276 (2)–2.516 (3) Å; Reference for standard data?]. The deprotonated L ligands are bidentate and display two coordination modes of the carboxylate groups, namely chelating and bridging; the N atoms of the pyridyl groups do not take part in the coordination.

Complex (I) forms a two-stranded polymeric chain, constructed from two L ligands bridging pairs of TbIII cations side by side and two further L ligands chelating them up and down; the metal–metal separation is 4.883 Å (Fig. 2), similar to the literature value (Zhou et al., 2008). These chains of (I) are connected by interchain O—H···N hydrogen bonds between the coordinated water molecules (as donors) and the uncoordinated pyridyl groups of the L ligands (as acceptors), leading to the formation of a three-dimensional network structure with the solvent water molecules residing in the accessible void (Fig. 3 and Table 3).

The luminescent spectra of the free HL molecule and (I) were measured in the solid state at room temperature. As shown in Fig. 4, free HL displays strong luminescence with a single broad strong band centred at 418 nm, corresponding to excitation at 318 nm. When excited with light of the same wavelength, (I) displays the characteristic narrow emissions of TbIII, which correspond to transitions from the 5d4 energy level up to the 7fj (j = 3, 4, 5 and 6) energy levels. The most intense emission is around 542–545 nm, which is attributed to the 5d47f5 transition. Other emissions at 621, 579–590 and 489 nm can be assigned to 5d47f3, 5d47f4 and 5d47f6, respectively. The obvious splitting of the three higher-energy emissions is due to crystal-field splitting (Yatsimirskii & Davidenko, 1979).

Related literature top

For related literature, see: Amghouz et al. (2012); Huang et al. (2007); Wu et al. (2011); Yatsimirskii & Davidenko (1979); Zhou et al. (2008).

Experimental top

For the preparation of the title compound, (I), a mixture of TbCl3 (0.027 g, 0.1 mmol), HL (0.060 g, 0.3 mmol), NaOH (0.012 g, 0.3 mmol), deionized water (7.5 ml) and dimethylformamide (7.5 ml) was sealed into a 25 ml Teflon-lined stainless steel autoclave. The autoclave was heated at 413 K for 4 d. After cooling slowly to room temperature, pink block-shaped crystals of (I) suitable for X-ray analysis were obtained in 59% yield (based on Tb). Selected IR (KBr pellet, ν, cm-1): 3093 (w), 3421 (m), 1609 (m), 1557 (m), 1437 (w), 1309 (s), 1069 (w), 680 (m), 624 (w). IR spectra were recorded on a Bruker VECTOR22 spectrophotometer with KBr pellets in the 400–4000 cm-1 region. The fluorescent spectra were determined on a Hitachi F-4500 fluorophotometer in the solid state at room temperature.

Refinement top

The H atoms of the coordinated water molecules were located from difference Fourier maps and refined with geometrical restraints [O—H = 0.85 (1) Å and H···H = 1.35 (2) Å]. The H atoms of the solvent water could not be found and accordingly were not included in the model. H atoms attached to C atoms were generated geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å. In all cases, Uiso(H) values were taken as 1.2Ueq(host).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the TbIII atom in (I), with atom O9 omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x + 2, -y + 2, -z + 1; (ii) -x + 1, -y + 2, -z + 1.]
[Figure 2] Fig. 2. A view of the infinite two-stranded chain bridged by L in (I). The TbIII atoms run along the a axis.
[Figure 3] Fig. 3. A view of the three-dimensional network structure in (I), formed by regular interchain hydrogen-bonding interactions (dashed lines).
[Figure 4] Fig. 4. The solid-state photoluminescent spectra of (I) (lower line; red in the electronic version of the paper) and the free ligand HL (upper line; purple) at room temperature.
catena-Poly[[[diaqua[3-(pyridin-4-yl)benzoato- κ2O,O']terbium(III)]-bis[µ-3-(pyridin-4-yl)benzoato- κ2O:O']] monohydrate] top
Crystal data top
[Tb(C12H8NO2)3(H2O)2]·H2OZ = 2
Mr = 807.55F(000) = 808
Triclinic, P1Dx = 1.660 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 9.7093 (10) ÅCell parameters from 4019 reflections
b = 13.9463 (14) Åθ = 2.4–27.3°
c = 14.0767 (14) ŵ = 2.25 mm1
α = 118.086 (2)°T = 296 K
β = 104.170 (2)°Block, pink
γ = 90.036 (2)°0.37 × 0.21 × 0.17 mm
V = 1615.5 (3) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
5657 independent reflections
Radiation source: fine-focus sealed tube4513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.490, Tmax = 0.701k = 1416
8244 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0376P)2]
where P = (Fo2 + 2Fc2)/3
5657 reflections(Δ/σ)max = 0.001
454 parametersΔρmax = 1.18 e Å3
6 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Tb(C12H8NO2)3(H2O)2]·H2Oγ = 90.036 (2)°
Mr = 807.55V = 1615.5 (3) Å3
Triclinic, P1Z = 2
a = 9.7093 (10) ÅMo Kα radiation
b = 13.9463 (14) ŵ = 2.25 mm1
c = 14.0767 (14) ÅT = 296 K
α = 118.086 (2)°0.37 × 0.21 × 0.17 mm
β = 104.170 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5657 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4513 reflections with I > 2σ(I)
Tmin = 0.490, Tmax = 0.701Rint = 0.018
8244 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0276 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.18 e Å3
5657 reflectionsΔρmin = 0.90 e Å3
454 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.747618 (18)1.001657 (14)0.497225 (14)0.02260 (7)
O10.7929 (3)0.8222 (2)0.3497 (2)0.0352 (6)
O20.6165 (3)0.8185 (2)0.4213 (2)0.0325 (6)
O30.8841 (3)0.9122 (2)0.5894 (2)0.0338 (6)
O41.0974 (3)0.9546 (2)0.5787 (2)0.0349 (6)
O50.5790 (3)0.9691 (2)0.3274 (2)0.0337 (6)
O60.3805 (3)0.9742 (2)0.3792 (2)0.0319 (6)
O70.6491 (3)1.1719 (2)0.5345 (3)0.0380 (7)
H7A0.570 (2)1.180 (3)0.549 (3)0.046*
H7B0.683 (4)1.2332 (17)0.545 (3)0.046*
O80.9216 (3)1.1498 (2)0.6556 (2)0.0348 (6)
H8A1.0092 (15)1.150 (3)0.658 (3)0.042*
H8B0.919 (4)1.201 (2)0.7190 (17)0.042*
O90.6201 (6)0.7721 (4)0.6139 (4)0.1095 (16)
N10.8725 (5)0.3118 (3)0.1489 (3)0.0531 (10)
N20.7725 (5)0.3785 (3)0.5892 (4)0.0590 (11)
N30.3300 (5)0.7985 (4)0.0405 (4)0.0751 (14)
C10.6915 (4)0.7692 (3)0.3546 (3)0.0289 (8)
C20.6568 (4)0.6478 (3)0.2803 (3)0.0311 (9)
C30.5530 (4)0.5894 (3)0.2922 (4)0.0395 (10)
H30.51090.62460.35040.047*
C40.5119 (5)0.4781 (3)0.2174 (4)0.0491 (12)
H40.44210.43930.22580.059*
C50.5732 (5)0.4250 (3)0.1312 (4)0.0449 (11)
H50.54300.35100.08050.054*
C60.6808 (4)0.4816 (3)0.1193 (3)0.0355 (9)
C70.7210 (4)0.5931 (3)0.1944 (3)0.0317 (9)
H70.79220.63170.18710.038*
C80.7492 (5)0.4226 (3)0.0273 (3)0.0385 (10)
C90.6655 (6)0.3645 (4)0.0819 (4)0.0584 (13)
H90.56620.36040.09920.070*
C100.7337 (6)0.3120 (4)0.1654 (4)0.0655 (15)
H100.67620.27390.23900.079*
C110.9518 (6)0.3662 (4)0.0438 (4)0.0553 (13)
H111.05070.36710.02930.066*
C120.8949 (5)0.4223 (4)0.0464 (4)0.0491 (11)
H120.95510.45930.11910.059*
C131.0152 (4)0.9035 (3)0.6012 (3)0.0258 (8)
C141.0770 (4)0.8252 (3)0.6399 (3)0.0276 (8)
C151.2235 (4)0.8356 (3)0.6839 (3)0.0382 (10)
H151.28350.89260.69210.046*
C161.2802 (5)0.7609 (4)0.7156 (4)0.0503 (12)
H161.37830.76840.74720.060*
C171.1893 (5)0.6740 (4)0.7000 (4)0.0505 (12)
H171.22820.62340.72070.061*
C181.0431 (4)0.6614 (3)0.6546 (3)0.0358 (9)
C190.9876 (4)0.7398 (3)0.6270 (3)0.0306 (9)
H190.88900.73480.59950.037*
C200.9489 (5)0.5649 (3)0.6336 (3)0.0397 (10)
C210.8013 (6)0.5565 (4)0.6047 (5)0.0632 (15)
H210.75650.61370.60020.076*
C220.7202 (6)0.4632 (4)0.5824 (5)0.0729 (17)
H220.62100.45970.56090.088*
C230.9150 (7)0.3872 (4)0.6182 (4)0.0600 (14)
H230.95690.33000.62500.072*
C241.0043 (6)0.4759 (4)0.6388 (4)0.0542 (13)
H241.10300.47560.65640.065*
C250.4454 (4)0.9651 (3)0.3090 (3)0.0269 (8)
C260.3583 (4)0.9469 (3)0.1963 (3)0.0313 (9)
C270.4263 (5)0.9470 (4)0.1201 (4)0.0475 (12)
H270.52560.96220.14000.057*
C280.3453 (5)0.9243 (5)0.0150 (4)0.0645 (15)
H280.39030.92590.03560.077*
C290.1974 (5)0.8992 (4)0.0162 (4)0.0526 (13)
H290.14470.88160.08840.063*
C300.1266 (4)0.9000 (3)0.0590 (3)0.0355 (9)
C310.2100 (4)0.9251 (3)0.1652 (3)0.0320 (9)
H310.16490.92730.21730.038*
C320.0308 (4)0.8685 (3)0.0253 (4)0.0392 (10)
C330.1044 (5)0.8755 (4)0.1014 (4)0.0498 (12)
H330.05550.90440.17680.060*
C340.2486 (5)0.8397 (4)0.0652 (5)0.0631 (14)
H340.29330.84440.11840.076*
C350.2606 (6)0.7944 (5)0.1125 (5)0.0787 (18)
H350.31340.76850.18660.094*
C360.1148 (5)0.8260 (5)0.0846 (4)0.0643 (14)
H360.07280.81880.13990.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.02166 (10)0.02110 (10)0.02875 (11)0.00374 (7)0.01367 (7)0.01186 (8)
O10.0318 (15)0.0264 (15)0.0449 (16)0.0003 (12)0.0206 (13)0.0106 (13)
O20.0277 (15)0.0241 (14)0.0425 (16)0.0030 (11)0.0207 (12)0.0084 (12)
O30.0249 (15)0.0353 (16)0.0491 (17)0.0085 (12)0.0129 (12)0.0255 (14)
O40.0385 (16)0.0394 (17)0.0437 (16)0.0067 (13)0.0223 (13)0.0282 (14)
O50.0227 (15)0.0455 (17)0.0358 (15)0.0043 (12)0.0118 (12)0.0203 (14)
O60.0312 (15)0.0409 (17)0.0305 (14)0.0082 (12)0.0177 (12)0.0184 (13)
O70.0344 (17)0.0251 (15)0.064 (2)0.0091 (13)0.0270 (15)0.0228 (15)
O80.0253 (15)0.0340 (16)0.0360 (16)0.0016 (12)0.0140 (12)0.0073 (13)
O90.124 (4)0.115 (4)0.125 (4)0.053 (3)0.051 (3)0.078 (3)
N10.072 (3)0.036 (2)0.052 (3)0.017 (2)0.037 (2)0.013 (2)
N20.080 (3)0.036 (2)0.074 (3)0.002 (2)0.036 (3)0.030 (2)
N30.037 (3)0.083 (4)0.085 (4)0.008 (2)0.011 (2)0.028 (3)
C10.027 (2)0.025 (2)0.031 (2)0.0040 (16)0.0090 (17)0.0102 (17)
C20.030 (2)0.028 (2)0.035 (2)0.0058 (17)0.0124 (17)0.0133 (18)
C30.043 (3)0.030 (2)0.046 (3)0.0053 (19)0.025 (2)0.014 (2)
C40.052 (3)0.035 (3)0.064 (3)0.000 (2)0.031 (2)0.019 (2)
C50.049 (3)0.022 (2)0.052 (3)0.0029 (19)0.017 (2)0.007 (2)
C60.041 (2)0.026 (2)0.035 (2)0.0104 (18)0.0143 (19)0.0098 (18)
C70.028 (2)0.031 (2)0.037 (2)0.0069 (17)0.0138 (17)0.0150 (19)
C80.047 (3)0.023 (2)0.043 (2)0.0094 (19)0.019 (2)0.0104 (19)
C90.055 (3)0.057 (3)0.045 (3)0.024 (3)0.016 (2)0.010 (2)
C100.081 (4)0.059 (3)0.040 (3)0.025 (3)0.017 (3)0.011 (3)
C110.058 (3)0.040 (3)0.066 (3)0.009 (2)0.032 (3)0.017 (3)
C120.048 (3)0.042 (3)0.044 (3)0.002 (2)0.020 (2)0.007 (2)
C130.029 (2)0.024 (2)0.0229 (19)0.0037 (16)0.0086 (15)0.0099 (16)
C140.028 (2)0.030 (2)0.029 (2)0.0055 (16)0.0113 (16)0.0165 (18)
C150.030 (2)0.041 (3)0.049 (3)0.0018 (19)0.0122 (19)0.026 (2)
C160.030 (2)0.058 (3)0.075 (3)0.008 (2)0.007 (2)0.045 (3)
C170.049 (3)0.047 (3)0.071 (3)0.016 (2)0.014 (2)0.042 (3)
C180.043 (3)0.030 (2)0.042 (2)0.0074 (18)0.019 (2)0.020 (2)
C190.030 (2)0.030 (2)0.037 (2)0.0036 (17)0.0137 (17)0.0187 (19)
C200.056 (3)0.029 (2)0.042 (2)0.006 (2)0.021 (2)0.021 (2)
C210.060 (3)0.045 (3)0.109 (5)0.010 (2)0.035 (3)0.050 (3)
C220.059 (4)0.055 (3)0.120 (5)0.005 (3)0.038 (3)0.049 (4)
C230.098 (5)0.030 (3)0.062 (3)0.009 (3)0.025 (3)0.029 (3)
C240.065 (3)0.041 (3)0.063 (3)0.008 (2)0.013 (3)0.032 (3)
C250.029 (2)0.023 (2)0.030 (2)0.0040 (16)0.0133 (16)0.0118 (17)
C260.027 (2)0.036 (2)0.033 (2)0.0048 (17)0.0120 (17)0.0170 (19)
C270.033 (2)0.077 (4)0.039 (3)0.001 (2)0.0142 (19)0.032 (3)
C280.043 (3)0.114 (5)0.052 (3)0.002 (3)0.018 (2)0.051 (3)
C290.041 (3)0.083 (4)0.039 (3)0.000 (3)0.006 (2)0.037 (3)
C300.032 (2)0.040 (2)0.035 (2)0.0064 (18)0.0105 (18)0.018 (2)
C310.030 (2)0.036 (2)0.034 (2)0.0053 (17)0.0144 (17)0.0166 (19)
C320.031 (2)0.039 (2)0.045 (3)0.0075 (19)0.0088 (19)0.020 (2)
C330.031 (2)0.063 (3)0.056 (3)0.008 (2)0.011 (2)0.030 (3)
C340.039 (3)0.079 (4)0.081 (4)0.010 (3)0.023 (3)0.044 (3)
C350.046 (3)0.095 (5)0.063 (4)0.010 (3)0.001 (3)0.019 (3)
C360.045 (3)0.089 (4)0.045 (3)0.004 (3)0.012 (2)0.023 (3)
Geometric parameters (Å, º) top
Tb1—O4i2.275 (2)C11—C121.392 (6)
Tb1—O6ii2.279 (2)C11—H110.9300
Tb1—O52.380 (2)C12—H120.9300
Tb1—O32.384 (2)C13—C141.500 (5)
Tb1—O72.429 (2)C14—C151.383 (5)
Tb1—O82.431 (3)C14—C191.386 (5)
Tb1—O22.459 (2)C15—C161.381 (6)
Tb1—O12.515 (3)C15—H150.9300
Tb1—C12.858 (4)C16—C171.396 (6)
O1—C11.265 (4)C16—H160.9300
O2—C11.270 (4)C17—C181.380 (6)
O3—C131.256 (4)C17—H170.9300
O4—C131.258 (4)C18—C191.390 (5)
O4—Tb1i2.275 (2)C18—C201.492 (5)
O5—C251.255 (4)C19—H190.9300
O6—C251.256 (4)C20—C241.379 (6)
O6—Tb1ii2.279 (2)C20—C211.379 (6)
O7—H7A0.843 (10)C21—C221.381 (6)
O7—H7B0.849 (10)C21—H210.9300
O8—H8A0.844 (10)C22—H220.9300
O8—H8B0.847 (10)C23—C241.379 (6)
N1—C101.311 (6)C23—H230.9300
N1—C111.320 (6)C24—H240.9300
N2—C221.321 (6)C25—C261.504 (5)
N2—C231.331 (6)C26—C311.386 (5)
N3—C351.329 (7)C26—C271.390 (5)
N3—C341.337 (6)C27—C281.378 (6)
C1—C21.495 (5)C27—H270.9300
C2—C31.385 (5)C28—C291.387 (6)
C2—C71.390 (5)C28—H280.9300
C3—C41.390 (6)C29—C301.393 (6)
C3—H30.9300C29—H290.9300
C4—C51.372 (6)C30—C311.388 (5)
C4—H40.9300C30—C321.483 (5)
C5—C61.397 (6)C31—H310.9300
C5—H50.9300C32—C361.388 (6)
C6—C71.392 (5)C32—C331.395 (6)
C6—C81.487 (5)C33—C341.371 (6)
C7—H70.9300C33—H330.9300
C8—C121.374 (6)C34—H340.9300
C8—C91.377 (6)C35—C361.384 (7)
C9—C101.388 (6)C35—H350.9300
C9—H90.9300C36—H360.9300
C10—H100.9300
O4i—Tb1—O6ii158.37 (10)N1—C10—C9125.2 (5)
O4i—Tb1—O582.29 (9)N1—C10—H10117.4
O6ii—Tb1—O5106.67 (9)C9—C10—H10117.4
O4i—Tb1—O3103.68 (9)N1—C11—C12123.3 (5)
O6ii—Tb1—O381.17 (9)N1—C11—H11118.4
O5—Tb1—O3143.14 (10)C12—C11—H11118.4
O4i—Tb1—O789.52 (9)C8—C12—C11119.6 (4)
O6ii—Tb1—O774.89 (9)C8—C12—H12120.2
O5—Tb1—O773.20 (10)C11—C12—H12120.2
O3—Tb1—O7141.96 (10)O3—C13—O4123.3 (3)
O4i—Tb1—O874.94 (10)O3—C13—C14118.9 (3)
O6ii—Tb1—O885.97 (9)O4—C13—C14117.7 (3)
O5—Tb1—O8138.71 (9)C15—C14—C19120.2 (3)
O3—Tb1—O876.63 (10)C15—C14—C13119.9 (3)
O7—Tb1—O872.64 (10)C19—C14—C13119.8 (3)
O4i—Tb1—O2125.46 (9)C16—C15—C14119.6 (4)
O6ii—Tb1—O276.17 (9)C16—C15—H15120.2
O5—Tb1—O274.96 (9)C14—C15—H15120.2
O3—Tb1—O272.14 (9)C15—C16—C17119.6 (4)
O7—Tb1—O2127.88 (9)C15—C16—H16120.2
O8—Tb1—O2145.91 (10)C17—C16—H16120.2
O4i—Tb1—O174.03 (9)C18—C17—C16121.5 (4)
O6ii—Tb1—O1126.95 (9)C18—C17—H17119.2
O5—Tb1—O175.06 (9)C16—C17—H17119.2
O3—Tb1—O171.96 (9)C17—C18—C19117.9 (4)
O7—Tb1—O1145.87 (10)C17—C18—C20120.5 (3)
O8—Tb1—O1128.34 (9)C19—C18—C20121.5 (4)
O2—Tb1—O152.53 (8)C14—C19—C18121.1 (4)
O4i—Tb1—C199.78 (10)C14—C19—H19119.5
O6ii—Tb1—C1101.65 (10)C18—C19—H19119.5
O5—Tb1—C173.28 (10)C24—C20—C21115.2 (4)
O3—Tb1—C169.86 (10)C24—C20—C18121.9 (4)
O7—Tb1—C1143.55 (11)C21—C20—C18122.9 (4)
O8—Tb1—C1143.82 (10)C20—C21—C22120.0 (4)
O2—Tb1—C126.28 (9)C20—C21—H21120.0
O1—Tb1—C126.25 (9)C22—C21—H21120.0
C1—O1—Tb192.2 (2)N2—C22—C21125.1 (5)
C1—O2—Tb194.7 (2)N2—C22—H22117.5
C13—O3—Tb1126.2 (2)C21—C22—H22117.5
C13—O4—Tb1i163.8 (2)N2—C23—C24124.0 (4)
C25—O5—Tb1126.7 (2)N2—C23—H23118.0
C25—O6—Tb1ii175.8 (2)C24—C23—H23118.0
Tb1—O7—H7A119 (2)C23—C24—C20120.8 (5)
Tb1—O7—H7B133 (2)C23—C24—H24119.6
H7A—O7—H7B107 (2)C20—C24—H24119.6
Tb1—O8—H8A119 (2)O6—C25—O5123.5 (3)
Tb1—O8—H8B135 (2)O6—C25—C26118.3 (3)
H8A—O8—H8B105 (2)O5—C25—C26118.2 (3)
C10—N1—C11116.3 (4)C31—C26—C27119.3 (4)
C22—N2—C23114.8 (4)C31—C26—C25120.5 (3)
C35—N3—C34114.8 (5)C27—C26—C25120.1 (3)
O1—C1—O2120.6 (3)C28—C27—C26119.4 (4)
O1—C1—C2120.3 (3)C28—C27—H27120.3
O2—C1—C2119.1 (3)C26—C27—H27120.3
O1—C1—Tb161.54 (19)C27—C28—C29120.7 (4)
O2—C1—Tb159.05 (18)C27—C28—H28119.7
C2—C1—Tb1178.0 (3)C29—C28—H28119.7
C3—C2—C7119.1 (4)C28—C29—C30120.9 (4)
C3—C2—C1119.9 (3)C28—C29—H29119.5
C7—C2—C1120.9 (3)C30—C29—H29119.5
C2—C3—C4120.0 (4)C31—C30—C29117.4 (4)
C2—C3—H3120.0C31—C30—C32121.0 (4)
C4—C3—H3120.0C29—C30—C32121.5 (4)
C5—C4—C3120.6 (4)C26—C31—C30122.2 (4)
C5—C4—H4119.7C26—C31—H31118.9
C3—C4—H4119.7C30—C31—H31118.9
C4—C5—C6120.3 (4)C36—C32—C33115.0 (4)
C4—C5—H5119.8C36—C32—C30122.8 (4)
C6—C5—H5119.8C33—C32—C30122.1 (4)
C7—C6—C5118.6 (4)C34—C33—C32120.1 (5)
C7—C6—C8121.5 (4)C34—C33—H33119.9
C5—C6—C8119.9 (4)C32—C33—H33119.9
C2—C7—C6121.2 (4)N3—C34—C33125.1 (5)
C2—C7—H7119.4N3—C34—H34117.5
C6—C7—H7119.4C33—C34—H34117.5
C12—C8—C9117.5 (4)N3—C35—C36124.3 (5)
C12—C8—C6122.6 (4)N3—C35—H35117.8
C9—C8—C6119.9 (4)C36—C35—H35117.8
C8—C9—C10118.1 (5)C35—C36—C32120.6 (5)
C8—C9—H9121.0C35—C36—H36119.7
C10—C9—H9121.0C32—C36—H36119.7
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2ii0.84 (1)1.95 (1)2.786 (4)174 (3)
O7—H7B···N2iii0.85 (1)1.95 (1)2.790 (4)173 (4)
O8—H8A···O1i0.84 (1)2.00 (1)2.823 (4)166 (4)
O8—H8B···N1iv0.85 (1)1.94 (1)2.773 (4)168 (3)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Tb(C12H8NO2)3(H2O)2]·H2O
Mr807.55
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.7093 (10), 13.9463 (14), 14.0767 (14)
α, β, γ (°)118.086 (2), 104.170 (2), 90.036 (2)
V3)1615.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.25
Crystal size (mm)0.37 × 0.21 × 0.17
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.490, 0.701
No. of measured, independent and
observed [I > 2σ(I)] reflections
8244, 5657, 4513
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.069, 1.02
No. of reflections5657
No. of parameters454
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.18, 0.90

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2i0.843 (10)1.947 (11)2.786 (4)174 (3)
O7—H7B···N2ii0.849 (10)1.946 (12)2.790 (4)173 (4)
O8—H8A···O1iii0.844 (10)1.996 (14)2.823 (4)166 (4)
O8—H8B···N1iv0.847 (10)1.939 (12)2.773 (4)168 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z; (iii) x+2, y+2, z+1; (iv) x, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds