Download citation
Download citation
link to html
Bis{μ-2-[bis­(pyridin-2-ylmeth­yl)amino]­acetato}­bis­[diaqua­man­ganese(II)] bis­(trifluoro­methanesulfonate) monohydrate, [Mn2(C14H14N3O2)2(H2O)4](CF3O3S)2·H2O, (I), and bis­{μ-3-[bis­(pyridin-2-ylmeth­yl)amino]­propionato}bis­[aqua­mangan­ese(II)] bis­(trifluoro­methanesulfonate) dihydrate, [Mn2(C15H16N3O2)2(H2O)2](CF3O3S)2·2H2O, (II), form binuclear seven-coordinate complexes. Oxidation of (II) with ammonium hexa­nitratocerate(IV), (NH4)2[Ce(NO3)6], gave the oxide-bridged dimanganese(IV) complex di-μ-oxido-bis­(bis­{3-[bis­(pyridin-2-ylmeth­yl)amino]­propionato}manganese(IV)) bis­[triaqua­tetra­nitratocerate(IV)], [Mn2O2(C15H16N3O2)2][Ce(NO3)4(H2O)3]2, (III). The manganese complexes in (II) and (III) sit on a site of \overline{1} symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112043296/qs3017sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112043296/qs3017Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112043296/qs3017IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112043296/qs3017IIIsup4.hkl
Contains datablock III

CCDC references: 915091; 915092; 915093

Comment top

In designing synthetic models for the oxygen-evolving centre in photosystem II, features to incorporate into the model are: (i) support for manganese in oxidation states II, III and IV; (ii) at a minimum, one carboxylate ligand per manganese; (iii) water-derived ligands (H2O, OH- or O2-); (iv) neutral N-donor atoms completing the coordination spheres. A search in the Cambridge Structural Database (CSD; Version 5.33 of November 2011; Allen, 2002) for structures with the core depicted on the left-hand side in Scheme 1 reveals only seven structures; omitting the aqua ligand gives only a few more examples. The MnII atoms in these complexes may undergo oxidation to MnIII or MnIV accompanied by deprotonation of the aqua ligands and a carboxylate shift (Scheme 1). These complexes have shown the ability to catalyse different oxygen-evolving reactions: water oxidation (Seidler-Egdal et al., 2011; Sameera et al., 2011; Poulsen et al., 2005), catalase activity (Jiang et al., 2009) or superoxide dismutase activity (Yamato et al., 1999; Policar et al., 2001). Indeed, the incorporation of carboxylate ligands has been found to make the catalysts particularly effective (Dubois et al., 2008).

[Mn2(bpg)2(H2O)4](OTf)2.H2O, (I), crystallizes from an equimolar mixture of 2-[bis(pyridin-2-ylmethyl)amino]acetic acid (bpgH) and manganese(II) trifluoromethanesulfonate hexahydrate [Mn(OTf)2.6H2O] in dilute hydrochloric acid. The molecular structure of the complex cation in (I) is similar to the cation found in the previously published structure of [Mn2(bpg)2(H2O)4](ClO4)2.H2O (Iikura & Nagata, 1998). The central Mn atom in (I) coordinates one bpg ligand and two molecules of water (Fig. 1 and Scheme 2). Bpg acts as a tetradentate ligand, with the tertiary N atom, the two pyridine N atoms and one carboxylate O atom acting as donor atoms. Since the coordinated carboxylate O atoms are bridging between two manganese centres, a binuclear seven-coordinate C2-symmetric [Mn2(bpg)2(H2O)4]2+ cation results. Like in [Mn2(bpg)2(H2O)4](ClO4)2.H2O, the coordination geometry in (I) deviates considerably from any idealized coordination polyhedron. Only one O atom in each carboxylate group (O1 and O5) is coordinated to a metal centre; the other two carboxylate O atoms are involved in hydrogen bonding with one of the aqua ligands in an adjacent cation resulting in hydrogen-bonded dimers (Fig. 2). The O2···O3(-x+1, -y+1, -z) and O6···O8(-x, -y+1, -z) distances are 2.660 (2) and 2.780 (2) Å, respectively. Compound (I) crystallizes in the centrosymmetric space group P1 with two formula units in the unit cell and no crystallographically imposed symmetry on the cation. The [Mn2(bpg)2(H2O)4]2+ cations in (I) form stacks along the three crystallographic axes and the trifluoromethanesulfonate anions form stacks along the crystallographic b axis. The noncoordinated water molecules are located in channels running parallel to the a axis, forming hydrogen bonds to trifluoromethanesulfonate anions and one of the coordinated water molecules (O7).

Substituting bpgH with its homologue 3-[bis(pyridin-2-ylmethyl)amino]propionic acid (bppH) gives rise, under similar experimental conditions, to [Mn2(bpp)2(H2O)2](OTf)2.2H2O, (II) (Fig 3 and Scheme 2). The [Mn2(bpp)2(H2O)2]2+ ion is present in two previously published crystal structures, viz. [Mn2(bpp)2(H2O)2](BPh4)2.2EtOH.2H2O (Iikura & Nagata, 1998) and [Mn2(bpp)2(H2O)2](ClO4)2.CH3CN2 (Jiang et al., 2009). The extra methylene group in the bpp ligand compared to the bpg ligand enables both carboxylate O atoms to coordinate to the central Mn atoms and thus prevents coordination of a second water molecule. The bpp ligand coordinates to Mn1 through the tertiary N atom (N1), the two pyridine N atoms (N2 and N3) and carboxylate atom O1. Atom O1 forms a bridge to Mn1(-x+1, -y, -z+1) and the second carboxylate O atom (O2) coordinates only to Mn1(-x+1, -y, -z+1); the coordination mode of the carboxylate group is therefore κ22. The carboxylate group adopts a κ12 coordination mode. Although retaining the Mn2O2 core found in (I), the structures are still rather different. Each central Mn atom in (II) coordinates only one aqua ligand and are seven-coordinated with a distorted geometry perhaps closest to pentagonal bipyramidal. Compound (II) crystallizes in the centrosymmetric space group P21/n with the cation located on a crystallographic inversion centre. The crystal structure of (II) is built up by stacks of [Mn2(bpp)2(H2O)2]2+ cations along the crystallographic a and c axes, respectively. The trifluoromethanesulfonate anions form stacks along the crystallographic a axis. The water molecules, both coordinated and uncoordinated, are located in channels running parallel to the b axis (Fig. 4). The aqua ligand forms one hydrogen bond to the uncoordinated water molecule and one hydrogen bond to a carboxylate group in an adjacent cation. The uncoordinated water molecule forms two additional hydrogen bonds to two adjacent trifluoromethanesulfonate anions.

Neither (I) nor (II) showed any water oxidation catalysis using tert-butyl hydroperoxide as terminal oxidant. Experiments with hydrogen peroxide confirmed the catalase activity. Addition of the oxidizing agent ammonium hexanitratocerate(IV), (NH4)2[Ce(NO3)6], to aqueous solutions of (II) leads to oxidation of the manganese centres. From the green–brown solution, dark-red (almost black) crystals of the oxide-bridged manganese(IV,IV) complex [Mn2O2(bpp)2][Ce(NO3)4(H2O)3]2, (III), were obtained (Scheme 2), mixed with some deep-green oil. The two Mn atoms in (III) are connected by two bridging O2- ligands and the carboxylate group coordinates through a κ1-coordination mode. The [Mn2O2(bpp)2]2+ ion (Fig. 5) in complex (III) is located on an inversion centre and has previously been prepared as a perchlorate salt (Iikura & Nagata, 1998); that compound was obtained by oxidation of [Mn2(bpp)2]2+ with aqueous hydrogen peroxide. Previously, oxidation of manganese(II) acetate in methanol in the presence of 2,2'-bipyridine (bpy) with (NH4)2[Ce(NO3)6] gave the mixed valence manganese(III,IV) compound [Mn2O2(bpy)4][Ce(NO3)6].5H2O, which has been structurally characterized (Ramalakshmi & Rajasekharan, 1999). This complex contains cerium in the +III oxidation state, like in compound (III), while oxidation of manganese(II) nitrate with excess (NH4)2[Ce(NO3)6] in aqueous acetic acid in the presence of 2,2'-bipyridine gave the manganese(IV) cerium(IV) complex [CeMn2O3(O2CCH3)(NO3)4(H2O)2(bpy)2](NO3).2H2O (Tasiopoulos et al., 2004), where a Ce(NO3)4(H2O)2 moiety coordinates to a dinuclear manganese complex via an oxide bridge. The two Mn atoms in this compound are connected by two oxide bridges and one bridging κ2O,O'-acetate ion. It is noteworthy that the anion present in (III), [Ce(NO3)4(H2O)3]- (Fig. 6), is not found in the Cambridge Structural Database. The most similar anion is [Nd(NO3)4(H2O)3]- (Nunez et al., 2010) but this anion has a different spatial arrangement of the ligands around the metal centre. Stereochemically, the ligand arrangement around cerium in (III) is similar to that found in the neural [neutral?] compound triaquatetranitratothorium(IV) 18-crown-6 (Rogers et al., 1987). The complex ions in (III) are held together by extensive hydrogen bonding in the solid state.

Compound (III) is spontaneously reduced in aqueous solution when exposed to the ambient atmosphere. The initial colour of aqueous (III) is brown, but the solutions turn colourless in the course of a few weeks. Solutions of (III) in nitromethane became nearly colourless after 2 weeks in the presence of an excess of butan-1-ol or toluene, while addition of cyclohexene had no visual effect. Attempts to oxidize (I) with ammonium hexanitratocerate(IV) gave no crystalline product. However, electrospray mass spectrometry indicated that oxidation of (I) with hydrogen peroxide gave a MnIII/MnIV complex and not the MnIV/MnIV complex, while oxidation of (II) gave both the MnIII/MnIV and MnIV/MnIV complexes (Andersen et al., 1995).

Related literature top

For related literature, see: Allen (2002); Andersen et al. (1995); Dubois et al. (2008); Iikura & Nagata (1998); Jiang et al. (2009); Nunez et al. (2010); Policar et al. (2001); Poulsen et al. (2005); Ramalakshmi & Rajasekharan (1999); Rogers et al. (1987); Sameera et al. (2011); Seidler-Egdal, Nielsen, Bond, Bjerrum & McKenzie (2011); Tasiopoulos et al. (2004); Yamato et al. (1999).

Experimental top

For the preparation of [Mn2(bpg)2(H2O)4](OTf)2(H2O), (I), Hbpg (300 mg, 1.2 mmol) and manganese trifluoromethanesulfonate hexahydrate (530 mg, 1.5 mmol) were dissolved in H2O (10 ml) and 1 M hydrochloric acid (0.5 ml). The mixture was evaporated to give crystals of (I) in a syrup-like mother liquor. The crystals were washed with water, filtered and dried by suction (yield 0.23 g, 19%). IR: 3394 (br), 2917 (w), 1605 (s), 1485 (m), 1443 (s), 1396 (m), 1256 (s), 1224 8 (s), 1163 (s), 1102 (w), 1054 (w), 1031 (s), 1016 (m), 983 (w), 934 (w), 908 (w), 841 (w), 766 (s), 740 (w), 639 (s), 575 (w), 517 (m) cm-1.

For the preparation of [Mn2(bpp)2(H2O)2](OTf)2.2H2O, (II), Hbpp (542 mg, 2 mmol) was dissolved in 0.25 M HCl (4 ml) and a solution of manganese trifluoromethanesulfonate hexahydrate (704 mg, 2 mmol) in water (1.5 ml) was added. Colourless needles of (II) started to grow within a few hours. The mixture was left for 3 d, filtered and the crystals washed with water (1.5 ml) and dried by suction (yield 0.48 g, 47%). IR: 3436 (br), 1605 (s), 1556 (s), 1483 (m), 1446 (s), 1410 (m), 1282 (s), 1225 (s), 1167 (s), 1101 (m), 1052 (m), 1031 (s), 1016 (m), 958 (w), 889 (w), 856 (w), 819 (w), 765 (m), 730 (w), 640 (s), 576 (w), 518 (w), 481 (w) cm-1. Analysis calculated for C32H40F6Mn2N6O14S2: C 37.65, H 3.95, N 8.24%; found: C 36.26, H 3.64, N 7.85%.

For the preparation of [Mn2O2(bpp)2][Ce(NO3)4(H2O)3]2, (III), [Mn2(bpp)2(H2O)2](OTf)2.2H2O (510 mg, 0.5 mmol) was suspended in water (25 ml) and a solution of ammonium cerium(IV) nitrate (820 mg, 1.5 mmol) in water (10 ml) was added slowly. The solution was evaporated to give a mixture of dark-red crystals of (III) and a green oil. The oil was absorbed on a filter paper and the crystals were washed with a few drops of methanol and dried by suction (yield 310 mg, 40%). Analysis calculated for C30H44Ce2Mn2N14O6: C 22.99, H 2.83, N 12.52%; found: C 22.90, H 2.53, N 12.55%. IR: 3399 (br), 1607 (s), 1440 (s), 1385 (s), 1314 (s), 1161 (m), 1108 (w), 1080 (w), 1037 (m), 1010 (m), 967 (w), 886 (w), 840 (w), 819 (m), 805 (w), 770 (m), 736 (m), 720 (m), 678 (m), 661 (m), 629 (m), 594 (m), 517 (w), 492 (w) cm-1.

Refinement top

C-bound H atoms were included in calculated positions and refined using a riding model, with C—H = 0.95 (aromatic) or 0.99 Å (methylene), and with Uiso(H) = 1.5Ueq(C). O-bound H atoms were located in a difference Fourier map and were refined with O—H distances restrained to 0.85 Å.

Computing details top

For all compounds, data collection: APEX2 (Bruker–Nonius, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the [Mn2(bpg)2(H2O)4]2+ cation in (I), showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are included as spheres of arbitrary radii.
[Figure 2] Fig. 2. The hydrogen-bonded dimer in the crystal structure of (I).
[Figure 3] Fig. 3. The molecular structure of the [Mn2(bpp)2(H2O)2]2+ cation in (II), showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are included as spheres of arbitrary radii.
[Figure 4] Fig. 4. The crystal packing of (II), viewed along the b axis, showing the water molecules located in channels. All non-water H atoms have been omitted for clarity.
[Figure 5] Fig. 5. The molecular structure of the [Mn2O2(bpp)2]2+ cation in (III), showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are included as spheres of arbitrary radii.
[Figure 6] Fig. 6. The molecular structure of the [Ce(NO3)4(H2O)3]- anion in (III), showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are included as spheres of arbitrary radii.
(I) bis{µ-2-[bis(pyridin-2-ylmethyl)amino]acetato}bis[diaquamanganese(II)] bis(trifluoromethandsulfonate) monohydrate, top
Crystal data top
[Mn2(C14H14N3O2)2(H2O)4](CF3O3S)2·H2OZ = 2
Mr = 1010.66F(000) = 1032
Triclinic, P1Dx = 1.640 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.4439 (11) ÅCell parameters from 8766 reflections
b = 13.2598 (13) Åθ = 2.8–27.2°
c = 13.5937 (13) ŵ = 0.82 mm1
α = 67.228 (3)°T = 180 K
β = 81.859 (3)°Needle, white
γ = 88.578 (3)°0.16 × 0.08 × 0.03 mm
V = 2046.2 (3) Å3
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
7039 independent reflections
Radiation source: fine-focus sealed tube5592 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
thin–slice ω and ϕ scansθmax = 25.0°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003). Ratio of minimum to maximum apparent transmission: 0.847753
h = 1414
Tmin = 0.827, Tmax = 0.976k = 1515
27383 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.3235P]
where P = (Fo2 + 2Fc2)/3
7039 reflections(Δ/σ)max < 0.001
550 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Mn2(C14H14N3O2)2(H2O)4](CF3O3S)2·H2Oγ = 88.578 (3)°
Mr = 1010.66V = 2046.2 (3) Å3
Triclinic, P1Z = 2
a = 12.4439 (11) ÅMo Kα radiation
b = 13.2598 (13) ŵ = 0.82 mm1
c = 13.5937 (13) ÅT = 180 K
α = 67.228 (3)°0.16 × 0.08 × 0.03 mm
β = 81.859 (3)°
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
7039 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003). Ratio of minimum to maximum apparent transmission: 0.847753
5592 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.976Rint = 0.041
27383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.02Δρmax = 0.81 e Å3
7039 reflectionsΔρmin = 0.33 e Å3
550 parameters
Special details top

Experimental. Absorption correction: Ratio of minimum to maximum apparent transmission: 0.847753

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44846 (19)0.3805 (2)0.11059 (18)0.0226 (5)
C20.51383 (19)0.3001 (2)0.0740 (2)0.0267 (6)
H2A0.54560.33700.00270.032*
H2B0.57400.27360.11710.032*
C30.4916 (2)0.1422 (2)0.02605 (19)0.0285 (6)
H3A0.45180.07070.05310.034*
H3B0.56810.12810.03780.034*
C40.4871 (2)0.1997 (2)0.0914 (2)0.0261 (6)
C50.5644 (2)0.1832 (2)0.1671 (2)0.0363 (7)
H50.62500.13930.14550.044*
C60.5519 (3)0.2313 (2)0.2742 (2)0.0475 (8)
H60.60360.22090.32760.057*
C70.4626 (3)0.2953 (2)0.3030 (2)0.0468 (8)
H70.45160.32860.37630.056*
C80.3910 (2)0.3092 (2)0.2238 (2)0.0341 (6)
H80.33080.35430.24410.041*
C90.4139 (2)0.1363 (2)0.20169 (19)0.0276 (6)
H9A0.40970.18140.24550.033*
H9B0.47110.08240.22460.033*
C100.3069 (2)0.0767 (2)0.22199 (19)0.0257 (6)
C110.2787 (3)0.0177 (2)0.3123 (2)0.0385 (7)
H110.32870.04830.36210.046*
C120.1780 (3)0.0674 (2)0.3300 (2)0.0462 (8)
H120.15790.13280.39140.055*
C130.1069 (2)0.0206 (2)0.2571 (2)0.0390 (7)
H130.03600.05180.26850.047*
C140.1402 (2)0.0720 (2)0.1674 (2)0.0309 (6)
H140.09220.10240.11570.037*
C150.03654 (19)0.34967 (18)0.09743 (19)0.0216 (5)
C160.03377 (19)0.3657 (2)0.1915 (2)0.0267 (6)
H16A0.05770.44220.16790.032*
H16B0.09930.31680.21450.032*
C170.0232 (2)0.3859 (2)0.3621 (2)0.0296 (6)
H17A0.00670.34950.43070.036*
H17B0.10250.37000.37680.036*
C180.0025 (2)0.5066 (2)0.3219 (2)0.0291 (6)
C190.0747 (2)0.5744 (3)0.3525 (2)0.0414 (7)
H190.13990.54480.40020.050*
C200.0508 (3)0.6843 (3)0.3132 (3)0.0515 (9)
H200.09880.73190.33370.062*
C210.0439 (3)0.7250 (2)0.2433 (3)0.0507 (9)
H210.06100.80130.21360.061*
C220.1140 (3)0.6536 (2)0.2169 (2)0.0419 (7)
H220.18020.68160.17050.050*
C230.0416 (2)0.2234 (2)0.3373 (2)0.0272 (6)
H23A0.05630.19040.28290.033*
H23B0.02570.18820.38600.033*
C240.1354 (2)0.2034 (2)0.40167 (19)0.0260 (6)
C250.1338 (2)0.1173 (2)0.4998 (2)0.0351 (7)
H250.07230.06840.52950.042*
C260.2216 (3)0.1024 (2)0.5547 (2)0.0440 (8)
H260.22140.04360.62260.053*
C270.3095 (2)0.1743 (2)0.5091 (2)0.0420 (7)
H270.37130.16600.54510.050*
C280.3064 (2)0.2581 (2)0.4108 (2)0.0368 (7)
H280.36780.30690.37930.044*
C290.1652 (2)0.0971 (2)0.0954 (2)0.0385 (7)
C300.3510 (3)0.2219 (3)0.3880 (3)0.0493 (8)
N10.44350 (16)0.20709 (16)0.08734 (15)0.0236 (5)
N20.23820 (16)0.12108 (16)0.15034 (16)0.0253 (5)
N30.40120 (17)0.26274 (17)0.11905 (16)0.0269 (5)
N40.02684 (16)0.34152 (16)0.28327 (16)0.0238 (5)
N50.09045 (18)0.54547 (17)0.25536 (17)0.0318 (5)
N60.22046 (16)0.27474 (16)0.35682 (16)0.0264 (5)
O10.34557 (12)0.37310 (13)0.11623 (13)0.0225 (4)
O20.49625 (13)0.44948 (15)0.13187 (14)0.0303 (4)
O30.30211 (13)0.46939 (13)0.09657 (12)0.0241 (4)
H1W0.28420.49510.15860.036*
H2W0.36200.49930.10780.036*
O40.16145 (14)0.27318 (15)0.07935 (14)0.0314 (4)
H3W0.15570.22330.10230.047*
H4W0.10150.29390.06390.047*
O50.13792 (12)0.34064 (13)0.10317 (12)0.0219 (4)
O60.00744 (13)0.34730 (15)0.02215 (14)0.0294 (4)
O70.32715 (14)0.51871 (15)0.23419 (15)0.0340 (4)
H5W0.32980.51650.29740.051*
H6W0.38910.50370.20710.051*
O80.20385 (14)0.56549 (13)0.04081 (13)0.0280 (4)
H7W0.14790.59990.02510.042*
H8W0.23020.54340.00870.042*
O90.17237 (17)0.11214 (16)0.16773 (17)0.0466 (5)
O100.28326 (16)0.01269 (17)0.02954 (16)0.0459 (5)
O110.33145 (16)0.01929 (16)0.21164 (16)0.0431 (5)
O120.27514 (16)0.41941 (17)0.30622 (14)0.0447 (5)
O130.29774 (17)0.32511 (19)0.49858 (15)0.0503 (6)
O140.45659 (17)0.3830 (2)0.4081 (2)0.0626 (7)
O150.34193 (19)0.4900 (2)0.44030 (17)0.0579 (6)
H9W0.41180.47490.43990.087*
H10W0.33100.55050.45790.087*
F10.22168 (15)0.18620 (13)0.05612 (17)0.0651 (6)
F20.07974 (15)0.10459 (17)0.02153 (15)0.0622 (5)
F30.12616 (14)0.09929 (14)0.18126 (15)0.0521 (5)
F40.25268 (17)0.17872 (17)0.38816 (18)0.0730 (6)
F50.3871 (2)0.23132 (19)0.29891 (18)0.0953 (8)
F60.41531 (17)0.14904 (17)0.46933 (19)0.0784 (7)
S10.24832 (5)0.02591 (5)0.12966 (5)0.03037 (17)
S20.34517 (6)0.35186 (6)0.40155 (5)0.03590 (18)
Mn10.28393 (3)0.28808 (3)0.01485 (3)0.01973 (11)
Mn20.20119 (3)0.42906 (3)0.20114 (3)0.02098 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0153 (13)0.0305 (14)0.0159 (12)0.0008 (10)0.0004 (10)0.0031 (10)
C20.0131 (12)0.0374 (15)0.0288 (13)0.0036 (11)0.0028 (11)0.0121 (12)
C30.0222 (13)0.0316 (14)0.0313 (14)0.0127 (11)0.0034 (11)0.0125 (12)
C40.0216 (13)0.0246 (13)0.0310 (14)0.0018 (11)0.0013 (11)0.0115 (11)
C50.0332 (16)0.0308 (15)0.0381 (16)0.0038 (12)0.0099 (13)0.0112 (13)
C60.059 (2)0.0384 (17)0.0325 (16)0.0047 (15)0.0217 (15)0.0094 (13)
C70.073 (2)0.0399 (17)0.0194 (14)0.0047 (16)0.0050 (15)0.0064 (13)
C80.0408 (17)0.0309 (15)0.0274 (14)0.0056 (12)0.0043 (13)0.0083 (12)
C90.0270 (14)0.0288 (14)0.0229 (13)0.0084 (11)0.0062 (11)0.0052 (11)
C100.0295 (14)0.0249 (13)0.0211 (12)0.0102 (11)0.0012 (11)0.0087 (11)
C110.0477 (19)0.0314 (15)0.0291 (15)0.0095 (14)0.0034 (14)0.0049 (12)
C120.057 (2)0.0281 (15)0.0390 (17)0.0005 (15)0.0100 (16)0.0036 (13)
C130.0380 (17)0.0275 (15)0.0466 (17)0.0042 (13)0.0104 (14)0.0146 (13)
C140.0273 (15)0.0268 (14)0.0396 (15)0.0024 (11)0.0011 (12)0.0155 (12)
C150.0175 (13)0.0185 (12)0.0275 (13)0.0017 (10)0.0029 (11)0.0076 (10)
C160.0153 (13)0.0363 (15)0.0305 (14)0.0039 (11)0.0030 (11)0.0153 (12)
C170.0201 (13)0.0400 (16)0.0291 (14)0.0036 (11)0.0010 (11)0.0155 (12)
C180.0265 (14)0.0375 (15)0.0278 (13)0.0115 (12)0.0085 (12)0.0166 (12)
C190.0388 (17)0.055 (2)0.0422 (17)0.0223 (15)0.0131 (14)0.0304 (15)
C200.065 (2)0.052 (2)0.055 (2)0.0324 (18)0.0227 (19)0.0363 (17)
C210.080 (3)0.0299 (16)0.053 (2)0.0181 (17)0.025 (2)0.0242 (15)
C220.055 (2)0.0309 (16)0.0441 (17)0.0055 (14)0.0119 (15)0.0182 (14)
C230.0243 (14)0.0266 (14)0.0272 (13)0.0023 (11)0.0032 (11)0.0086 (11)
C240.0259 (14)0.0259 (13)0.0257 (13)0.0050 (11)0.0008 (11)0.0112 (11)
C250.0392 (17)0.0306 (15)0.0279 (14)0.0013 (12)0.0021 (13)0.0056 (12)
C260.057 (2)0.0378 (17)0.0279 (15)0.0143 (15)0.0087 (15)0.0030 (13)
C270.0398 (18)0.0466 (18)0.0377 (16)0.0155 (15)0.0163 (14)0.0114 (14)
C280.0292 (15)0.0385 (16)0.0417 (16)0.0078 (12)0.0097 (13)0.0134 (13)
C290.0296 (16)0.0374 (16)0.0429 (17)0.0052 (13)0.0059 (14)0.0096 (14)
C300.0440 (19)0.057 (2)0.0431 (18)0.0072 (16)0.0172 (16)0.0121 (16)
N10.0199 (11)0.0257 (11)0.0220 (10)0.0063 (9)0.0019 (9)0.0067 (9)
N20.0234 (12)0.0235 (11)0.0265 (11)0.0026 (9)0.0010 (9)0.0086 (9)
N30.0261 (12)0.0290 (12)0.0234 (11)0.0035 (9)0.0007 (9)0.0095 (9)
N40.0203 (11)0.0263 (11)0.0254 (11)0.0030 (9)0.0019 (9)0.0112 (9)
N50.0362 (14)0.0272 (12)0.0357 (13)0.0084 (10)0.0081 (11)0.0155 (10)
N60.0225 (11)0.0270 (11)0.0276 (11)0.0060 (9)0.0054 (9)0.0078 (9)
O10.0140 (9)0.0257 (9)0.0270 (9)0.0025 (7)0.0042 (7)0.0090 (7)
O20.0201 (9)0.0405 (11)0.0322 (10)0.0060 (8)0.0035 (8)0.0159 (8)
O30.0176 (9)0.0286 (9)0.0216 (8)0.0009 (7)0.0024 (7)0.0050 (7)
O40.0212 (9)0.0451 (11)0.0372 (10)0.0079 (8)0.0093 (8)0.0246 (9)
O50.0129 (8)0.0283 (9)0.0240 (8)0.0018 (7)0.0010 (7)0.0101 (7)
O60.0179 (9)0.0433 (11)0.0347 (10)0.0089 (8)0.0086 (8)0.0223 (9)
O70.0275 (10)0.0399 (11)0.0403 (11)0.0001 (8)0.0056 (9)0.0213 (9)
O80.0260 (10)0.0269 (9)0.0285 (9)0.0106 (7)0.0048 (8)0.0083 (8)
O90.0517 (13)0.0337 (11)0.0606 (13)0.0221 (10)0.0264 (11)0.0198 (10)
O100.0438 (12)0.0563 (13)0.0495 (12)0.0152 (10)0.0213 (10)0.0294 (11)
O110.0336 (11)0.0449 (12)0.0430 (11)0.0005 (9)0.0045 (9)0.0119 (10)
O120.0357 (12)0.0589 (13)0.0245 (10)0.0030 (10)0.0019 (9)0.0008 (9)
O130.0487 (13)0.0736 (15)0.0240 (10)0.0094 (11)0.0024 (10)0.0141 (10)
O140.0283 (12)0.0824 (17)0.0789 (17)0.0121 (11)0.0036 (12)0.0353 (14)
O150.0574 (15)0.0714 (16)0.0507 (13)0.0052 (12)0.0089 (12)0.0295 (12)
F10.0564 (12)0.0265 (9)0.0966 (15)0.0057 (8)0.0206 (11)0.0035 (10)
F20.0365 (10)0.0806 (14)0.0552 (12)0.0104 (10)0.0093 (9)0.0153 (10)
F30.0471 (11)0.0549 (11)0.0620 (12)0.0073 (9)0.0126 (9)0.0289 (9)
F40.0610 (14)0.0617 (13)0.0966 (16)0.0210 (11)0.0111 (12)0.0321 (12)
F50.152 (2)0.0814 (16)0.0772 (15)0.0187 (16)0.0691 (17)0.0405 (13)
F60.0586 (13)0.0630 (13)0.0916 (16)0.0184 (11)0.0148 (12)0.0036 (12)
S10.0284 (4)0.0260 (3)0.0381 (4)0.0076 (3)0.0106 (3)0.0123 (3)
S20.0255 (4)0.0511 (4)0.0264 (4)0.0020 (3)0.0005 (3)0.0111 (3)
Mn10.0143 (2)0.0231 (2)0.01998 (19)0.00349 (15)0.00231 (15)0.00650 (15)
Mn20.0168 (2)0.0214 (2)0.0235 (2)0.00194 (15)0.00248 (16)0.00758 (16)
Geometric parameters (Å, º) top
C1—O21.246 (3)C22—H220.9500
C1—O11.276 (3)C23—N41.470 (3)
C1—C21.516 (3)C23—C241.514 (4)
C2—N11.468 (3)C23—H23A0.9900
C2—H2A0.9900C23—H23B0.9900
C2—H2B0.9900C24—N61.344 (3)
C3—N11.476 (3)C24—C251.378 (4)
C3—C41.488 (3)C25—C261.376 (4)
C3—H3A0.9900C25—H250.9500
C3—H3B0.9900C26—C271.376 (4)
C4—N31.345 (3)C26—H260.9500
C4—C51.385 (4)C27—C281.374 (4)
C5—C61.374 (4)C27—H270.9500
C5—H50.9500C28—N61.347 (3)
C6—C71.388 (4)C28—H280.9500
C6—H60.9500C29—F11.323 (3)
C7—C81.364 (4)C29—F21.332 (3)
C7—H70.9500C29—F31.337 (3)
C8—N31.339 (3)C29—S11.819 (3)
C8—H80.9500C30—F51.311 (3)
C9—N11.469 (3)C30—F61.326 (4)
C9—C101.501 (4)C30—F41.338 (4)
C9—H9A0.9900C30—S21.807 (4)
C9—H9B0.9900N1—Mn12.3867 (19)
C10—N21.339 (3)N2—Mn12.286 (2)
C10—C111.382 (4)N3—Mn12.292 (2)
C11—C121.377 (4)N4—Mn22.395 (2)
C11—H110.9500N5—Mn22.305 (2)
C12—C131.377 (4)N6—Mn22.343 (2)
C12—H120.9500O1—Mn22.2628 (16)
C13—C141.374 (4)O1—Mn12.3030 (16)
C13—H130.9500O3—Mn12.2883 (16)
C14—N21.345 (3)O3—H1W0.8392
C14—H140.9500O3—H2W0.8191
C15—O61.238 (3)O4—Mn12.1830 (17)
C15—O51.275 (3)O4—H3W0.8416
C15—C161.527 (3)O4—H4W0.8158
C16—N41.473 (3)O5—Mn12.2793 (15)
C16—H16A0.9900O5—Mn22.3065 (16)
C16—H16B0.9900O7—Mn22.1856 (18)
C17—N41.471 (3)O7—H5W0.8541
C17—C181.493 (4)O7—H6W0.8594
C17—H17A0.9900O8—Mn22.2258 (16)
C17—H17B0.9900O8—H7W0.8300
C18—N51.340 (3)O8—H8W0.8555
C18—C191.390 (4)O9—S11.4476 (19)
C19—C201.368 (5)O10—S11.432 (2)
C19—H190.9500O11—S11.437 (2)
C20—C211.379 (5)O12—S21.436 (2)
C20—H200.9500O13—S21.436 (2)
C21—C221.386 (4)O14—S21.437 (2)
C21—H210.9500O15—H9W0.8872
C22—N51.346 (3)O15—H10W0.9239
O2—C1—O1124.0 (2)F2—C29—S1112.0 (2)
O2—C1—C2119.7 (2)F3—C29—S1111.63 (19)
O1—C1—C2116.3 (2)F5—C30—F6107.3 (3)
N1—C2—C1109.87 (19)F5—C30—F4108.5 (3)
N1—C2—H2A109.7F6—C30—F4106.2 (3)
C1—C2—H2A109.7F5—C30—S2111.9 (2)
N1—C2—H2B109.7F6—C30—S2112.0 (2)
C1—C2—H2B109.7F4—C30—S2110.7 (2)
H2A—C2—H2B108.2C2—N1—C9111.29 (19)
N1—C3—C4111.67 (19)C2—N1—C3112.89 (19)
N1—C3—H3A109.3C9—N1—C3110.36 (19)
C4—C3—H3A109.3C2—N1—Mn1104.69 (13)
N1—C3—H3B109.3C9—N1—Mn1109.18 (14)
C4—C3—H3B109.3C3—N1—Mn1108.18 (14)
H3A—C3—H3B107.9C10—N2—C14118.8 (2)
N3—C4—C5122.3 (2)C10—N2—Mn1118.52 (16)
N3—C4—C3116.5 (2)C14—N2—Mn1122.24 (17)
C5—C4—C3121.1 (2)C8—N3—C4117.8 (2)
C6—C5—C4118.9 (3)C8—N3—Mn1123.93 (17)
C6—C5—H5120.6C4—N3—Mn1118.26 (16)
C4—C5—H5120.6C23—N4—C17110.04 (19)
C5—C6—C7119.1 (3)C23—N4—C16111.40 (19)
C5—C6—H6120.5C17—N4—C16113.09 (18)
C7—C6—H6120.5C23—N4—Mn2108.47 (14)
C8—C7—C6118.6 (3)C17—N4—Mn2109.82 (15)
C8—C7—H7120.7C16—N4—Mn2103.75 (14)
C6—C7—H7120.7C18—N5—C22118.7 (2)
N3—C8—C7123.4 (3)C18—N5—Mn2119.81 (17)
N3—C8—H8118.3C22—N5—Mn2121.39 (19)
C7—C8—H8118.3C24—N6—C28117.4 (2)
N1—C9—C10111.7 (2)C24—N6—Mn2117.73 (16)
N1—C9—H9A109.3C28—N6—Mn2124.49 (18)
C10—C9—H9A109.3C1—O1—Mn2135.12 (15)
N1—C9—H9B109.3C1—O1—Mn1115.96 (15)
C10—C9—H9B109.3Mn2—O1—Mn1108.89 (6)
H9A—C9—H9B107.9Mn1—O3—H1W123.9
N2—C10—C11121.3 (2)Mn1—O3—H2W117.3
N2—C10—C9117.0 (2)H1W—O3—H2W101.1
C11—C10—C9121.7 (2)Mn1—O4—H3W126.6
C12—C11—C10119.8 (3)Mn1—O4—H4W114.7
C12—C11—H11120.1H3W—O4—H4W110.3
C10—C11—H11120.1C15—O5—Mn1136.14 (15)
C13—C12—C11118.8 (3)C15—O5—Mn2114.33 (14)
C13—C12—H12120.6Mn1—O5—Mn2108.20 (6)
C11—C12—H12120.6Mn2—O7—H5W121.8
C14—C13—C12118.9 (3)Mn2—O7—H6W108.1
C14—C13—H13120.6H5W—O7—H6W110.4
C12—C13—H13120.6Mn2—O8—H7W119.7
N2—C14—C13122.4 (3)Mn2—O8—H8W109.5
N2—C14—H14118.8H7W—O8—H8W110.4
C13—C14—H14118.8H9W—O15—H10W108.0
O6—C15—O5125.1 (2)O10—S1—O11115.84 (12)
O6—C15—C16118.8 (2)O10—S1—O9114.98 (12)
O5—C15—C16116.0 (2)O11—S1—O9114.80 (12)
N4—C16—C15110.93 (19)O10—S1—C29103.42 (13)
N4—C16—H16A109.5O11—S1—C29102.53 (13)
C15—C16—H16A109.5O9—S1—C29102.57 (13)
N4—C16—H16B109.5O13—S2—O12113.36 (12)
C15—C16—H16B109.5O13—S2—O14115.30 (14)
H16A—C16—H16B108.0O12—S2—O14115.44 (14)
N4—C17—C18111.4 (2)O13—S2—C30102.98 (14)
N4—C17—H17A109.3O12—S2—C30103.72 (14)
C18—C17—H17A109.3O14—S2—C30103.88 (15)
N4—C17—H17B109.3O4—Mn1—O581.80 (6)
C18—C17—H17B109.3O4—Mn1—N293.50 (7)
H17A—C17—H17B108.0O5—Mn1—N282.40 (6)
N5—C18—C19122.0 (3)O4—Mn1—O387.27 (6)
N5—C18—C17115.9 (2)O5—Mn1—O384.74 (6)
C19—C18—C17122.1 (3)N2—Mn1—O3166.87 (6)
C20—C19—C18119.2 (3)O4—Mn1—N382.97 (7)
C20—C19—H19120.4O5—Mn1—N3161.76 (7)
C18—C19—H19120.4N2—Mn1—N3108.54 (7)
C19—C20—C21119.0 (3)O3—Mn1—N384.57 (6)
C19—C20—H20120.5O4—Mn1—O1148.88 (6)
C21—C20—H20120.5O5—Mn1—O171.33 (6)
C20—C21—C22119.4 (3)N2—Mn1—O198.09 (7)
C20—C21—H21120.3O3—Mn1—O175.16 (6)
C22—C21—H21120.3N3—Mn1—O1119.76 (7)
N5—C22—C21121.6 (3)O4—Mn1—N1143.00 (7)
N5—C22—H22119.2O5—Mn1—N1126.55 (6)
C21—C22—H22119.2N2—Mn1—N170.77 (7)
N4—C23—C24110.1 (2)O3—Mn1—N1115.61 (6)
N4—C23—H23A109.6N3—Mn1—N171.57 (7)
C24—C23—H23A109.6O1—Mn1—N168.02 (6)
N4—C23—H23B109.6O7—Mn2—O888.53 (7)
C24—C23—H23B109.6O7—Mn2—O182.59 (6)
H23A—C23—H23B108.2O8—Mn2—O183.49 (6)
N6—C24—C25122.2 (2)O7—Mn2—N581.91 (7)
N6—C24—C23115.8 (2)O8—Mn2—N581.90 (7)
C25—C24—C23122.1 (2)O1—Mn2—N5158.92 (7)
C26—C25—C24119.7 (3)O7—Mn2—O5152.15 (6)
C26—C25—H25120.1O8—Mn2—O578.62 (6)
C24—C25—H25120.1O1—Mn2—O571.56 (6)
C25—C26—C27118.7 (3)N5—Mn2—O5119.89 (7)
C25—C26—H26120.7O7—Mn2—N690.85 (7)
C27—C26—H26120.7O8—Mn2—N6171.14 (7)
C28—C27—C26118.8 (3)O1—Mn2—N687.66 (6)
C28—C27—H27120.6N5—Mn2—N6106.76 (7)
C26—C27—H27120.6O5—Mn2—N698.10 (7)
N6—C28—C27123.2 (3)O7—Mn2—N4139.26 (7)
N6—C28—H28118.4O8—Mn2—N4115.17 (7)
C27—C28—H28118.4O1—Mn2—N4130.23 (6)
F1—C29—F2107.4 (2)N5—Mn2—N470.21 (7)
F1—C29—F3107.8 (2)O5—Mn2—N468.28 (6)
F2—C29—F3106.7 (2)N6—Mn2—N470.50 (7)
F1—C29—S1111.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···O12i0.841.902.721 (2)165
O3—H2W···O2ii0.821.852.660 (2)173
O4—H3W···O9iii0.841.992.819 (3)169
O4—H4W···O60.821.962.723 (2)155
O7—H5W···O150.851.862.710 (3)171
O7—H6W···O20.861.862.696 (3)163
O8—H7W···O6i0.831.972.780 (2)166
O8—H8W···O30.861.942.779 (2)168
O15—H9W···O14iv0.892.112.913 (3)150
O15—H10W···O13v0.921.972.895 (4)176
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y, z; (iv) x+1, y, z; (v) x, y+1, z+1.
(II) bis{µ-3-[bis(pyridin-2-ylmethyl)amino]propionato}bis[aquamanganese(II)] bis(trifluoromethandsulfonate) dihydrate top
Crystal data top
[Mn2(C15H16N3O2)2(H2O)2](CF3O3S)2·2H2OF(000) = 1044
Mr = 1020.70Dx = 1.661 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5179 reflections
a = 7.9179 (5) Åθ = 2.8–25.1°
b = 21.7212 (16) ŵ = 0.82 mm1
c = 12.2638 (10) ÅT = 120 K
β = 104.599 (3)°Needle, white
V = 2041.1 (3) Å30.30 × 0.05 × 0.03 mm
Z = 2
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
4696 independent reflections
Radiation source: fine-focus sealed tube3184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
thin–slice ω and ϕ scansθmax = 27.7°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 910
Tmin = 0.791, Tmax = 0.976k = 2628
29597 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0291P)2 + 0.7004P]
where P = (Fo2 + 2Fc2)/3
4696 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Mn2(C15H16N3O2)2(H2O)2](CF3O3S)2·2H2OV = 2041.1 (3) Å3
Mr = 1020.70Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.9179 (5) ŵ = 0.82 mm1
b = 21.7212 (16) ÅT = 120 K
c = 12.2638 (10) Å0.30 × 0.05 × 0.03 mm
β = 104.599 (3)°
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
4696 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3184 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.976Rint = 0.053
29597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
4696 reflectionsΔρmin = 0.34 e Å3
280 parameters
Special details top

Experimental. Absorption correction: Ratio of minimum to maximum apparent transmission: 0.858596

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6935 (2)0.06429 (9)0.45627 (17)0.0136 (4)
C20.6966 (2)0.13147 (9)0.42674 (18)0.0156 (5)
H2A0.75860.13610.36830.019*
H2B0.76130.15380.49260.019*
C30.5173 (2)0.16022 (9)0.38627 (17)0.0154 (5)
H3A0.53070.20270.36550.018*
H3B0.45360.13870.31920.018*
C40.5039 (3)0.19149 (9)0.57475 (17)0.0160 (5)
H4A0.41800.21240.60560.019*
H4B0.57960.22260.55560.019*
C50.6112 (2)0.14963 (9)0.66334 (17)0.0144 (5)
C60.7596 (3)0.17055 (10)0.74051 (18)0.0196 (5)
H60.80280.20970.73320.024*
C70.8423 (3)0.13312 (10)0.82773 (19)0.0241 (5)
H70.94150.14660.88040.029*
C80.7758 (3)0.07500 (10)0.83614 (19)0.0230 (5)
H80.82700.04920.89580.028*
C90.6317 (3)0.05615 (10)0.75394 (17)0.0191 (5)
H90.58940.01650.75820.023*
C100.2421 (2)0.18744 (9)0.42243 (18)0.0176 (5)
H10A0.25940.22640.38820.021*
H10B0.18480.19580.48210.021*
C110.1272 (2)0.14717 (9)0.33573 (18)0.0165 (5)
C120.0047 (3)0.17189 (10)0.24521 (18)0.0216 (5)
H120.00320.21430.23490.026*
C130.1055 (3)0.13332 (11)0.17038 (19)0.0255 (5)
H130.18790.14920.10890.031*
C140.0911 (3)0.07051 (10)0.18860 (19)0.0228 (5)
H140.16350.04330.13970.027*
C150.0332 (3)0.04905 (10)0.28101 (18)0.0198 (5)
H150.04200.00680.29340.024*
C160.3595 (3)0.10044 (11)1.0197 (2)0.0287 (6)
N10.41334 (19)0.15861 (7)0.47129 (14)0.0130 (4)
N20.5498 (2)0.09236 (7)0.66820 (14)0.0143 (4)
N30.1415 (2)0.08613 (8)0.35358 (14)0.0152 (4)
O10.55054 (16)0.03474 (6)0.42178 (12)0.0162 (3)
O20.82717 (17)0.03757 (6)0.51188 (12)0.0199 (3)
O30.15174 (17)0.08339 (6)0.60611 (12)0.0193 (3)
H1W0.15210.12000.63890.029*
H2W0.05650.07390.57520.029*
O40.17489 (18)0.19971 (7)0.69684 (12)0.0247 (4)
H3W0.19750.20110.76750.037*
H4W0.11070.22560.67900.037*
O50.23022 (18)0.20226 (7)0.93272 (12)0.0255 (4)
O60.54039 (19)0.18538 (7)0.95694 (14)0.0300 (4)
O70.4254 (2)0.20506 (7)1.11884 (13)0.0339 (4)
Mn10.34090 (4)0.058037 (14)0.51424 (3)0.01289 (9)
S10.39402 (6)0.18248 (2)1.00521 (5)0.01773 (13)
F10.3244 (2)0.07258 (7)0.92048 (15)0.0560 (5)
F20.22492 (18)0.08939 (6)1.06360 (14)0.0462 (4)
F30.49740 (19)0.07349 (7)1.08566 (16)0.0645 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0164 (10)0.0156 (11)0.0117 (11)0.0009 (9)0.0088 (9)0.0039 (9)
C20.0136 (10)0.0163 (11)0.0191 (12)0.0028 (8)0.0084 (9)0.0013 (9)
C30.0172 (10)0.0113 (11)0.0183 (12)0.0005 (8)0.0056 (9)0.0026 (9)
C40.0158 (10)0.0118 (11)0.0209 (13)0.0023 (8)0.0058 (9)0.0033 (9)
C50.0127 (10)0.0148 (11)0.0178 (12)0.0016 (8)0.0080 (9)0.0050 (9)
C60.0159 (10)0.0197 (12)0.0244 (13)0.0049 (9)0.0072 (10)0.0072 (10)
C70.0149 (11)0.0328 (14)0.0224 (13)0.0025 (10)0.0009 (10)0.0106 (11)
C80.0206 (12)0.0279 (13)0.0179 (13)0.0038 (10)0.0002 (10)0.0016 (10)
C90.0219 (11)0.0180 (11)0.0166 (12)0.0014 (9)0.0034 (9)0.0006 (10)
C100.0171 (10)0.0142 (11)0.0216 (13)0.0046 (8)0.0053 (9)0.0050 (9)
C110.0114 (10)0.0205 (12)0.0195 (13)0.0017 (8)0.0074 (9)0.0047 (9)
C120.0160 (10)0.0232 (12)0.0262 (14)0.0029 (9)0.0064 (10)0.0097 (10)
C130.0118 (10)0.0408 (15)0.0211 (13)0.0029 (10)0.0008 (9)0.0117 (11)
C140.0144 (11)0.0328 (14)0.0203 (13)0.0016 (10)0.0026 (9)0.0022 (11)
C150.0153 (10)0.0232 (13)0.0210 (13)0.0014 (9)0.0046 (9)0.0029 (10)
C160.0180 (12)0.0244 (13)0.0429 (17)0.0012 (10)0.0062 (11)0.0045 (12)
N10.0112 (8)0.0120 (9)0.0156 (10)0.0010 (7)0.0028 (7)0.0006 (7)
N20.0139 (8)0.0152 (9)0.0140 (10)0.0005 (7)0.0040 (7)0.0015 (8)
N30.0130 (8)0.0171 (10)0.0158 (10)0.0018 (7)0.0043 (7)0.0009 (8)
O10.0124 (7)0.0144 (7)0.0213 (9)0.0020 (6)0.0032 (6)0.0021 (6)
O20.0130 (7)0.0192 (8)0.0265 (9)0.0021 (6)0.0032 (6)0.0020 (7)
O30.0123 (7)0.0217 (8)0.0239 (9)0.0019 (6)0.0045 (6)0.0066 (7)
O40.0247 (8)0.0264 (9)0.0225 (9)0.0061 (7)0.0050 (7)0.0000 (7)
O50.0217 (8)0.0280 (9)0.0237 (9)0.0067 (7)0.0001 (7)0.0021 (7)
O60.0224 (8)0.0311 (9)0.0400 (11)0.0037 (7)0.0144 (8)0.0045 (8)
O70.0422 (10)0.0379 (10)0.0189 (9)0.0117 (8)0.0027 (8)0.0060 (8)
Mn10.00995 (15)0.01224 (17)0.01577 (18)0.00001 (12)0.00194 (12)0.00014 (14)
S10.0162 (3)0.0166 (3)0.0188 (3)0.0015 (2)0.0016 (2)0.0001 (2)
F10.0714 (12)0.0289 (9)0.0727 (13)0.0130 (8)0.0277 (10)0.0234 (9)
F20.0364 (8)0.0381 (9)0.0714 (12)0.0094 (7)0.0272 (8)0.0113 (8)
F30.0308 (8)0.0364 (9)0.1158 (16)0.0075 (7)0.0008 (9)0.0382 (10)
Geometric parameters (Å, º) top
C1—O21.249 (2)C12—C131.379 (3)
C1—O11.277 (2)C12—H120.9300
C1—C21.505 (3)C13—C141.383 (3)
C2—C31.515 (3)C13—H130.9300
C2—H2A0.9700C14—C151.381 (3)
C2—H2B0.9700C14—H140.9300
C3—N11.483 (2)C15—N31.338 (3)
C3—H3A0.9700C15—H150.9300
C3—H3B0.9700C16—F31.321 (3)
C4—N11.475 (2)C16—F11.325 (3)
C4—C51.504 (3)C16—F21.331 (3)
C4—H4A0.9700C16—S11.819 (2)
C4—H4B0.9700N1—Mn12.3519 (16)
C5—N21.342 (2)N2—Mn12.2985 (16)
C5—C61.387 (3)N3—Mn12.2758 (16)
C6—C71.371 (3)O1—Mn1i2.2529 (14)
C6—H60.9300O1—Mn12.2904 (13)
C7—C81.381 (3)O2—Mn1i2.4436 (14)
C7—H70.9300O3—Mn12.1603 (13)
C8—C91.381 (3)O3—H1W0.8910
C8—H80.9300O3—H2W0.7819
C9—N21.342 (3)O4—H3W0.8400
C9—H90.9300O4—H4W0.7521
C10—N11.477 (2)O5—S11.4407 (14)
C10—C111.495 (3)O6—S11.4294 (15)
C10—H10A0.9700O7—S11.4387 (16)
C10—H10B0.9700Mn1—O1i2.2528 (14)
C11—N31.344 (3)Mn1—O2i2.4436 (14)
C11—C121.385 (3)
O2—C1—O1120.39 (18)N3—C15—H15118.4
O2—C1—C2121.25 (18)C14—C15—H15118.4
O1—C1—C2118.35 (17)F3—C16—F1108.0 (2)
C1—C2—C3114.03 (16)F3—C16—F2107.2 (2)
C1—C2—H2A108.7F1—C16—F2106.59 (19)
C3—C2—H2A108.7F3—C16—S1111.88 (16)
C1—C2—H2B108.7F1—C16—S1111.07 (17)
C3—C2—H2B108.7F2—C16—S1111.83 (16)
H2A—C2—H2B107.6C4—N1—C10109.97 (15)
N1—C3—C2113.60 (16)C4—N1—C3110.96 (15)
N1—C3—H3A108.8C10—N1—C3108.70 (15)
C2—C3—H3A108.8C4—N1—Mn1110.50 (12)
N1—C3—H3B108.8C10—N1—Mn1103.52 (11)
C2—C3—H3B108.8C3—N1—Mn1112.92 (11)
H3A—C3—H3B107.7C9—N2—C5117.99 (17)
N1—C4—C5113.09 (16)C9—N2—Mn1123.98 (13)
N1—C4—H4A109.0C5—N2—Mn1117.25 (13)
C5—C4—H4A109.0C15—N3—C11118.16 (18)
N1—C4—H4B109.0C15—N3—Mn1127.07 (14)
C5—C4—H4B109.0C11—N3—Mn1114.65 (13)
H4A—C4—H4B107.8C1—O1—Mn1i96.08 (12)
N2—C5—C6121.83 (19)C1—O1—Mn1114.66 (12)
N2—C5—C4116.58 (16)Mn1i—O1—Mn1106.60 (6)
C6—C5—C4121.46 (18)C1—O2—Mn1i87.98 (11)
C7—C6—C5119.6 (2)Mn1—O3—H1W122.6
C7—C6—H6120.2Mn1—O3—H2W113.0
C5—C6—H6120.2H1W—O3—H2W110.3
C6—C7—C8118.96 (19)H3W—O4—H4W103.1
C6—C7—H7120.5O3—Mn1—O1i107.47 (5)
C8—C7—H7120.5O3—Mn1—N387.84 (6)
C9—C8—C7118.5 (2)O1i—Mn1—N3131.45 (6)
C9—C8—H8120.8O3—Mn1—O1177.18 (5)
C7—C8—H8120.8O1i—Mn1—O173.40 (6)
N2—C9—C8123.0 (2)N3—Mn1—O193.55 (5)
N2—C9—H9118.5O3—Mn1—N286.50 (6)
C8—C9—H9118.5O1i—Mn1—N282.62 (5)
N1—C10—C11111.85 (16)N3—Mn1—N2145.37 (6)
N1—C10—H10A109.2O1—Mn1—N290.97 (5)
C11—C10—H10A109.2O3—Mn1—N196.91 (5)
N1—C10—H10B109.2O1i—Mn1—N1144.66 (5)
C11—C10—H10B109.2N3—Mn1—N173.27 (6)
H10A—C10—H10B107.9O1—Mn1—N181.16 (5)
N3—C11—C12121.74 (19)N2—Mn1—N173.56 (6)
N3—C11—C10116.77 (17)O3—Mn1—O2i81.88 (5)
C12—C11—C10121.38 (19)O1i—Mn1—O2i55.45 (5)
C13—C12—C11119.7 (2)N3—Mn1—O2i83.01 (5)
C13—C12—H12120.1O1—Mn1—O2i100.72 (5)
C11—C12—H12120.1N2—Mn1—O2i129.70 (6)
C12—C13—C14118.6 (2)N1—Mn1—O2i156.28 (5)
C12—C13—H13120.7O6—S1—O7115.23 (10)
C14—C13—H13120.7O6—S1—O5115.42 (10)
C15—C14—C13118.6 (2)O7—S1—O5113.87 (10)
C15—C14—H14120.7O6—S1—C16103.97 (10)
C13—C14—H14120.7O7—S1—C16103.45 (11)
N3—C15—C14123.2 (2)O5—S1—C16102.61 (10)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···O40.891.862.747172
O3—H2W···O2ii0.781.952.726171
O4—H3W···O50.841.982.815175
O4—H4W···O7iii0.752.102.854176
Symmetry codes: (ii) x1, y, z; (iii) x1/2, y+1/2, z1/2.
(III) di-µ-oxido-bis(bis{3-[bis(pyridin-2-ylmethyl)amino]propionato}manganese(IV)) bis[triaquatetranitratocerate(IV)] top
Crystal data top
[Mn2O2(C15H16N3O2)2][Ce(NO3)4(H2O)3]2Z = 1
Mr = 1566.91F(000) = 776
Triclinic, P1Dx = 2.005 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8698 (5) ÅCell parameters from 9135 reflections
b = 10.6007 (6) Åθ = 2.8–26.0°
c = 13.9273 (8) ŵ = 2.32 mm1
α = 94.978 (3)°T = 150 K
β = 110.547 (2)°Plate, red
γ = 104.276 (2)°0.26 × 0.20 × 0.04 mm
V = 1297.99 (12) Å3
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
5058 independent reflections
Radiation source: fine-focus sealed tube4778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
thin–slice ω and ϕ scansθmax = 26.0°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.644, Tmax = 0.745k = 1313
39127 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0185P)2 + 1.0956P]
where P = (Fo2 + 2Fc2)/3
5058 reflections(Δ/σ)max = 0.001
403 parametersΔρmax = 0.71 e Å3
9 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Mn2O2(C15H16N3O2)2][Ce(NO3)4(H2O)3]2γ = 104.276 (2)°
Mr = 1566.91V = 1297.99 (12) Å3
Triclinic, P1Z = 1
a = 9.8698 (5) ÅMo Kα radiation
b = 10.6007 (6) ŵ = 2.32 mm1
c = 13.9273 (8) ÅT = 150 K
α = 94.978 (3)°0.26 × 0.20 × 0.04 mm
β = 110.547 (2)°
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
5058 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4778 reflections with I > 2σ(I)
Tmin = 0.644, Tmax = 0.745Rint = 0.025
39127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0179 restraints
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.71 e Å3
5058 reflectionsΔρmin = 0.46 e Å3
403 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4550 (2)1.0267 (2)0.10497 (15)0.0214 (4)
C20.4439 (2)0.8834 (2)0.11220 (16)0.0231 (4)
H2A0.43270.86810.17850.028*
H2B0.54080.86870.11610.028*
C30.3161 (2)0.78036 (19)0.02390 (16)0.0206 (4)
H3A0.32760.79480.04250.025*
H3B0.32680.69160.03440.025*
C40.1188 (2)0.72883 (19)0.09929 (15)0.0196 (4)
H4A0.16430.65690.11960.023*
H4B0.00740.69240.07550.023*
C50.1781 (2)0.84119 (19)0.19166 (15)0.0201 (4)
C60.2197 (2)0.8258 (2)0.29426 (16)0.0268 (5)
H60.20730.73970.31090.032*
C70.2796 (3)0.9367 (2)0.37265 (17)0.0315 (5)
H70.30830.92710.44360.038*
C80.2978 (2)1.0622 (2)0.34789 (17)0.0285 (5)
H80.34071.13930.40130.034*
C90.2522 (2)1.0724 (2)0.24395 (16)0.0226 (4)
H90.26421.15770.22580.027*
C100.0504 (2)0.70221 (19)0.09347 (15)0.0202 (4)
H10A0.05410.67480.09530.024*
H10B0.07770.62160.10990.024*
C110.0597 (2)0.79033 (19)0.17233 (15)0.0191 (4)
C120.0328 (2)0.7463 (2)0.27556 (16)0.0244 (4)
H120.00890.65450.30210.029*
C130.0411 (2)0.8381 (2)0.33972 (17)0.0282 (5)
H130.01920.80900.41150.034*
C140.0815 (2)0.9726 (2)0.29975 (17)0.0268 (4)
H140.08901.03640.34300.032*
C150.1105 (2)1.0111 (2)0.19550 (16)0.0223 (4)
H150.14151.10290.16620.027*
Ce10.645983 (12)0.537145 (10)0.302107 (8)0.01712 (4)
Mn10.12793 (3)0.96400 (3)0.01495 (2)0.01624 (7)
N10.15897 (17)0.78008 (15)0.01278 (12)0.0169 (3)
N20.19097 (18)0.96344 (16)0.16757 (12)0.0187 (3)
N30.09570 (18)0.92122 (16)0.13466 (12)0.0186 (3)
N40.71615 (19)0.56739 (17)0.10403 (13)0.0237 (4)
N50.99489 (19)0.63633 (17)0.41507 (12)0.0207 (3)
N60.32189 (18)0.50929 (16)0.27878 (13)0.0209 (3)
N70.6285 (2)0.81101 (17)0.36844 (14)0.0270 (4)
O10.33743 (15)1.05618 (13)0.04440 (11)0.0220 (3)
O20.57492 (17)1.11439 (15)0.15568 (12)0.0298 (3)
O30.07120 (15)1.11334 (12)0.01150 (10)0.0184 (3)
O40.78873 (18)0.51649 (18)0.17707 (11)0.0359 (4)
O50.61638 (18)0.61264 (15)0.11564 (12)0.0305 (3)
O60.74481 (17)0.57041 (16)0.02412 (11)0.0297 (3)
O70.92798 (16)0.51428 (14)0.38783 (11)0.0229 (3)
O80.91591 (16)0.71474 (14)0.39195 (12)0.0275 (3)
O91.13478 (15)0.67941 (15)0.46267 (11)0.0261 (3)
O100.60840 (19)0.72130 (15)0.42120 (11)0.0313 (3)
O110.65747 (16)0.78022 (14)0.28929 (11)0.0253 (3)
O120.6184 (2)0.92188 (16)0.39145 (14)0.0447 (4)
O130.39958 (16)0.44834 (15)0.34040 (11)0.0265 (3)
O140.37912 (16)0.56973 (14)0.22111 (11)0.0237 (3)
O150.19648 (16)0.51029 (15)0.27624 (12)0.0282 (3)
O160.46432 (19)0.35593 (15)0.14398 (12)0.0318 (4)
O170.65309 (18)0.30304 (15)0.32736 (12)0.0288 (3)
O180.72688 (18)0.52547 (16)0.49357 (11)0.0281 (3)
H1W0.408 (3)0.371 (2)0.0892 (13)0.048 (8)*
H2W0.470 (3)0.2819 (16)0.1246 (19)0.054 (9)*
H3W0.635 (3)0.2386 (19)0.2814 (14)0.043 (8)*
H4W0.715 (3)0.288 (3)0.3798 (13)0.069 (11)*
H5W0.777 (3)0.478 (2)0.5248 (18)0.049 (8)*
H6W0.692 (3)0.549 (2)0.5359 (16)0.039 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0208 (10)0.0250 (11)0.0193 (10)0.0039 (8)0.0115 (8)0.0005 (8)
C20.0203 (10)0.0258 (11)0.0257 (11)0.0094 (8)0.0096 (8)0.0075 (8)
C30.0209 (10)0.0189 (10)0.0263 (10)0.0093 (8)0.0117 (8)0.0054 (8)
C40.0227 (10)0.0171 (9)0.0204 (10)0.0063 (8)0.0091 (8)0.0064 (8)
C50.0207 (9)0.0216 (10)0.0217 (10)0.0081 (8)0.0108 (8)0.0064 (8)
C60.0344 (12)0.0295 (11)0.0231 (11)0.0136 (9)0.0146 (9)0.0108 (9)
C70.0407 (13)0.0389 (13)0.0186 (10)0.0167 (11)0.0121 (9)0.0071 (9)
C80.0309 (11)0.0315 (12)0.0204 (10)0.0083 (9)0.0088 (9)0.0023 (9)
C90.0226 (10)0.0214 (10)0.0243 (10)0.0080 (8)0.0090 (8)0.0029 (8)
C100.0223 (10)0.0159 (9)0.0205 (10)0.0045 (8)0.0077 (8)0.0004 (8)
C110.0166 (9)0.0191 (10)0.0209 (10)0.0056 (7)0.0069 (8)0.0013 (8)
C120.0254 (10)0.0230 (11)0.0241 (10)0.0057 (8)0.0108 (8)0.0005 (8)
C130.0299 (11)0.0345 (12)0.0205 (10)0.0074 (9)0.0123 (9)0.0012 (9)
C140.0290 (11)0.0320 (12)0.0243 (11)0.0098 (9)0.0142 (9)0.0104 (9)
C150.0227 (10)0.0201 (10)0.0258 (11)0.0074 (8)0.0107 (8)0.0051 (8)
Ce10.02026 (6)0.02016 (7)0.01371 (6)0.01028 (4)0.00651 (4)0.00479 (4)
Mn10.01918 (14)0.01458 (14)0.01641 (14)0.00685 (11)0.00720 (11)0.00344 (11)
N10.0180 (8)0.0154 (8)0.0178 (8)0.0062 (6)0.0070 (6)0.0024 (6)
N20.0195 (8)0.0206 (8)0.0177 (8)0.0080 (7)0.0077 (6)0.0045 (7)
N30.0205 (8)0.0191 (8)0.0180 (8)0.0076 (6)0.0084 (6)0.0027 (6)
N40.0224 (9)0.0267 (9)0.0191 (9)0.0037 (7)0.0077 (7)0.0022 (7)
N50.0237 (9)0.0268 (9)0.0159 (8)0.0109 (7)0.0096 (7)0.0069 (7)
N60.0225 (8)0.0201 (8)0.0176 (8)0.0055 (7)0.0060 (7)0.0012 (7)
N70.0297 (9)0.0251 (10)0.0223 (9)0.0127 (8)0.0032 (7)0.0000 (7)
O10.0224 (7)0.0180 (7)0.0268 (8)0.0057 (6)0.0109 (6)0.0053 (6)
O20.0262 (8)0.0280 (8)0.0278 (8)0.0006 (6)0.0091 (6)0.0013 (6)
O30.0211 (7)0.0155 (7)0.0204 (7)0.0070 (5)0.0089 (5)0.0043 (5)
O40.0329 (8)0.0643 (11)0.0189 (8)0.0279 (8)0.0097 (6)0.0121 (7)
O50.0417 (9)0.0318 (8)0.0323 (8)0.0219 (7)0.0224 (7)0.0118 (7)
O60.0284 (8)0.0427 (9)0.0190 (7)0.0066 (7)0.0127 (6)0.0061 (7)
O70.0266 (7)0.0210 (7)0.0220 (7)0.0101 (6)0.0082 (6)0.0040 (6)
O80.0266 (8)0.0242 (8)0.0331 (8)0.0141 (6)0.0083 (6)0.0070 (6)
O90.0194 (7)0.0349 (8)0.0234 (7)0.0089 (6)0.0060 (6)0.0105 (6)
O100.0459 (9)0.0317 (9)0.0215 (8)0.0198 (7)0.0128 (7)0.0072 (6)
O110.0290 (8)0.0245 (8)0.0238 (8)0.0118 (6)0.0091 (6)0.0052 (6)
O120.0691 (13)0.0281 (9)0.0379 (10)0.0252 (9)0.0162 (9)0.0003 (7)
O130.0285 (8)0.0316 (8)0.0252 (8)0.0152 (6)0.0111 (6)0.0137 (6)
O140.0251 (7)0.0294 (8)0.0214 (7)0.0117 (6)0.0107 (6)0.0108 (6)
O150.0201 (7)0.0324 (8)0.0329 (8)0.0082 (6)0.0106 (6)0.0082 (7)
O160.0444 (10)0.0229 (8)0.0227 (8)0.0135 (7)0.0044 (7)0.0030 (6)
O170.0353 (9)0.0240 (8)0.0238 (8)0.0128 (7)0.0046 (7)0.0045 (7)
O180.0374 (9)0.0399 (9)0.0179 (7)0.0254 (7)0.0126 (7)0.0113 (7)
Geometric parameters (Å, º) top
C1—O21.233 (2)Ce1—O182.5249 (14)
C1—O11.302 (2)Ce1—O172.5509 (15)
C1—C21.511 (3)Ce1—O162.5594 (15)
C2—C31.515 (3)Ce1—O112.5758 (14)
C2—H2A0.9900Ce1—O142.6000 (14)
C2—H2B0.9900Ce1—O42.6218 (15)
C3—N11.503 (2)Ce1—O102.6319 (15)
C3—H3A0.9900Ce1—O132.6370 (15)
C3—H3B0.9900Ce1—O82.6430 (15)
C4—N11.499 (2)Ce1—O72.6983 (14)
C4—C51.509 (3)Ce1—O52.7227 (15)
C4—H4A0.9900Mn1—O31.8038 (13)
C4—H4B0.9900Mn1—O3i1.8208 (13)
C5—N21.354 (3)Mn1—O11.9332 (14)
C5—C61.378 (3)Mn1—N31.9870 (16)
C6—C71.380 (3)Mn1—N21.9953 (16)
C6—H60.9500Mn1—N12.0462 (16)
C7—C81.388 (3)Mn1—Mn1i2.7204 (6)
C7—H70.9500N4—O61.242 (2)
C8—C91.380 (3)N4—O51.248 (2)
C8—H80.9500N4—O41.270 (2)
C9—N21.350 (3)N5—O91.244 (2)
C9—H90.9500N5—O71.254 (2)
C10—N11.503 (2)N5—O81.262 (2)
C10—C111.514 (3)N6—O151.229 (2)
C10—H10A0.9900N6—O141.266 (2)
C10—H10B0.9900N6—O131.273 (2)
C11—N31.351 (2)N7—O121.228 (2)
C11—C121.382 (3)N7—O111.268 (2)
C12—C131.384 (3)N7—O101.271 (2)
C12—H120.9500O3—Mn1i1.8208 (13)
C13—C141.388 (3)O16—H1W0.831 (10)
C13—H130.9500O16—H2W0.830 (10)
C14—C151.380 (3)O17—H3W0.831 (10)
C14—H140.9500O17—H4W0.826 (10)
C15—N31.344 (3)O18—H5W0.832 (10)
C15—H150.9500O18—H6W0.831 (9)
O2—C1—O1120.56 (19)O11—Ce1—O863.37 (4)
O2—C1—C2120.05 (18)O14—Ce1—O8130.08 (4)
O1—C1—C2119.38 (17)O4—Ce1—O873.48 (5)
C1—C2—C3116.35 (17)O10—Ce1—O875.16 (5)
C1—C2—H2A108.2O13—Ce1—O8138.90 (5)
C3—C2—H2A108.2O18—Ce1—O766.67 (5)
C1—C2—H2B108.2O17—Ce1—O765.86 (5)
C3—C2—H2B108.2O16—Ce1—O7114.71 (5)
H2A—C2—H2B107.4O11—Ce1—O7110.44 (4)
N1—C3—C2115.46 (16)O14—Ce1—O7177.64 (4)
N1—C3—H3A108.4O4—Ce1—O762.87 (4)
C2—C3—H3A108.4O10—Ce1—O7110.78 (5)
N1—C3—H3B108.4O13—Ce1—O7132.38 (4)
C2—C3—H3B108.4O8—Ce1—O747.56 (4)
H3A—C3—H3B107.5O18—Ce1—O5164.85 (5)
N1—C4—C5108.92 (15)O17—Ce1—O5121.18 (5)
N1—C4—H4A109.9O16—Ce1—O566.48 (5)
C5—C4—H4A109.9O11—Ce1—O561.61 (4)
N1—C4—H4B109.9O14—Ce1—O572.23 (4)
C5—C4—H4B109.9O4—Ce1—O547.54 (5)
H4A—C4—H4B108.3O10—Ce1—O5108.44 (4)
N2—C5—C6120.48 (19)O13—Ce1—O5118.51 (5)
N2—C5—C4115.00 (17)O8—Ce1—O590.14 (5)
C6—C5—C4124.51 (18)O7—Ce1—O5107.04 (4)
C5—C6—C7119.3 (2)O3—Mn1—O3i82.72 (6)
C5—C6—H6120.3O3—Mn1—O193.94 (6)
C7—C6—H6120.3O3i—Mn1—O1176.62 (6)
C6—C7—C8120.1 (2)O3—Mn1—N398.16 (6)
C6—C7—H7120.0O3i—Mn1—N392.55 (6)
C8—C7—H7120.0O1—Mn1—N388.46 (6)
C9—C8—C7118.4 (2)O3—Mn1—N299.07 (6)
C9—C8—H8120.8O3i—Mn1—N292.84 (6)
C7—C8—H8120.8O1—Mn1—N287.12 (6)
N2—C9—C8121.20 (19)N3—Mn1—N2162.46 (7)
N2—C9—H9119.4O3—Mn1—N1171.49 (6)
C8—C9—H9119.4O3i—Mn1—N188.79 (6)
N1—C10—C11107.84 (15)O1—Mn1—N194.56 (6)
N1—C10—H10A110.1N3—Mn1—N181.54 (6)
C11—C10—H10A110.1N2—Mn1—N181.90 (6)
N1—C10—H10B110.1O3—Mn1—Mn1i41.60 (4)
C11—C10—H10B110.1O3i—Mn1—Mn1i41.12 (4)
H10A—C10—H10B108.5O1—Mn1—Mn1i135.54 (4)
N3—C11—C12120.27 (18)N3—Mn1—Mn1i97.12 (5)
N3—C11—C10114.51 (16)N2—Mn1—Mn1i97.92 (5)
C12—C11—C10125.21 (18)N1—Mn1—Mn1i129.91 (5)
C11—C12—C13118.95 (19)C4—N1—C10112.72 (14)
C11—C12—H12120.5C4—N1—C3112.15 (15)
C13—C12—H12120.5C10—N1—C3108.12 (14)
C12—C13—C14120.33 (19)C4—N1—Mn1105.52 (11)
C12—C13—H13119.8C10—N1—Mn1104.46 (11)
C14—C13—H13119.8C3—N1—Mn1113.70 (11)
C15—C14—C13118.2 (2)C9—N2—C5120.42 (17)
C15—C14—H14120.9C9—N2—Mn1125.34 (14)
C13—C14—H14120.9C5—N2—Mn1114.07 (13)
N3—C15—C14121.20 (19)C15—N3—C11120.95 (17)
N3—C15—H15119.4C15—N3—Mn1124.94 (13)
C14—C15—H15119.4C11—N3—Mn1114.10 (13)
O18—Ce1—O1769.97 (5)O6—N4—O5122.11 (17)
O18—Ce1—O16128.54 (5)O6—N4—O4120.10 (17)
O17—Ce1—O1665.93 (5)O5—N4—O4117.80 (17)
O18—Ce1—O11106.64 (5)O9—N5—O7121.39 (16)
O17—Ce1—O11175.62 (5)O9—N5—O8120.76 (17)
O16—Ce1—O11118.34 (5)O7—N5—O8117.85 (16)
O18—Ce1—O14113.46 (5)O15—N6—O14121.33 (16)
O17—Ce1—O14116.48 (5)O15—N6—O13121.01 (17)
O16—Ce1—O1467.18 (5)O14—N6—O13117.65 (16)
O11—Ce1—O1467.21 (5)O12—N7—O11121.12 (19)
O18—Ce1—O4129.43 (5)O12—N7—O10122.10 (19)
O17—Ce1—O486.60 (5)O11—N7—O10116.77 (16)
O16—Ce1—O473.01 (5)C1—O1—Mn1126.04 (12)
O11—Ce1—O493.73 (5)Mn1—O3—Mn1i97.28 (6)
O14—Ce1—O4117.10 (4)N4—O4—Ce199.43 (11)
O18—Ce1—O1063.76 (5)N4—O5—Ce195.13 (11)
O17—Ce1—O10129.22 (5)N5—O7—Ce196.03 (10)
O16—Ce1—O10133.59 (5)N5—O8—Ce198.51 (11)
O11—Ce1—O1049.05 (5)N7—O10—Ce195.71 (11)
O14—Ce1—O1067.60 (5)N7—O11—Ce198.47 (11)
O4—Ce1—O10139.63 (5)N6—O13—Ce195.45 (11)
O18—Ce1—O1371.99 (5)N6—O14—Ce197.40 (10)
O17—Ce1—O1378.75 (5)Ce1—O16—H1W123.3 (17)
O16—Ce1—O1374.61 (5)Ce1—O16—H2W129.8 (18)
O11—Ce1—O13103.04 (4)H1W—O16—H2W102.7 (14)
O14—Ce1—O1349.02 (4)Ce1—O17—H3W127.1 (18)
O4—Ce1—O13147.57 (5)Ce1—O17—H4W122 (2)
O10—Ce1—O1368.32 (5)H3W—O17—H4W103.4 (15)
O18—Ce1—O875.46 (5)Ce1—O18—H5W127.0 (17)
O17—Ce1—O8112.64 (5)Ce1—O18—H6W128.8 (16)
O16—Ce1—O8146.48 (5)H5W—O18—H6W102.2 (14)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H1W···O6ii0.83 (1)2.02 (1)2.841 (2)168 (2)
O16—H2W···O2iii0.83 (1)2.27 (1)3.017 (2)151 (2)
O16—H2W···O1iii0.83 (1)2.38 (1)3.105 (2)147 (2)
O17—H3W···O2iii0.83 (1)1.91 (1)2.725 (2)168 (2)
O17—H4W···O9iv0.83 (1)2.11 (1)2.896 (2)158 (2)
O18—H5W···O9iv0.83 (1)2.06 (1)2.839 (2)156 (2)
O18—H6W···O13v0.83 (1)2.21 (1)3.011 (2)163 (2)
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Mn2(C14H14N3O2)2(H2O)4](CF3O3S)2·H2O[Mn2(C15H16N3O2)2(H2O)2](CF3O3S)2·2H2O[Mn2O2(C15H16N3O2)2][Ce(NO3)4(H2O)3]2
Mr1010.661020.701566.91
Crystal system, space groupTriclinic, P1Monoclinic, P21/nTriclinic, P1
Temperature (K)180120150
a, b, c (Å)12.4439 (11), 13.2598 (13), 13.5937 (13)7.9179 (5), 21.7212 (16), 12.2638 (10)9.8698 (5), 10.6007 (6), 13.9273 (8)
α, β, γ (°)67.228 (3), 81.859 (3), 88.578 (3)90, 104.599 (3), 9094.978 (3), 110.547 (2), 104.276 (2)
V3)2046.2 (3)2041.1 (3)1297.99 (12)
Z221
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.820.822.32
Crystal size (mm)0.16 × 0.08 × 0.030.30 × 0.05 × 0.030.26 × 0.20 × 0.04
Data collection
DiffractometerBruker–Nonius X8 APEXII CCD
diffractometer
Bruker–Nonius X8 APEXII CCD
diffractometer
Bruker–Nonius X8 APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003). Ratio of minimum to maximum apparent transmission: 0.847753
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.827, 0.9760.791, 0.9760.644, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
27383, 7039, 5592 29597, 4696, 3184 39127, 5058, 4778
Rint0.0410.0530.025
(sin θ/λ)max1)0.5950.6530.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.02 0.034, 0.075, 1.01 0.017, 0.042, 1.07
No. of reflections703946965058
No. of parameters550280403
No. of restraints009
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.330.36, 0.340.71, 0.46

Computer programs: APEX2 (Bruker–Nonius, 2004), SAINT (Bruker, 2003), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) for (I) top
N1—Mn12.3867 (19)O1—Mn12.3030 (16)
N2—Mn12.286 (2)O3—Mn12.2883 (16)
N3—Mn12.292 (2)O4—Mn12.1830 (17)
N4—Mn22.395 (2)O5—Mn12.2793 (15)
N5—Mn22.305 (2)O5—Mn22.3065 (16)
N6—Mn22.343 (2)O7—Mn22.1856 (18)
O1—Mn22.2628 (16)O8—Mn22.2258 (16)
O4—Mn1—O581.80 (6)O7—Mn2—O888.53 (7)
O4—Mn1—N293.50 (7)O7—Mn2—O182.59 (6)
O5—Mn1—N282.40 (6)O8—Mn2—O183.49 (6)
O4—Mn1—O387.27 (6)O7—Mn2—N581.91 (7)
O5—Mn1—O384.74 (6)O8—Mn2—N581.90 (7)
N2—Mn1—O3166.87 (6)O1—Mn2—N5158.92 (7)
O4—Mn1—N382.97 (7)O7—Mn2—O5152.15 (6)
O5—Mn1—N3161.76 (7)O8—Mn2—O578.62 (6)
N2—Mn1—N3108.54 (7)O1—Mn2—O571.56 (6)
O3—Mn1—N384.57 (6)N5—Mn2—O5119.89 (7)
O4—Mn1—O1148.88 (6)O7—Mn2—N690.85 (7)
O5—Mn1—O171.33 (6)O8—Mn2—N6171.14 (7)
N2—Mn1—O198.09 (7)O1—Mn2—N687.66 (6)
O3—Mn1—O175.16 (6)N5—Mn2—N6106.76 (7)
N3—Mn1—O1119.76 (7)O5—Mn2—N698.10 (7)
O4—Mn1—N1143.00 (7)O7—Mn2—N4139.26 (7)
O5—Mn1—N1126.55 (6)O8—Mn2—N4115.17 (7)
N2—Mn1—N170.77 (7)O1—Mn2—N4130.23 (6)
O3—Mn1—N1115.61 (6)N5—Mn2—N470.21 (7)
N3—Mn1—N171.57 (7)O5—Mn2—N468.28 (6)
O1—Mn1—N168.02 (6)N6—Mn2—N470.50 (7)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···O12i0.8391.9032.721 (2)164.50
O3—H2W···O2ii0.8191.8452.660 (2)173.09
O4—H3W···O9iii0.8421.9882.819 (3)168.96
O4—H4W···O60.8161.9632.723 (2)154.56
O7—H5W···O150.8541.8632.710 (3)171.40
O7—H6W···O20.8591.8642.696 (3)162.48
O8—H7W···O6i0.8301.9672.780 (2)166.31
O8—H8W···O30.8551.9372.779 (2)167.95
O15—H9W···O14iv0.8872.1132.913 (3)149.62
O15—H10W···O13v0.9241.9732.895 (4)175.98
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y, z; (iv) x+1, y, z; (v) x, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
N1—Mn12.3519 (16)O1—Mn12.2904 (13)
N2—Mn12.2985 (16)O2—Mn1i2.4436 (14)
N3—Mn12.2758 (16)O3—Mn12.1603 (13)
O3—Mn1—O1i107.47 (5)O3—Mn1—N196.91 (5)
O3—Mn1—N387.84 (6)O1i—Mn1—N1144.66 (5)
O1i—Mn1—N3131.45 (6)N3—Mn1—N173.27 (6)
O3—Mn1—O1177.18 (5)O1—Mn1—N181.16 (5)
O1i—Mn1—O173.40 (6)N2—Mn1—N173.56 (6)
N3—Mn1—O193.55 (5)O3—Mn1—O2i81.88 (5)
O3—Mn1—N286.50 (6)N3—Mn1—O2i83.01 (5)
O1i—Mn1—N282.62 (5)O1—Mn1—O2i100.72 (5)
N3—Mn1—N2145.37 (6)N2—Mn1—O2i129.70 (6)
O1—Mn1—N290.97 (5)N1—Mn1—O2i156.28 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···O40.8911.8632.747172.26
O3—H2W···O2ii0.7821.9522.726170.62
O4—H3W···O50.8401.9772.815175.20
O4—H4W···O7iii0.7522.1032.854176.20
Symmetry codes: (ii) x1, y, z; (iii) x1/2, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (III) top
Ce1—O182.5249 (14)Ce1—O72.6983 (14)
Ce1—O172.5509 (15)Ce1—O52.7227 (15)
Ce1—O162.5594 (15)Mn1—O31.8038 (13)
Ce1—O112.5758 (14)Mn1—O3i1.8208 (13)
Ce1—O142.6000 (14)Mn1—O11.9332 (14)
Ce1—O42.6218 (15)Mn1—N31.9870 (16)
Ce1—O102.6319 (15)Mn1—N21.9953 (16)
Ce1—O132.6370 (15)Mn1—N12.0462 (16)
Ce1—O82.6430 (15)O3—Mn1i1.8208 (13)
O18—Ce1—O1769.97 (5)O16—Ce1—O7114.71 (5)
O18—Ce1—O16128.54 (5)O11—Ce1—O7110.44 (4)
O17—Ce1—O1665.93 (5)O14—Ce1—O7177.64 (4)
O18—Ce1—O11106.64 (5)O4—Ce1—O762.87 (4)
O17—Ce1—O11175.62 (5)O10—Ce1—O7110.78 (5)
O16—Ce1—O11118.34 (5)O13—Ce1—O7132.38 (4)
O18—Ce1—O14113.46 (5)O8—Ce1—O747.56 (4)
O17—Ce1—O14116.48 (5)O18—Ce1—O5164.85 (5)
O16—Ce1—O1467.18 (5)O17—Ce1—O5121.18 (5)
O11—Ce1—O1467.21 (5)O16—Ce1—O566.48 (5)
O18—Ce1—O4129.43 (5)O11—Ce1—O561.61 (4)
O17—Ce1—O486.60 (5)O14—Ce1—O572.23 (4)
O16—Ce1—O473.01 (5)O4—Ce1—O547.54 (5)
O11—Ce1—O493.73 (5)O10—Ce1—O5108.44 (4)
O14—Ce1—O4117.10 (4)O13—Ce1—O5118.51 (5)
O18—Ce1—O1063.76 (5)O8—Ce1—O590.14 (5)
O17—Ce1—O10129.22 (5)O7—Ce1—O5107.04 (4)
O16—Ce1—O10133.59 (5)O3—Mn1—O3i82.72 (6)
O11—Ce1—O1049.05 (5)O3—Mn1—O193.94 (6)
O14—Ce1—O1067.60 (5)O3i—Mn1—O1176.62 (6)
O4—Ce1—O10139.63 (5)O3—Mn1—N398.16 (6)
O18—Ce1—O1371.99 (5)O3i—Mn1—N392.55 (6)
O17—Ce1—O1378.75 (5)O1—Mn1—N388.46 (6)
O16—Ce1—O1374.61 (5)O3—Mn1—N299.07 (6)
O11—Ce1—O13103.04 (4)O3i—Mn1—N292.84 (6)
O14—Ce1—O1349.02 (4)O1—Mn1—N287.12 (6)
O4—Ce1—O13147.57 (5)N3—Mn1—N2162.46 (7)
O10—Ce1—O1368.32 (5)O3—Mn1—N1171.49 (6)
O18—Ce1—O875.46 (5)O3i—Mn1—N188.79 (6)
O17—Ce1—O8112.64 (5)O1—Mn1—N194.56 (6)
O16—Ce1—O8146.48 (5)N3—Mn1—N181.54 (6)
O11—Ce1—O863.37 (4)N2—Mn1—N181.90 (6)
O14—Ce1—O8130.08 (4)O3—Mn1—Mn1i41.60 (4)
O4—Ce1—O873.48 (5)O3i—Mn1—Mn1i41.12 (4)
O10—Ce1—O875.16 (5)O1—Mn1—Mn1i135.54 (4)
O13—Ce1—O8138.90 (5)N3—Mn1—Mn1i97.12 (5)
O18—Ce1—O766.67 (5)N2—Mn1—Mn1i97.92 (5)
O17—Ce1—O765.86 (5)N1—Mn1—Mn1i129.91 (5)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O16—H1W···O6ii0.830 (1)2.02 (1)2.841 (2)168 (2)
O16—H2W···O2iii0.830 (1)2.27 (1)3.017 (2)151 (2)
O16—H2W···O1iii0.830 (1)2.38 (1)3.105 (2)147 (2)
O17—H3W···O2iii0.831 (1)1.91 (1)2.725 (2)168 (2)
O17—H4W···O9iv0.826 (1)2.11 (1)2.896 (2)158 (2)
O18—H5W···O9iv0.832 (1)2.06 (1)2.839 (2)156 (2)
O18—H6W···O13v0.830 (1)2.21 (1)3.011 (2)163 (2)
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds