Download citation
Download citation
link to html
A novel infinite one-dimensional silver cylinder, namely poly[[mu]-ethyl­enedi­am­ine-[mu]5-(2-sulfanidylbenzoato)-[mu]4-(2-sul­fanidylbenzoato)-tetra­silver(I)], [Ag4(C7H4O2S)2(C2H8N2)]n, has been synthesized by one-pot reaction of equivalent molar silver nitrate and 2-mercaptobenzoic acid (H2mba) in the presence of ethyl­enediamine (eda). One Ag atom is located in an AgS2NO four-coordinated tetra­hedral geometry, two other Ag atoms are in an AgS2O three-coordinated T-shaped geometry and the fourth Ag atom is in an AgSNO coordination environment. The two mba ligands show two different binding modes. The [mu]2-N:N'-eda ligand, acting as a bridge, combines with mba ligands to extend the AgI ions into a one-dimensional silver cylinder incorporating abundant Ag...Ag inter­actions ranging from 2.9298 (11) to 3.2165 (13) Å. Inter­chain N-H...O hydrogen bonds extend the one-dimensional cylinder into an undulating two-dimensional sheet, which is further packed into a three-dimensional supra­molecular framework by van der Waals inter­actions; no [pi]-[pi] inter­actions were observed in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112031125/qs3015sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112031125/qs3015Isup2.hkl
Contains datablock I

mol

MDL mol file https://doi.org/10.1107/S0108270112031125/qs3015Isup4.mol
Supplementary material

CCDC reference: 899061

Comment top

During recent decades, the crystal engineering of AgI coordination architectures has become a thriving and prosperous field that has attracted more and more interest because of the intriguing structural topologies and functional properties such as conduction and luminescence (Munakata et al., 1997; Jia & Wang, 2009; Wu et al., 2010; Kang et al., 2010; Anson et al., 2008). AgI-based coordination compounds, classified as discrete silver clusters and infinite coordination polymers, have been well [much?] studied (Mak et al., 2007; Xie et al., 2011; Jin et al., 2009; Zhang et al., 2007). The selection of chelating or bridging organic linkers favoring a structure-specific assembly is important for the construction of coordination architectures with expected structures and properties (Sun et al., 2006, 2011; Dai et al., 2008). However, the factors that govern the formation of such compounds are complicated and include not only the nature of the AgI ion and ligand structure but also anion-directed interactions as well as reaction conditions. In addition to covalent bonds, noncovalent interactions such as ππ, hydrogen bond, cation···π, anion···π and Ag···Ag interactions also play important roles in controlling molecular packing (Domasevitch et al., 2007; Yin et al., 2012; Chen et al., 2010; Li et al., 2010, 2011). Thus, in reality, it is hard to predict the structure of a AgI coordination compound with given ligand(s) until it has been characterized by the X-ray single-crystal diffraction technique. On the other hand, the bifunctional mba [2-mercaptobenzoic acid?] ligand has `soft' S and `hard' O donors, which could bind more than one AgI centers by S and O donors with diverse binding modes such as µ3-S3:O1, µ3-S3, µ2-S2:O1, and so on. Meanwhile, the eda [ethylenediamine?] could act as a bridging or chelating ligand to anchor on the unsaturated AgI centers. Although AgI–mba (Sun, Wang et al., 2011) and AgI–eda (Ren et al., 2001; Yilmaz et al., 2006) coordination compounds were [have been?] widely investigated, the AgI–mba–eda system has not yet been documented. Based on the above consideration and our previous work (Sun, Luo et al., 2011; Sun, Wang, Han et al., 2011; Sun et al., 2010), herein we show [describe] a novel infinite one-dimensional silver cylinder, namely poly[[µ5-2-sulfanidylbenzoate][µ4-(2-carboxylatophenyl)sulfanido](µ-ethylenediamine)tetrasilver(I)], [Ag4(mba)2(eda)]n, (I), which was obtained by one-pot reaction of equivalent molar silver nitrate and 2-mercaptobenzoic acid (H2mba) in the presence of ethylenediamine (eda).

Single-crystal X-ray diffraction study reveals that the asymmetric unit of (I) contains four crystallographic independent AgI ions, two dianionic mba ligands and one neutral eda ligand. As shown in Fig. 1, Ag1 is located in a distorted AgS2NO four-coordinated tetrahedral geometry with a distortion parameter τ4 of 0.82. The τ4 index could easily be obtained by the sum of angles α and β – the two largest angles in the four-coordinated metal center subtracted from 360°, all divided by 141°. The values of τ4 will range from 1.00 for a perfect tetrahedral geometry to 0 for a perfect square-planar geometry (Yang et al., 2007). Ag2 and Ag3 are in the AgS2O three-coordinated T-shaped geometry with the largest angles of 152.41 (11) and 162.44 (12)°, respectively. The Ag4 also locates in a three-coordinated geometry but in an AgSNO coordination environment. The Ag—S [2.458 (3)-2.718 (3) Å, Ag—N [2.253 (9) and 2.310 (8) Å and Ag—O [2.308 (8)-2.532 (7) Å] bond lengths (Table 1) are comparable with those of reported values (Schottel et al., 2006; Tsyba et al., 2003). Two mba ligands show different binding modes, viz. µ4-κ6S,O:S,O':S:S and µ5-κ6S,O:S:S:S:O [please check]. The µ2-N1:N1 eda acts as a bridge to anchor on the AgI ions. Notably, the torsion angle of N1—C1—C2—N2 of eda is 70.9 (13)° which fits well with a gauche conformation of eda according to the stereochemistry terminology (Moss, 1996). The Ag···Ag interactions vary from 2.9298 (11) to 3.2165 (13) Å with an average distance of 3.1123 (12) Å, which is 0.3 Å shorter than twice the van der Waals radius of AgI (3.44 Å; Bondi, 1964), indicating argentophilic interaction between them. This weak bonding interaction between two closed-shell d10 cations is possible via the participation of 5s and 5p orbitals which have similar energy to that of the 4d orbital. The similar argentophilic interaction was also found in the cluster compounds {[Ag62S13(SBut)32](BF4)4} (Li, Lei, et al., 2010) and {(NH4)17[(µ6-S)Ag17(mba)16].22H2O} (Sun, Liu, et al., 2011), as well as the coordination polymer [Ag4(mba)2(H2O)2]n (Sun, Luo, et al., 2010).

The crystal structure of (I) features a one-dimensional AgI cylinder (Fig. 2) running along the b axis which is reinforced by intrachain N1—H1C···O3 and N2—H2C···O1 hydrogen bonds (Table 2) with an average distance of 2.981 (12) Å, a C—H···π interaction [C1—H1A···Cg1 = 138°, H1A···Cg1 = 2.96 Å and C1···Cg1 = 3.738 (11) Å; Cg1 is the centroid of the C21–C26 ring], a nonclassical C22—H22A···O4 hydrogen bond of 3.449 (13) Å and argentophilic interactions. Moreover, interchain N1—H1D···O1v and N2—H2D···O1vi hydrogen bonds extend the one-dimensional cylinders into an undulating two-dimensional sheet (Fig. 3), which is further packed into a three-dimensional supramolecular framework by van der Waals interactions; no ππ interactions were observed in the crystal structure. To the best of our knowledge, most of the reported AgI–mba compounds are discrete clusters, such as mononuclear [Ag(Hmba)(triphenylphosphane)3] (Nomiya et al., 1998), tetranuclear [Ag4(Hmbonwaya)4(triphenylphosphane)4] (Noguchi et al., 2005) and octanuclear K12[Ag8(mba)10] (Nomiya et al., 2000); however, infinite coordination polymers are still rare, which may be due to the strong coordinative ability of the Sdonor to the AgI ion, as a result, the metastable polynuclear AgI aggregation is protected by them.

Related literature top

For related literature, see: Anson et al. (2008); Bondi (1964); Chen et al. (2010); Dai et al. (2008); Domasevitch et al. (2007); Jia & Wang (2009); Jin et al. (2009); Kang et al. (2010); Li et al. (2011); Li, Lei & Wang (2010); Li, Wei, Tao, Huang, Zheng & Zheng (2010); Mak et al. (2007); Moss (1996); Munakata et al. (1997); Noguchi et al. (2005); Nomiya et al. (1998, 2000); Ren et al. (2001); Schottel et al. (2006); Sun et al. (2006); Sun, Dai, Yuan, Bi, Zhao, Sun & Sun (2011); Sun, Liu, Huang & Zheng (2011); Sun, Luo, Zhang, Huang & Zheng (2011); Sun, Luo, Zhang, Xu, Jin, Wei, Yang, Lin, Huang & Zheng (2010); Sun, Wang, Han, Zhang, Huang & Zheng (2011); Sun, Wang, Liu, Hao, Zhang, Huang & Zheng (2011); Sun, Yang, Xu, Zhao, Wei, Zhang, Yu, Huang & Zheng (2010); Tsyba et al. (2003); Wu et al. (2010); Xie & Mak (2011); Yang et al. (2007); Yilmaz et al. (2006); Yin et al. (2012); Zhang et al. (2007).

Experimental top

All reagents and solvents were used as obtained commercially without further purification. A mixture of AgNO3 (85 mg, 0.5 mmol), H2mba (78 mg, 0.5 mmol) and eda (1 ml) was added in CH3OH–H2O mixed solvent (12 ml, 1:2 v/v) under ultrasonic conditions which helped to dissolve the white precipitate. An aqueous NH3 solution (25%) was then dropped into the mixture to give a clear solution. The resultant solution was allowed to evaporate slowly in darkness at room temperature for 2 weeks to give colorless block-shaped crystals of (I). The crystals were washed with deionized water and dried in air (yield: ca 52%, based on Ag). Elemental analysis calculated for C16H16AgN2O4S2: C 40.69, H 3.41, N 5.93%; found: C 40.18, H. 3.09, N 5.29%.

Refinement top

All H atoms were generated geometrically and were allowed to ride on their parent atoms in the riding-model approximation, with C—H = 0.93 (aromatic) or 0.97 Å (CH2) or N—H = 0.90 Å and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the coordination environments around the AgI centers. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. [Symmetry codes: (i) x, y+1, z; (ii) -x+3/2, y+1/2, z; (iii) -x+3/2, y-1/2, z; (iv) x, y-1, z.]
[Figure 2] Fig. 2. A ball-and-stick perspective view of the one-dimensional cylinder viewed (a) along c and (b) along b. The argentophilic interaction and hydrogen bond are highlighted by dashed lines (purple and green, respectively, in the electronic version of the paper).
[Figure 3] Fig. 3. A perspective view of the two-dimensional undulating sheet viewed (a) along c and (b) along b. The argentophilic interaction and hydrogen bond are highlighted by dashed lines (purple and green, respectively, in the electronic version of the paper).
(I) top
Crystal data top
[Ag4(C7H4O2S)2(C2H8N2)]Dx = 2.740 Mg m3
Mr = 795.91Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 15021 reflections
a = 22.1562 (2) Åθ = 6.1–54.9°
b = 6.9556 (7) ŵ = 4.24 mm1
c = 25.0366 (5) ÅT = 298 K
V = 3858.4 (4) Å3Block, colorless
Z = 80.15 × 0.08 × 0.05 mm
F(000) = 3024
Data collection top
Oxford Diffraction Gemini S Ultra CCD
diffractometer
3392 independent reflections
Radiation source: fine-focus sealed tube2660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 2526
Tmin = 0.569, Tmax = 0.816k = 88
22503 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.P)2 + 78.8999P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.001
3392 reflectionsΔρmax = 1.74 e Å3
254 parametersΔρmin = 1.47 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00033 (4)
Crystal data top
[Ag4(C7H4O2S)2(C2H8N2)]V = 3858.4 (4) Å3
Mr = 795.91Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 22.1562 (2) ŵ = 4.24 mm1
b = 6.9556 (7) ÅT = 298 K
c = 25.0366 (5) Å0.15 × 0.08 × 0.05 mm
Data collection top
Oxford Diffraction Gemini S Ultra CCD
diffractometer
3392 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2660 reflections with I > 2σ(I)
Tmin = 0.569, Tmax = 0.816Rint = 0.075
22503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.P)2 + 78.8999P]
where P = (Fo2 + 2Fc2)/3
3392 reflectionsΔρmax = 1.74 e Å3
254 parametersΔρmin = 1.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.61643 (4)0.57842 (13)0.65672 (3)0.0333 (2)
Ag20.73427 (4)0.59199 (12)0.59542 (3)0.0309 (2)
Ag30.74726 (4)0.55368 (13)0.71139 (3)0.0341 (3)
Ag40.61174 (4)0.14528 (14)0.70152 (4)0.0389 (3)
S10.67214 (12)0.8166 (4)0.72588 (11)0.0292 (6)
S20.67417 (12)0.2968 (4)0.60997 (11)0.0282 (6)
C10.4973 (5)0.2825 (17)0.6291 (4)0.034 (3)
H1A0.52760.34050.60620.041*
H1B0.46470.23830.60640.041*
C20.4734 (5)0.4330 (17)0.6657 (5)0.036 (3)
H2A0.44920.52280.64520.044*
H2B0.44730.37290.69190.044*
C110.6730 (5)0.7783 (16)0.7973 (4)0.026 (2)
C120.6525 (5)0.6025 (16)0.8191 (4)0.029 (2)
C130.6540 (5)0.5820 (17)0.8754 (4)0.034 (3)
H13A0.64020.46850.89080.041*
C140.6753 (5)0.726 (2)0.9077 (5)0.045 (3)
H14A0.67730.70850.94450.053*
C150.6939 (5)0.8983 (18)0.8852 (5)0.038 (3)
H15A0.70700.99770.90720.046*
C160.6931 (5)0.9240 (17)0.8303 (4)0.033 (3)
H16A0.70611.03960.81570.039*
C170.6293 (5)0.4385 (16)0.7879 (4)0.030 (2)
C210.6315 (5)0.2696 (17)0.5497 (4)0.029 (3)
C220.6116 (5)0.4255 (15)0.5207 (4)0.030 (2)
H22A0.62440.54810.53030.036*
C230.5732 (6)0.4036 (18)0.4779 (5)0.042 (3)
H23A0.56070.51100.45880.050*
C240.5533 (5)0.2230 (18)0.4633 (4)0.036 (3)
H24A0.52700.20930.43460.044*
C250.5725 (5)0.0613 (17)0.4915 (4)0.032 (3)
H25A0.55930.06120.48230.039*
C260.6125 (5)0.0890 (15)0.5343 (4)0.028 (2)
C270.6339 (5)0.0938 (17)0.5635 (5)0.036 (3)
N10.5246 (4)0.1131 (14)0.6561 (3)0.032 (2)
H1C0.53050.02230.63100.038*
H1D0.49690.06640.67900.038*
N20.5216 (4)0.5400 (14)0.6937 (4)0.033 (2)
H2C0.52680.48290.72560.040*
H2D0.50720.65860.70020.040*
O10.5762 (3)0.3827 (12)0.7951 (3)0.0371 (19)
O20.6647 (3)0.3566 (11)0.7549 (3)0.0345 (18)
O30.5989 (4)0.1657 (11)0.5971 (3)0.0358 (19)
O40.6855 (3)0.1518 (11)0.5508 (3)0.0353 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0353 (5)0.0319 (5)0.0325 (5)0.0016 (4)0.0007 (4)0.0010 (4)
Ag20.0320 (5)0.0289 (5)0.0319 (4)0.0033 (4)0.0004 (3)0.0015 (4)
Ag30.0329 (5)0.0376 (5)0.0318 (4)0.0046 (4)0.0007 (4)0.0019 (4)
Ag40.0391 (5)0.0357 (5)0.0421 (5)0.0009 (4)0.0073 (4)0.0002 (4)
S10.0302 (15)0.0291 (15)0.0284 (14)0.0004 (12)0.0042 (11)0.0009 (12)
S20.0279 (14)0.0286 (15)0.0281 (13)0.0026 (12)0.0025 (11)0.0020 (12)
C10.031 (6)0.042 (7)0.029 (6)0.006 (6)0.001 (5)0.000 (5)
C20.031 (6)0.032 (6)0.046 (7)0.009 (5)0.002 (5)0.001 (6)
C110.024 (5)0.026 (6)0.029 (6)0.002 (5)0.005 (4)0.003 (5)
C120.029 (6)0.031 (6)0.028 (6)0.008 (5)0.004 (5)0.007 (5)
C130.031 (6)0.036 (7)0.034 (6)0.007 (5)0.005 (5)0.008 (5)
C140.030 (7)0.076 (10)0.027 (6)0.012 (7)0.007 (5)0.006 (6)
C150.040 (7)0.040 (7)0.033 (6)0.008 (6)0.007 (5)0.029 (6)
C160.028 (6)0.031 (6)0.040 (6)0.005 (5)0.010 (5)0.015 (5)
C170.034 (6)0.023 (6)0.033 (6)0.000 (5)0.003 (5)0.003 (5)
C210.023 (5)0.046 (7)0.019 (5)0.010 (5)0.001 (4)0.002 (5)
C220.045 (7)0.016 (5)0.028 (6)0.004 (5)0.002 (5)0.003 (4)
C230.046 (8)0.031 (7)0.048 (7)0.003 (6)0.010 (6)0.003 (6)
C240.036 (6)0.045 (7)0.028 (6)0.001 (6)0.015 (5)0.004 (5)
C250.029 (6)0.030 (6)0.038 (6)0.006 (5)0.013 (5)0.000 (5)
C260.035 (6)0.023 (6)0.027 (5)0.003 (5)0.008 (5)0.007 (5)
C270.037 (7)0.035 (7)0.035 (6)0.015 (6)0.006 (5)0.002 (5)
N10.033 (5)0.043 (6)0.019 (4)0.006 (5)0.004 (4)0.000 (4)
N20.027 (5)0.032 (6)0.040 (5)0.008 (4)0.009 (4)0.002 (4)
O10.033 (5)0.039 (5)0.039 (4)0.004 (4)0.003 (4)0.001 (4)
O20.034 (4)0.030 (4)0.040 (4)0.006 (4)0.008 (4)0.001 (4)
O30.042 (5)0.021 (4)0.044 (5)0.000 (4)0.004 (4)0.008 (4)
O40.025 (4)0.035 (5)0.046 (5)0.007 (4)0.001 (4)0.006 (4)
Geometric parameters (Å, º) top
Ag1—N22.310 (8)C11—C161.381 (15)
Ag1—O3i2.356 (7)C11—C121.415 (15)
Ag1—S22.616 (3)C12—C131.418 (15)
Ag1—S12.696 (3)C12—C171.476 (15)
Ag1—Ag23.0300 (12)C13—C141.372 (17)
Ag1—Ag33.2102 (12)C13—H13A0.9300
Ag1—Ag43.2165 (13)C14—C151.386 (18)
Ag2—O4i2.365 (8)C14—H14A0.9300
Ag2—S22.474 (3)C15—C161.387 (16)
Ag2—S2ii2.506 (3)C15—H15A0.9300
Ag2—Ag32.9298 (11)C16—H16A0.9300
Ag3—S1iii2.458 (3)C17—O11.253 (13)
Ag3—S12.499 (3)C17—O21.273 (13)
Ag3—O22.532 (7)C21—C221.376 (15)
Ag3—Ag4ii3.1980 (13)C21—C261.380 (15)
Ag4—N12.253 (9)C22—C231.376 (16)
Ag4—O22.308 (8)C22—H22A0.9300
Ag4—S1iv2.718 (3)C23—C241.381 (16)
Ag4—S22.877 (3)C23—H23A0.9300
Ag4—Ag3iii3.1980 (13)C24—C251.396 (16)
S1—C111.808 (11)C24—H24A0.9300
S1—Ag3ii2.458 (3)C25—C261.404 (15)
S1—Ag4i2.718 (3)C25—H25A0.9300
S2—C211.791 (10)C26—C271.541 (16)
S2—Ag2iii2.506 (3)C27—O31.248 (13)
C1—C21.487 (16)C27—O41.254 (14)
C1—N11.486 (14)N1—H1C0.9000
C1—H1A0.9700N1—H1D0.9000
C1—H1B0.9700N2—H2C0.9000
C2—N21.479 (14)N2—H2D0.9000
C2—H2A0.9700O3—Ag1iv2.356 (7)
C2—H2B0.9700O4—Ag2iv2.365 (8)
N2—Ag1—O3i101.0 (3)Ag2iii—S2—Ag1152.47 (12)
N2—Ag1—S2122.5 (2)C21—S2—Ag4112.3 (4)
O3i—Ag1—S2111.3 (2)Ag2—S2—Ag4132.85 (11)
N2—Ag1—S1103.3 (2)Ag2iii—S2—Ag4107.26 (10)
O3i—Ag1—S191.1 (2)Ag1—S2—Ag471.51 (7)
S2—Ag1—S1121.58 (9)C2—C1—N1115.1 (9)
N2—Ag1—Ag2171.8 (2)C2—C1—H1A108.5
O3i—Ag1—Ag278.32 (19)N1—C1—H1A108.5
S2—Ag1—Ag251.34 (6)C2—C1—H1B108.5
S1—Ag1—Ag284.93 (7)N1—C1—H1B108.5
N2—Ag1—Ag3130.1 (2)H1A—C1—H1B107.5
O3i—Ag1—Ag3117.4 (2)N2—C2—C1112.8 (9)
S2—Ag1—Ag373.08 (6)N2—C2—H2A109.0
S1—Ag1—Ag349.13 (6)C1—C2—H2A109.0
Ag2—Ag1—Ag355.91 (3)N2—C2—H2B109.0
N2—Ag1—Ag473.9 (2)C1—C2—H2B109.0
O3i—Ag1—Ag4157.4 (2)H2A—C2—H2B107.8
S2—Ag1—Ag458.03 (6)C16—C11—C12120.4 (10)
S1—Ag1—Ag4111.50 (7)C16—C11—S1119.1 (9)
Ag2—Ag1—Ag4103.51 (3)C12—C11—S1120.4 (8)
Ag3—Ag1—Ag480.23 (3)C11—C12—C13117.6 (10)
O4i—Ag2—S2116.7 (2)C11—C12—C17125.1 (9)
O4i—Ag2—S2ii90.6 (2)C13—C12—C17117.3 (10)
S2—Ag2—S2ii152.41 (11)C14—C13—C12121.4 (12)
O4i—Ag2—Ag3125.55 (19)C14—C13—H13A119.3
S2—Ag2—Ag380.30 (7)C12—C13—H13A119.3
S2ii—Ag2—Ag380.10 (7)C13—C14—C15119.6 (11)
O4i—Ag2—Ag182.46 (18)C13—C14—H14A120.2
S2—Ag2—Ag155.65 (7)C15—C14—H14A120.2
S2ii—Ag2—Ag1129.92 (7)C16—C15—C14120.7 (11)
Ag3—Ag2—Ag165.16 (3)C16—C15—H15A119.7
S1iii—Ag3—S1162.44 (12)C14—C15—H15A119.7
S1iii—Ag3—O295.62 (19)C11—C16—C15120.2 (11)
S1—Ag3—O281.54 (19)C11—C16—H16A119.9
S1iii—Ag3—Ag2106.18 (7)C15—C16—H16A119.9
S1—Ag3—Ag290.68 (7)O1—C17—O2122.3 (10)
O2—Ag3—Ag2113.88 (18)O1—C17—C12119.3 (10)
S1iii—Ag3—Ag4ii55.61 (7)O2—C17—C12118.4 (10)
S1—Ag3—Ag4ii121.06 (7)C22—C21—C26118.2 (9)
O2—Ag3—Ag4ii147.85 (18)C22—C21—S2122.0 (9)
Ag2—Ag3—Ag4ii90.07 (3)C26—C21—S2119.5 (9)
S1iii—Ag3—Ag1139.03 (8)C21—C22—C23121.4 (10)
S1—Ag3—Ag154.65 (7)C21—C22—H22A119.3
O2—Ag3—Ag163.92 (18)C23—C22—H22A119.3
Ag2—Ag3—Ag158.93 (3)C22—C23—C24120.3 (11)
Ag4ii—Ag3—Ag1146.98 (4)C22—C23—H23A119.8
N1—Ag4—O2142.4 (3)C24—C23—H23A119.8
N1—Ag4—S1iv116.9 (3)C23—C24—C25120.0 (10)
O2—Ag4—S1iv98.9 (2)C23—C24—H24A120.0
N1—Ag4—S292.6 (2)C25—C24—H24A120.0
O2—Ag4—S289.06 (19)C24—C25—C26117.9 (10)
S1iv—Ag4—S2104.49 (9)C24—C25—H25A121.0
N1—Ag4—Ag3iii148.9 (2)C26—C25—H25A121.0
O2—Ag4—Ag3iii65.49 (19)C21—C26—C25122.1 (10)
S1iv—Ag4—Ag3iii48.25 (6)C21—C26—C27121.7 (9)
S2—Ag4—Ag3iii70.42 (6)C25—C26—C27116.2 (10)
N1—Ag4—Ag186.8 (2)O3—C27—O4127.4 (12)
O2—Ag4—Ag165.74 (19)O3—C27—C26117.4 (11)
S1iv—Ag4—Ag1148.22 (7)O4—C27—C26115.2 (10)
S2—Ag4—Ag150.47 (6)C1—N1—Ag4119.9 (7)
Ag3iii—Ag4—Ag1100.49 (3)C1—N1—H1C107.3
C11—S1—Ag3ii103.7 (4)Ag4—N1—H1C107.3
C11—S1—Ag391.7 (3)C1—N1—H1D107.3
Ag3ii—S1—Ag389.18 (9)Ag4—N1—H1D107.3
C11—S1—Ag1123.3 (4)H1C—N1—H1D106.9
Ag3ii—S1—Ag1130.56 (11)C2—N2—Ag1121.7 (7)
Ag3—S1—Ag176.22 (8)C2—N2—H2C106.9
C11—S1—Ag4i110.5 (4)Ag1—N2—H2C106.9
Ag3ii—S1—Ag4i76.14 (8)C2—N2—H2D106.9
Ag3—S1—Ag4i155.60 (12)Ag1—N2—H2D106.9
Ag1—S1—Ag4i98.47 (9)H2C—N2—H2D106.7
C21—S2—Ag2104.3 (4)C17—O2—Ag4110.3 (7)
C21—S2—Ag2iii104.1 (4)C17—O2—Ag3118.8 (7)
Ag2—S2—Ag2iii90.84 (9)Ag4—O2—Ag3117.6 (3)
C21—S2—Ag1101.4 (4)C27—O3—Ag1iv128.9 (8)
Ag2—S2—Ag173.01 (8)C27—O4—Ag2iv122.7 (7)
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z; (iii) x+3/2, y1/2, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22A···O4i0.932.543.449 (13)165
N1—H1C···O30.902.172.942 (12)143
N1—H1D···O1v0.902.163.007 (12)156
N2—H2C···O10.902.173.019 (12)157
N2—H2D···O1vi0.902.423.233 (12)151
Symmetry codes: (i) x, y+1, z; (v) x+1, y1/2, z+3/2; (vi) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ag4(C7H4O2S)2(C2H8N2)]
Mr795.91
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)22.1562 (2), 6.9556 (7), 25.0366 (5)
V3)3858.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)4.24
Crystal size (mm)0.15 × 0.08 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini S Ultra CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.569, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
22503, 3392, 2660
Rint0.075
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.20
No. of reflections3392
No. of parameters254
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.P)2 + 78.8999P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.74, 1.47

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008) and SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Ag1—N22.310 (8)Ag2—S2ii2.506 (3)
Ag1—O3i2.356 (7)Ag2—Ag32.9298 (11)
Ag1—S22.616 (3)Ag3—S1iii2.458 (3)
Ag1—S12.696 (3)Ag3—S12.499 (3)
Ag1—Ag23.0300 (12)Ag3—O22.532 (7)
Ag1—Ag33.2102 (12)Ag3—Ag4ii3.1980 (13)
Ag1—Ag43.2165 (13)Ag4—N12.253 (9)
Ag2—O4i2.365 (8)Ag4—O22.308 (8)
Ag2—S22.474 (3)Ag4—S1iv2.718 (3)
N2—Ag1—O3i101.0 (3)S2—Ag2—S2ii152.41 (11)
N2—Ag1—S2122.5 (2)S1iii—Ag3—S1162.44 (12)
O3i—Ag1—S2111.3 (2)S1iii—Ag3—O295.62 (19)
N2—Ag1—S1103.3 (2)S1—Ag3—O281.54 (19)
O3i—Ag1—S191.1 (2)N1—Ag4—O2142.4 (3)
S2—Ag1—S1121.58 (9)N1—Ag4—S1iv116.9 (3)
O4i—Ag2—S2116.7 (2)O2—Ag4—S1iv98.9 (2)
O4i—Ag2—S2ii90.6 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z; (iii) x+3/2, y1/2, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22A···O4i0.932.543.449 (13)165.4
N1—H1C···O30.902.172.942 (12)142.7
N1—H1D···O1v0.902.163.007 (12)156.1
N2—H2C···O10.902.173.019 (12)156.7
N2—H2D···O1vi0.902.423.233 (12)150.6
Symmetry codes: (i) x, y+1, z; (v) x+1, y1/2, z+3/2; (vi) x+1, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds