Download citation
Download citation
link to html
The crystal structure of aripiprazole nitrate (systematic name: 4-(2,3-dichloro­phen­yl)-1-{4-[(2-oxo-1,2,3,4-tetra­hydro­quino­lin-7-yl)­oxy]but­yl}piperazin-1-ium nitrate), C23H28Cl2N3O2+·NO3- or AripH+·NO3-, is presented and the mol­ecule com­pared with the aripiprazole molecules reported so far in the literature. Bond distances and angles appear very similar, except for a slight lengthening of the C-NH distances involving the protonated N atom, and the main differences are to be found in the mol­ecular spatial arrangement (revealed by the sequence of torsion angles) and the inter­molecular inter­actions (resulting from structural elements specific to this structure, viz. the nitrate counter-ions on one hand and the extra protons on the other hand as hydrogen-bond acceptors and donors, respectively). The result is the formation of [100] strips, laterally linked by weak [pi]-[pi] and C-Cl...[pi] inter­actions, leading to a family of undulating sheets parallel to (010).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112010785/qs3012sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112010785/qs3012Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112010785/qs3012Isup3.cml
Supplementary material

CCDC reference: 879444

Comment top

Aripiprazole (7-{4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butoxy}-1,2,3,4-tetrahydroquinolin-2-one, Arip) is an antipsychotic drug, perhaps the most relevant representative of a modern family of atypical antipsychotics (Travis et al., 2005), with a therapeutic activity which is different from the classical antipsychotic drugs of standard use.

Regarding the forms in which Arip appears, the drug crystallizes in a number of different polymorphic and solvatomorphic varieties, including an amorphous phase, described in a large number of patents which indicate the commercial importance of the drug. However, and as expected in this type of documentation, the structural information provided is far from complete: the compounds appear as poorly characterized, and when their X-ray powder diffraction (XRPD) diagrams are reported, they usually fulfil the role of fingerprint identifiers. Only a few of these compounds have been studied from a structural point of view and included in the public domain, as entries in the Cambridge Structural Database (CSD; Allen, 2002). The main source of this information is the paper by Tessler & Goldberg (2006), complemented by two excellent works by Braun et al. (2009a,b). In the former work, a number of different forms of the Arip molecule in its free form are reported, included in the CSD with refcodes MELFIT01 [hereafter B; in what follows, independent Arip moieties, either in the same or in different structures, will be named with uppercase letters), MELFIT02 (C), MELFIT03 (D and E: one single structure, two independent moieties), MELFIT04 (F and G: one single structure, two independent moieties) and MELFIT05 (H); while the Braun et al. (2009b) publication deals with different solvates: MELFEP01 (ethanol solvate, A), MELFOZ01 (methanol solvate, I), MELFUF01 (monohydrate, J) and MOXDAF01 (1,2-dichloroethane solvate, K).

With Arip salts, things are slightly different: there are also lots of patents describing Arip salts, basically derived from carboxylic acids (for example, Brand et al., 2007; Pongo et al., 2009), but none of these attempts have reached a structural level despite the fact that their study might deserve due attention: there are many examples of pharmaceutical drugs which are being delivered as salts, due to solubility or stability considerations. Thus, we present herein the crystal structure of Aripiprazole nitrate, AripH+.NO3-, (I), the first successful structural outcome of an intended series on Aripiprazole salts obtained from inorganic or organic acids.

Fig. 1 shows an ellipsoid plot of the asymmetric unit of (I), consisting of an AripH+ cation and an NO3- counter-ion completing the structure and providing for charge balance. The AripH+ unit is metrically similar to the many polymorphs and solvatomorphs already reported and disclosed above, and the only difference is the protonation of N1. This analogy is reflected in Table 1 which compares bond distances in (I) with the mean values of all the reported moieties (A–K): the general similarities are apparent, as well as the lengthening of the bonds involving the N1 atom, due to protonation.

More significant differences are detectable in the way the molecular groups evolve in space. Fig. 2 shows a fitting of (I) and the remaining 11 moieties in the A–K group. A similar comparison has already been made in Braun et al. (2009a) involving the different polymorphs of the free base reported therein.

The present comparison was made by forcing the best fit of the dichlorophenyl–piperazine region of the Arip molecules, ending up with a reasonable fit in that specific region for all 12 cases, with 11 of them bunching in the mid-region and structure (I) clearly evolving away from the bulk. From a strictly formal point of view, this is explained by the torsion angles in the N1—C13 region being distinctly different from those in the remaining lot, as disclosed in Table 2. Regarding the reasons, however, they should be looked for in the fact that it is in the N1+ neighbourhood where the structural differences reside, and this will be apparent when discussing the hydrogen-bonding scheme.

Intermolecular interactions defining the spatial arrangement are of variable type and strength. Table 3 presents the more significant hydrogen bonds, while Table 4 complements this with the remaining ππ and Cl···π contacts. The first entry in Table 3 corresponds to an intramolecular C—H···Cl interaction characteristic for the dichlorophenyl–piperazine group in all reported Arip variants (Fig. 1), being in (I) rather unexceptional. In addition, the present structure lacks any significant intermolecular C—H···Cl contact, contrasting with many reported Arip compounds where the terminal Cl atoms are acceptors for these types of interactions (see, for instance, Braun et al., 2009a). Fig. 3 shows an extended view of a [010] projection, along the medium-length axis, where three definite regions are clearly defined by their unique interactions and presented as shadowed [shaded] columns (A, B and C) in the figure. Regions A and B are determined by the hydrogen bonds appearing in Table 3 as entries 2 and 3 on one side and entries 4, 5 and 6 on the other, and both define broad strips running along [100].

The first of these interactions, the strong N3—H3···O1' hydrogen bond between amide groups of adjacent Arip molecules, is common to most of the reported Arip variants, the sole exception being the monohydrated species J (CSD refcode MELFOZ01) where they are (surprisingly) absent.

One explanation for the conformation of J involves an examination of the packing contacts and water solvate as an acceptor for the N3—H3 donor. Thus, in the packing organization of J, the (disordered by symmetry) water solvate serves as a prompt acceptor for the N3—H3 donor, thus blocking this interaction site and dramatically changing the whole subsequent three-dimensional arrangement.

In all the remaining cases, the interactions do exist, and result in one of two well defined supramolecular synthons. The first much more frequent synthon is a centrosymmetryc diamide R22(8) dimer, shown as an inset in Fig. 3 and occurring in all those Arip variants crystallizing in P1, viz. moieties A, D, E, H, I and K. The second synthon is a catemer, and appears only in moieties B, C and H, forms which crystallyze in space groups with a 21 axis running along a short cell dimension, and which serves for the `threading' of the resulting R12 (6) loops (for graph-set nomenclature, see Bernstein et al., 1995). The present case, (I), corresponds to this latter class of catemers and corresponds to column A in Fig. 3. There is, however, a substantial difference in that the symmetry element responsible for the chain formation is in this case the a glide plane instead of a 21 axis.

In contrast with the common character of the previous interaction, the second group (restricted to zone B) is more distinctive of the present structure (I), as some of the main structural elements (the nitrate counter-ion as an acceptor and the extra proton H1 as a donor) are privative of this structure, and even if the strips are common constructive bricks to most Arip structures, in the present case, this second interaction strengthens their mutual link and enhances their internal cohesion, to form a rather different entity (Fig. 3). The [100] strips are in turn laterally linked by the weak nonconventional ππ and C—Cl···π interactions presented in Table 4, and isolated in zone C (Fig. 3). The result is a family of parallel sheets shown laterally in Fig. 4, where their undulating character can be clearly appreciated. The intersheet separation is b/4 = ca 4.95 Å, and their mutual interaction is accordingly weak, mainly due to C—H···π bonds (in Table 3, entries 7 and 8, not shown in Fig. 4).

Finally, the results presented herein confirm some expected results, viz the protonated state of AripH+ and the inclusion of a strong hydrogen-bond acceptor (the required counter-anion) must necessarily introduce interesting new structural properties, which are frequently associated with new physical (and sometimes commercially useful) properties. Accordingly, with these expectations, further work along this line is in progress.

Related literature top

For related literature, see: Allen (2002); Bernstein et al. (1995); Brand et al. (2007); Braun et al. (2009a, 2009b); Pongo et al. (2009); Tessler & Goldberg (2006); Travis et al. (2005).

Experimental top

Aripiprazole (1.5 × 10 -4 mol, 67 mg) was dissolved in a boiling mixture of methanol (5 ml) and acetone (0.5 ml). When dissolution was complete, an excess of HNO3(c) was added dropwise and the resulting solution left to cool slowly. Excellent quality crystals of AripH+.NO3-, in the form of colourless prisms, appeared within a few hours, and these were used as obtained without further recrystallization.

Refinement top

All H atoms were found in a difference map and freely refined [methylene C—H = 0.93 (2)–0.96 (2) Å, aromatic C—H = 0.94 (2)–1.01 (3) Å and N—H = 0.87 (2)–0.95 (2) Å].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level, showing the asymmetric unit, with atom and centroid labelling. Some relevant hydrogen-bond interactions are shown with dashed lines.
[Figure 2] Fig. 2. A comparison of the stereodisposition of the present structure (I), with heavy lines, and the different Arip moieties reported in the literature, with light bonds. Structural codes (A–K) are defined in the text
[Figure 3] Fig. 3. Packing diagram of (I), showing a projection down [100]. The shadowed [shaded] A, B and C regions correspond to different hydrogen-bonding regimes, as discussed in the text. Inset: the centrosymmetric diamide R22(8) dimer. [Symmetry codes: (i) x+1, y, z; (ii) x-1/2, y, -z+3/2.]
[Figure 4] Fig. 4. Packing diagram of (I), at right angles to the previous view shown in Fig. 3, in a [010] projection.
4-(2,3-dichlorophenyl)-1-{4-[(2-oxo-1,2,3,4-tetrahydroquinolin-7- yl)oxy]butyl}piperazin-1-ium nitrate top
Crystal data top
C23H28Cl2N3O2+·NO3F(000) = 2144
Mr = 511.39Dx = 1.447 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 13087 reflections
a = 8.4644 (2) Åθ = 3.6–28.9°
b = 19.8264 (5) ŵ = 0.32 mm1
c = 27.9406 (7) ÅT = 295 K
V = 4688.9 (2) Å3Prisms, colourless
Z = 80.38 × 0.24 × 0.20 mm
Data collection top
Oxford Diffraction Gemini CCD S Ultra
diffractometer
5809 independent reflections
Radiation source: fine-focus sealed tube4721 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scans, thick slicesθmax = 29.0°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.91, Tmax = 0.94k = 2526
48362 measured reflectionsl = 3637
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0378P)2 + 2.3824P]
where P = (Fo2 + 2Fc2)/3
5809 reflections(Δ/σ)max = 0.001
419 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C23H28Cl2N3O2+·NO3V = 4688.9 (2) Å3
Mr = 511.39Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.4644 (2) ŵ = 0.32 mm1
b = 19.8264 (5) ÅT = 295 K
c = 27.9406 (7) Å0.38 × 0.24 × 0.20 mm
Data collection top
Oxford Diffraction Gemini CCD S Ultra
diffractometer
5809 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4721 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.94Rint = 0.027
48362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.103All H-atom parameters refined
S = 1.09Δρmax = 0.26 e Å3
5809 reflectionsΔρmin = 0.35 e Å3
419 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.81442 (5)0.42930 (2)0.249996 (16)0.04144 (12)
Cl20.69480 (7)0.48551 (3)0.152086 (17)0.05798 (15)
O11.58206 (16)0.20845 (7)0.75610 (4)0.0490 (3)
O21.01440 (14)0.31839 (7)0.59539 (4)0.0406 (3)
N10.71248 (16)0.45364 (7)0.43399 (5)0.0284 (3)
H10.610 (2)0.4550 (9)0.4418 (7)0.036 (5)*
N20.68512 (17)0.50098 (6)0.33677 (5)0.0328 (3)
N31.40058 (17)0.22563 (7)0.69874 (5)0.0331 (3)
H31.324 (2)0.2209 (10)0.7188 (8)0.044 (6)*
C10.7633 (2)0.52258 (9)0.41903 (6)0.0380 (4)
H1A0.874 (2)0.5180 (9)0.4111 (7)0.038 (5)*
H1B0.754 (2)0.5506 (11)0.4465 (8)0.048 (5)*
C20.6664 (3)0.54682 (9)0.37712 (6)0.0396 (4)
H2A0.554 (2)0.5518 (10)0.3882 (7)0.043 (5)*
H2B0.705 (2)0.5903 (11)0.3682 (7)0.046 (5)*
C30.6278 (2)0.43356 (8)0.35026 (6)0.0325 (3)
H3A0.642 (2)0.4028 (9)0.3238 (7)0.036 (5)*
H3B0.513 (2)0.4353 (9)0.3599 (6)0.033 (5)*
C40.7240 (2)0.40699 (8)0.39183 (6)0.0317 (3)
H4A0.687 (2)0.3647 (10)0.4014 (7)0.038 (5)*
H4B0.837 (2)0.4057 (9)0.3831 (7)0.035 (5)*
C50.6350 (2)0.52672 (8)0.29190 (6)0.0320 (3)
C60.68692 (19)0.49711 (8)0.24903 (6)0.0315 (3)
C70.6392 (2)0.52351 (9)0.20532 (6)0.0364 (4)
C80.5461 (3)0.58085 (10)0.20263 (7)0.0452 (4)
H80.519 (3)0.5986 (11)0.1719 (8)0.053 (6)*
C90.4979 (3)0.61073 (10)0.24445 (7)0.0484 (5)
H90.432 (3)0.6478 (12)0.2424 (8)0.058 (6)*
C100.5397 (2)0.58404 (9)0.28837 (7)0.0422 (4)
H100.503 (2)0.6059 (10)0.3170 (8)0.047 (5)*
C110.8053 (2)0.43014 (9)0.47681 (6)0.0346 (4)
H11A0.826 (2)0.4699 (10)0.4950 (7)0.040 (5)*
H11B0.900 (3)0.4123 (11)0.4640 (7)0.050 (6)*
C120.7142 (2)0.38038 (9)0.50721 (6)0.0361 (4)
H12A0.704 (2)0.3381 (11)0.4902 (7)0.046 (5)*
H12B0.610 (3)0.3997 (10)0.5134 (7)0.049 (6)*
C130.7982 (2)0.36741 (10)0.55474 (6)0.0380 (4)
H13A0.819 (3)0.4088 (12)0.5710 (8)0.055 (6)*
H13B0.727 (3)0.3439 (11)0.5766 (8)0.051 (6)*
C140.9500 (2)0.32915 (10)0.54885 (6)0.0382 (4)
H14A0.933 (2)0.2840 (11)0.5336 (8)0.052 (6)*
H14B1.025 (2)0.3544 (10)0.5301 (7)0.045 (5)*
C151.16303 (19)0.29162 (8)0.59860 (5)0.0304 (3)
C161.20582 (19)0.27068 (8)0.64432 (5)0.0287 (3)
H161.130 (2)0.2724 (9)0.6696 (7)0.037 (5)*
C171.35706 (18)0.24685 (7)0.65248 (5)0.0274 (3)
C181.46796 (19)0.24225 (8)0.61558 (6)0.0319 (3)
C191.4214 (2)0.26309 (9)0.57057 (6)0.0367 (4)
H191.491 (3)0.2599 (10)0.5450 (8)0.050 (6)*
C201.2704 (2)0.28776 (9)0.56121 (6)0.0360 (4)
H201.245 (2)0.3021 (10)0.5300 (7)0.039 (5)*
C211.5517 (2)0.22082 (8)0.71413 (6)0.0365 (4)
C221.6774 (2)0.23350 (11)0.67722 (7)0.0449 (4)
H22A1.771 (3)0.2108 (11)0.6874 (8)0.054 (6)*
H22B1.694 (3)0.2798 (13)0.6782 (9)0.064 (7)*
C231.6265 (2)0.21228 (11)0.62727 (7)0.0411 (4)
H23A1.706 (3)0.2244 (11)0.6037 (8)0.052 (6)*
H23B1.618 (3)0.1634 (13)0.6276 (8)0.058 (6)*
N1A0.32505 (17)0.40867 (9)0.45407 (5)0.0430 (4)
O1A0.39414 (16)0.46440 (8)0.45695 (6)0.0587 (4)
O2A0.18335 (17)0.40494 (11)0.46415 (6)0.0738 (5)
O3A0.40023 (19)0.35850 (9)0.44199 (7)0.0689 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0421 (2)0.0391 (2)0.0431 (2)0.00459 (18)0.00356 (18)0.00168 (18)
Cl20.0694 (4)0.0740 (4)0.0305 (2)0.0124 (3)0.0015 (2)0.0038 (2)
O10.0491 (8)0.0659 (8)0.0321 (7)0.0195 (7)0.0118 (5)0.0031 (6)
O20.0399 (7)0.0582 (7)0.0236 (6)0.0157 (6)0.0065 (5)0.0006 (5)
N10.0245 (7)0.0335 (7)0.0272 (6)0.0009 (5)0.0002 (5)0.0023 (5)
N20.0452 (8)0.0265 (6)0.0268 (6)0.0041 (6)0.0027 (6)0.0000 (5)
N30.0325 (7)0.0416 (7)0.0251 (7)0.0072 (6)0.0005 (5)0.0043 (5)
C10.0487 (11)0.0341 (8)0.0310 (8)0.0082 (8)0.0022 (8)0.0015 (7)
C20.0616 (13)0.0272 (8)0.0300 (8)0.0024 (8)0.0041 (8)0.0006 (6)
C30.0393 (9)0.0270 (7)0.0311 (8)0.0036 (7)0.0017 (7)0.0001 (6)
C40.0350 (9)0.0284 (7)0.0318 (8)0.0028 (7)0.0020 (6)0.0009 (6)
C50.0381 (9)0.0275 (7)0.0304 (8)0.0057 (6)0.0028 (6)0.0022 (6)
C60.0321 (8)0.0290 (7)0.0334 (8)0.0040 (6)0.0011 (6)0.0019 (6)
C70.0395 (9)0.0415 (9)0.0280 (8)0.0054 (7)0.0001 (7)0.0008 (7)
C80.0583 (12)0.0421 (10)0.0353 (9)0.0019 (9)0.0105 (8)0.0083 (8)
C90.0651 (13)0.0356 (9)0.0444 (11)0.0113 (9)0.0096 (9)0.0027 (8)
C100.0584 (12)0.0330 (8)0.0352 (9)0.0054 (8)0.0036 (8)0.0019 (7)
C110.0264 (8)0.0460 (9)0.0313 (8)0.0007 (7)0.0055 (6)0.0049 (7)
C120.0320 (9)0.0437 (9)0.0326 (8)0.0010 (7)0.0065 (7)0.0066 (7)
C130.0386 (9)0.0476 (10)0.0279 (8)0.0053 (8)0.0044 (7)0.0040 (7)
C140.0392 (9)0.0505 (10)0.0248 (8)0.0055 (8)0.0075 (7)0.0030 (7)
C150.0341 (8)0.0312 (7)0.0260 (7)0.0023 (6)0.0051 (6)0.0016 (6)
C160.0313 (8)0.0320 (7)0.0227 (7)0.0034 (6)0.0001 (6)0.0014 (6)
C170.0324 (8)0.0260 (7)0.0238 (7)0.0002 (6)0.0024 (6)0.0009 (5)
C180.0318 (8)0.0344 (8)0.0293 (8)0.0004 (6)0.0003 (6)0.0028 (6)
C190.0369 (9)0.0478 (9)0.0255 (8)0.0015 (8)0.0045 (7)0.0021 (7)
C200.0446 (10)0.0426 (9)0.0207 (7)0.0000 (7)0.0026 (7)0.0012 (6)
C210.0385 (9)0.0358 (8)0.0353 (9)0.0098 (7)0.0074 (7)0.0046 (7)
C220.0321 (9)0.0562 (12)0.0462 (11)0.0066 (9)0.0072 (8)0.0001 (9)
C230.0340 (9)0.0510 (11)0.0383 (9)0.0076 (8)0.0043 (7)0.0008 (8)
N1A0.0286 (7)0.0705 (11)0.0298 (7)0.0046 (8)0.0024 (6)0.0003 (7)
O1A0.0361 (7)0.0547 (8)0.0853 (11)0.0006 (6)0.0087 (7)0.0019 (8)
O2A0.0329 (8)0.1176 (15)0.0708 (11)0.0183 (8)0.0140 (7)0.0129 (10)
O3A0.0468 (9)0.0660 (10)0.0938 (13)0.0029 (8)0.0071 (8)0.0228 (9)
Geometric parameters (Å, º) top
Cl1—C61.7241 (16)C9—H90.92 (2)
Cl2—C71.7325 (17)C10—H100.96 (2)
O1—C211.225 (2)C11—C121.514 (2)
O2—C151.3683 (19)C11—H11A0.95 (2)
O2—C141.4261 (19)C11—H11B0.95 (2)
N1—C11.493 (2)C12—C131.528 (2)
N1—C41.501 (2)C12—H12A0.97 (2)
N1—C111.505 (2)C12—H12B0.98 (2)
N1—H10.90 (2)C13—C141.501 (3)
N2—C51.418 (2)C13—H13A0.95 (2)
N2—C21.457 (2)C13—H13B0.97 (2)
N2—C31.471 (2)C14—H14A1.00 (2)
N3—C211.353 (2)C14—H14B0.96 (2)
N3—C171.4083 (19)C15—C201.387 (2)
N3—H30.86 (2)C15—C161.391 (2)
C1—C21.509 (3)C16—C171.383 (2)
C1—H1A0.97 (2)C16—H160.96 (2)
C1—H1B0.95 (2)C17—C181.397 (2)
C2—H2A1.01 (2)C18—C191.381 (2)
C2—H2B0.96 (2)C18—C231.504 (2)
C3—C41.513 (2)C19—C201.393 (3)
C3—H3A0.967 (19)C19—H190.93 (2)
C3—H3B1.011 (19)C20—H200.942 (19)
C4—H4A0.93 (2)C21—C221.503 (3)
C4—H4B0.984 (19)C22—C231.520 (3)
C5—C101.397 (2)C22—H22A0.95 (2)
C5—C61.404 (2)C22—H22B0.93 (2)
C6—C71.389 (2)C23—H23A0.97 (2)
C7—C81.385 (3)C23—H23B0.97 (2)
C8—C91.372 (3)N1A—O3A1.228 (2)
C8—H80.96 (2)N1A—O2A1.234 (2)
C9—C101.382 (3)N1A—O1A1.253 (2)
C15—O2—C14118.00 (13)N1—C11—H11B105.0 (13)
C1—N1—C4109.02 (12)C12—C11—H11B113.6 (13)
C1—N1—C11110.82 (13)H11A—C11—H11B110.5 (17)
C4—N1—C11113.52 (13)C11—C12—C13111.10 (15)
C1—N1—H1108.7 (12)C11—C12—H12A109.4 (12)
C4—N1—H1105.9 (12)C13—C12—H12A108.8 (12)
C11—N1—H1108.7 (12)C11—C12—H12B107.6 (12)
C5—N2—C2115.29 (13)C13—C12—H12B109.5 (12)
C5—N2—C3117.05 (13)H12A—C12—H12B110.5 (17)
C2—N2—C3109.42 (13)C14—C13—C12112.85 (15)
C21—N3—C17124.06 (15)C14—C13—H13A109.5 (14)
C21—N3—H3119.6 (14)C12—C13—H13A110.7 (14)
C17—N3—H3115.8 (14)C14—C13—H13B110.7 (13)
N1—C1—C2110.62 (14)C12—C13—H13B109.8 (13)
N1—C1—H1A104.9 (11)H13A—C13—H13B102.9 (18)
C2—C1—H1A112.3 (11)O2—C14—C13107.64 (14)
N1—C1—H1B106.5 (13)O2—C14—H14A108.0 (12)
C2—C1—H1B113.1 (13)C13—C14—H14A112.1 (12)
H1A—C1—H1B109.0 (17)O2—C14—H14B108.9 (12)
N2—C2—C1110.04 (15)C13—C14—H14B111.1 (12)
N2—C2—H2A113.7 (12)H14A—C14—H14B109.0 (17)
C1—C2—H2A108.0 (11)O2—C15—C20125.06 (14)
N2—C2—H2B108.9 (12)O2—C15—C16114.55 (14)
C1—C2—H2B107.6 (12)C20—C15—C16120.30 (15)
H2A—C2—H2B108.4 (17)C17—C16—C15119.62 (14)
N2—C3—C4109.61 (13)C17—C16—H16121.0 (11)
N2—C3—H3A109.5 (11)C15—C16—H16119.4 (11)
C4—C3—H3A107.5 (11)C16—C17—C18121.49 (14)
N2—C3—H3B110.8 (10)C16—C17—N3119.69 (14)
C4—C3—H3B109.0 (10)C18—C17—N3118.82 (14)
H3A—C3—H3B110.3 (15)C19—C18—C17117.42 (15)
N1—C4—C3110.67 (13)C19—C18—C23124.80 (15)
N1—C4—H4A107.9 (12)C17—C18—C23117.72 (15)
C3—C4—H4A110.7 (12)C18—C19—C20122.54 (15)
N1—C4—H4B105.9 (11)C18—C19—H19120.1 (13)
C3—C4—H4B109.9 (11)C20—C19—H19117.4 (13)
H4A—C4—H4B111.7 (16)C15—C20—C19118.62 (15)
C10—C5—C6117.42 (15)C15—C20—H20121.9 (12)
C10—C5—N2121.84 (15)C19—C20—H20119.5 (12)
C6—C5—N2120.67 (14)O1—C21—N3121.09 (17)
C7—C6—C5120.10 (15)O1—C21—C22122.81 (16)
C7—C6—Cl1119.33 (13)N3—C21—C22116.07 (15)
C5—C6—Cl1120.55 (12)C21—C22—C23112.51 (16)
C8—C7—C6121.51 (16)C21—C22—H22A107.7 (13)
C8—C7—Cl2117.69 (13)C23—C22—H22A112.2 (13)
C6—C7—Cl2120.80 (14)C21—C22—H22B104.7 (15)
C9—C8—C7118.49 (17)C23—C22—H22B110.1 (15)
C9—C8—H8122.5 (13)H22A—C22—H22B109 (2)
C7—C8—H8119.0 (13)C18—C23—C22110.07 (15)
C8—C9—C10120.98 (18)C18—C23—H23A112.0 (12)
C8—C9—H9118.0 (14)C22—C23—H23A110.8 (13)
C10—C9—H9120.9 (14)C18—C23—H23B109.2 (14)
C9—C10—C5121.45 (17)C22—C23—H23B106.7 (13)
C9—C10—H10119.1 (12)H23A—C23—H23B107.9 (18)
C5—C10—H10119.5 (12)O3A—N1A—O2A121.17 (19)
N1—C11—C12112.44 (13)O3A—N1A—O1A119.36 (15)
N1—C11—H11A105.4 (12)O2A—N1A—O1A119.46 (19)
C12—C11—H11A109.5 (12)
C4—N1—C1—C256.19 (19)C4—N1—C11—C1284.55 (18)
C11—N1—C1—C2178.17 (15)N1—C11—C12—C13169.65 (15)
C5—N2—C2—C1164.10 (15)C11—C12—C13—C1469.0 (2)
C3—N2—C2—C161.50 (19)C15—O2—C14—C13172.10 (15)
N1—C1—C2—N259.7 (2)C12—C13—C14—O2178.23 (15)
C5—N2—C3—C4165.42 (14)C14—O2—C15—C2015.1 (2)
C2—N2—C3—C461.06 (18)C14—O2—C15—C16168.28 (15)
C1—N1—C4—C356.08 (18)O2—C15—C16—C17175.83 (14)
C11—N1—C4—C3179.86 (13)C20—C15—C16—C171.0 (2)
N2—C3—C4—N158.85 (18)C15—C16—C17—C181.0 (2)
C2—N2—C5—C1015.3 (2)C15—C16—C17—N3180.00 (14)
C3—N2—C5—C10115.58 (18)C21—N3—C17—C16159.47 (15)
C2—N2—C5—C6161.40 (16)C21—N3—C17—C1821.5 (2)
C3—N2—C5—C667.8 (2)C16—C17—C18—C190.6 (2)
C10—C5—C6—C72.1 (2)N3—C17—C18—C19179.63 (15)
N2—C5—C6—C7178.87 (15)C16—C17—C18—C23176.78 (15)
C10—C5—C6—Cl1176.13 (13)N3—C17—C18—C232.2 (2)
N2—C5—C6—Cl10.7 (2)C17—C18—C19—C200.2 (3)
C5—C6—C7—C82.9 (3)C23—C18—C19—C20177.03 (17)
Cl1—C6—C7—C8175.32 (14)O2—C15—C20—C19175.91 (16)
C5—C6—C7—Cl2177.13 (13)C16—C15—C20—C190.5 (2)
Cl1—C6—C7—Cl24.7 (2)C18—C19—C20—C150.1 (3)
C6—C7—C8—C91.5 (3)C17—N3—C21—O1172.76 (16)
Cl2—C7—C8—C9178.53 (16)C17—N3—C21—C225.5 (2)
C7—C8—C9—C100.7 (3)O1—C21—C22—C23150.43 (18)
C8—C9—C10—C51.4 (3)N3—C21—C22—C2331.3 (2)
C6—C5—C10—C90.0 (3)C19—C18—C23—C22145.85 (18)
N2—C5—C10—C9176.73 (18)C17—C18—C23—C2236.9 (2)
C1—N1—C11—C12152.37 (15)C21—C22—C23—C1850.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl10.97 (2)2.58 (2)3.217 (2)124 (2)
N1—H1···O1A0.90 (2)1.89 (2)2.778 (2)176 (2)
C11—H11B···O2Ai0.95 (2)2.40 (3)3.258 (2)150 (2)
C14—H14B···O2Ai0.96 (2)2.49 (2)3.429 (2)165 (2)
N3—H3···O1ii0.86 (2)2.18 (2)2.996 (2)158 (2)
C16—H16···O1ii0.96 (2)2.47 (2)3.219 (2)136 (2)
C2—H2B···Cg2iii0.96 (2)2.92 (2)3.720 (2)142.6 (14)
C4—H4A···Cg2iv0.93 (2)2.84 (2)3.534 (2)132.6 (14)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y, z+3/2; (iii) x+2, y+1, z+1; (iv) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC23H28Cl2N3O2+·NO3
Mr511.39
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)8.4644 (2), 19.8264 (5), 27.9406 (7)
V3)4688.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.38 × 0.24 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini CCD S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.91, 0.94
No. of measured, independent and
observed [I > 2σ(I)] reflections
48362, 5809, 4721
Rint0.027
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.09
No. of reflections5809
No. of parameters419
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.26, 0.35

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl10.97 (2)2.58 (2)3.217 (2)124 (2)
N1—H1···O1A0.90 (2)1.89 (2)2.778 (2)176 (2)
C11—H11B···O2Ai0.95 (2)2.40 (3)3.258 (2)150 (2)
C14—H14B···O2Ai0.96 (2)2.49 (2)3.429 (2)165 (2)
N3—H3···O1ii0.86 (2)2.18 (2)2.996 (2)158 (2)
C16—H16···O1ii0.96 (2)2.47 (2)3.219 (2)136 (2)
C2—H2B···Cg2iii0.96 (2)2.92 (2)3.720 (2)142.6 (14)
C4—H4A···Cg2iv0.93 (2)2.84 (2)3.534 (2)132.6 (14)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y, z+3/2; (iii) x+2, y+1, z+1; (iv) x1/2, y+1/2, z+1.
Comparative bond distances (Å) top
Bondd(I)<d(A-K>(*)
CL1-C61.7241 (16)1.728 (8)
CL2-C71.7325 (17)1.736 (14)
O1-C211.225 (2)1.228 (6)
O2-C141.4261 (19)1.415 (40)
O2-C151.3683 (19)1.374 (12)
N1-C11.493 (2)1.453 (10)
N1-C41.501 (2)1.458 (4)
N1-C111.505 (2)1.464 (14)
N2-C21.457 (2)1.459 (6)
N2-C31.471 (2)1.464 (9)
N2-C51.428 (2)1.413 (7)
N3-C171.4083 (19)1.410 (7)
N3-C211.352 (3)1.351 (8)
C1-C21.509 (3)1.514 (8)
C3-C41.513 (2)1.509 (10)
C5-C61.404 (2)1.405 (12)
C5-C101.397 (2)1.389 (9)
C6-C71.389 (2)1.383 (20)
C7-C81.385 (3)1.371 (18)
C8-C91.372 (3)1.372 (16)
C9-C101.382 (3)1.383 (12)
C11-C121.514 (2)1.517 (19)
C12-C131.528 (2)1.514 (34)
C13-C141.501 (2)1.497 (30)
C15-C161.391 (2)1.381 (12)
C15-C201.387 (2)1.375 (11)
C16-C171.383 (2)1.379 (11)
C17-C181.397 (2)1.391 (7)
C18-C191.381 (2)1.379 (14)
C18-C231.504 (2)1.507 (10)
C19-C201.393 (3)1.385 (15)
C21-C221.503 (3)1.496 (11)
C22-C231.520 (3)1.492 (23)
(*): the column reports the un-weighted average value of equivalent distances in the A-K group (as defined in the text), with the usual standard deviation from the average shown in parenthesis.
Comparison of selected torsion angles (°) top
T.A.(°)(1)ABCDEFGHIJK
T1-84.5 (2)-167.3 (4)-159.4 (8)-168.1 (6)-159.9 (8)-167.5 (3)-173.1 (3)-156.1 (3)-164.9 (4)-171.1 (3)-73.6 (3)-167.1 (4)
T2-169.6 (1)60.2 (7)178.0 (9)173.0 (6)174.2 (8)169.4 (3)-179.6 (3)-170.6 (3)173.4 (4)168.0 (3)-171.1 (2)173.7 (4)
T3-69.0 (2)174.7 (6)-173.3 (9)-175.9 (7)-161.8 (9)-176.5 (3)-178.3 (9)-169.6 (3)-175.6 (4)-175.4 (3)172.8 (2)-177.8 (4)
Torsion angle codes.

T1: C4-N1-C11-C12; T2: N1-C11-C12-C13; T3: C11-C12-C13-C14
ππ and hal–π contacts (Å, °) for (I) top
Group 1/Group 2ccd(Å)cpd(Å)sa(°)
Cg1···Cg1i4.238 (2)3.456 (2)35.37
Cl1···Cg1i3.404 (2)3.339 (2)11.27
Symmetry code: (i), 1/2+x,y,1/2-z

ccd: centre-to-centre distance ; cpd: centre to plane distance; sa: slippage angle (angle subtended by the intercentroid vector to the plane normal). Cg1: defined in Fig. 1. For details, see Janiak (2000).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds