Download citation
Download citation
link to html
The X-ray crystal structures of solvates of sulfapyridine have been determined to be conformational polymorphs. 4-Amino-N-(1,2-dihydro­pyridin-2-yl­idene)benzene­sulfonamide (polymorph III), C11H11N3O2S, (1), 4-amino-N-(1,2-dihydro­pyri­din-2-yl­idene)benzene­sulfonamide 1,3-dioxane monosolvate, C11H11N3O2S·C4H8O2, (2), and 4-amino-N-(1,2-dihydro­pyri­din-2-yl­idene)benzene­sulfonamide tetra­hydro­furan monosolvate, C11H11N3O2S·C4H8O, (3), crystallized as the imide form, while piperidin-1-ium 4-amino-N-(pyridin-2-yl)benzene­sul­fon­amidate, C5H12N+·C11H10N3O2S-, (4), crystallized as the piperidinium salt. The tetra­hydro­furan and dioxane solvent mol­ecules in their respective structures were disordered and were refined using a disorder model. Three-dimensional hydrogen-bonding networks exist in all structures between at least one sulfone O atom and the aniline N atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111041825/qs3006sup1.cif
Contains datablocks 1, 2, 3, 4, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111041825/qs30061sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111041825/qs30062sup3.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111041825/qs30063sup4.hkl
Contains datablock 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111041825/qs30064sup5.hkl
Contains datablock 4

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111041825/qs30061sup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111041825/qs30062sup7.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111041825/qs30063sup8.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111041825/qs30064sup9.cml
Supplementary material

CCDC references: 862231; 862232; 862233; 862234

Comment top

Sulfapyridine is a member of the sulfonamide class of pharmaceuticals known for its antibacterial, antithyroid and antidiabetic properties. It was the first synthetic antibacterial agent effective against pneumonia.

Our initial interest in sulfapyridine was prompted by its ability to form conformational polymorphs, molecules that adopt different molecular conformations in different crystalline forms. The X-ray crystal structures of five polymorphs of sulfapyridine [numbered as (II)–(VI) according to a comprehensive study of polymorphism in sulfonamides by Yang & Guillory (1972)] have been reported (Bar & Bernstein, 1985; Bernstein, 1988; Gelbrich et al., 2007; Basak et al., 1984) in the Cambridge Structural Database (CSD; Version 5.32; Allen, 2002). The pharmaceutical industry is particularly interested in polymorphism because it can result in seemingly identical compounds with different pharmacological activity and/or bioavailability due to varying levels of thermodynamic stability, equilibrium solubilities and rates of dissolution.

In an effort to crystallize sulfapyridine, (I), in its different polymorphic forms, we have prepared three new crystalline sulfapyridine solvates: sulfapyridine dioxane solvate, (II), sulfapyridine tetrahydrofuran solvate, (III), and sulfapyridine piperidine solvate, (IV). We report here the crystal structures at 173 K along with the crystal structure of sulfapyridine (polymorph III) redetermined at 173 K. The crystal structure of a sulfapyridine tetrahydrofuran solvate with different unit cell dimensions than (2) was determined previously at 150 K (Meyer et al., 2000). The conformations of the sulfapyridine molecules in these solvate structures provide additional examples of conformational polymorphism.

Sulfapyridine, (I) (polymorph III; Fig. 1), and the sulfapyridine molecules in sulfapyridine dioxane solvate, (II) (Fig. 2), and the sulfapyridine tetrahydrofuran solvate, (III) (Fig. 3), crystallized in the imide tautomeric form with the H atoms bonded to N2, the pyridine N atom. This seems to be the preference for sulfapyridine structures (Bar & Bernstein, 1985). Conversely, the sulfapyridine piperidine solvate, (IV) (Fig. 4), crystallized in the amide tautomeric form as the piperidinium salt with the H atom located on the piperidine N atom. The conformation of the sulfapyridine molecules can be best described in terms of the angles between the three planar groups (i.e. the C1/S1/N1 plane, the benzene ring plane and the pyridine ring plane) and rotation around the C1—S1, S1—N1 and N1—C7 bonds. The angles between the planes are given in Table 2 and the torsion angles describing these rotations are given in Table 3. The solvated structures are generally similar to each other, although there is some rotational flexibility in the torsion angles resulting in a range of approximately 30° in the orientation of the benzene rings (described by the torsion angle C2—C1—S1—N1) ranging from 101.6 (2)° in the THF solvate, (III), to 132.7 (2)° in the dioxane solvate, (II). The orientation of the pyridine rings (described by the torsion angle N2—C7—N1—S1) showed a range of approximately 12° from 165.45 (19)° in the piperidinium salt, (IV), to 176.73 (17)° in the dioxane solvate, (II). This torsion angle in (I) [10.7 (3)°] suggests that the pyridine ring plane is flipped over relative to the pyridine rings in the solvated structures. In all imide tautomers, the orientation of the pyridine ring is stabilized by hydrogen bonding involving the pyridine N2 atom. The dihedral angles between the benzene ring plane and the pyridine ring plane are consistently near perpendicular in all four structures, ranging from 85.35 (13)° in the dioxane solvate, (II), to 89.03 (14)° in the piperidine salt, (IV). The solvent in each of the solvated structures is located in this area with the center of mass of the solvate approximately bisecting this dihedral angle, resulting in an approximately equal distance between the center of mass of the solvate and the centers of mass of the pyridine and benzene ring planes. The variations in the molecular structures of the sulfapyridine molecules suggest that these molecules are conformational polymorphs.

Each of the sulfapyridine solvate structures reported here crystallized with one solvent molecule per asymmetric unit. While the piperidinium cation in (IV) was crystallographically well behaved, the dioxane solvent molecule in (II) and the tetrahydrofuran solvent molecule in (III) were found to be disordered and were refined with a disorder model. In both disordered models, the solvent O atoms were partially occupied above and below the best C atom plane of the solvent molecules. In the disordered dioxane molecule, the occupancies of the two conformations refined to 0.510 (4) and 0.490 (4), and in the tetrahydrofuran molecule the occupancies refined to 0.822 (9) and 0.178 (9). The displacement parameters in the tetrahydrofuran solvent molecule were unusually large, implying that the channel where it was located was sufficiently large to allow it significant translational flexibility. There were no hydrogen-bonding interactions involving the dioxane solvent molecule. However, there appeared to be a very weak hydrogen-bond interaction between one of the partially occupied tetrahydrofuran O atoms (O3) and the sulfapyridine molecule through the aniline N3 atom [N3···O3 = 3.102 (7) Å, H3A···O3 = 2.42 (5) Å and N3—H3A···O3 = 142 (4)°]. In the piperidinium cation, atom N4 forms a hydrogen bond to the sulfapyridine anion through the amide N1 atom [N4···N1 = 2.746 (3) Å, H4A···N1 = 1.84 Å and N4—H4A···N1 168°].

The packing of (I) (Fig. 5) was described previously as an interleaved herringbone motif (Bar & Bernstein, 1985). The packing in the dioxane solvate, (II) (Fig. 6), and the tetrahydrofuran solvate, (III) (Fig. 7), are similar to the packing in (I) in that the benzene and pyridine ring planes form parallel sheets. In both solvate structures, channels of solvent molecules separate the sheets. In the piperidinium salt, (IV) (Fig. 8), the benzene rings in the sulfapyridine anions stack in pairs along the a axis, leaving solvent pockets between pairs of planes. In all three solvate structures and (I), hydrogen bonds exist between at least one sulfone O atom and the aniline N3 atom. In addition, the dioxane and tetrahydrofuran structures show a hydrogen bond between the pyridine atom N2 and the amide atom N1 in an adjacent molecule. Hydrogen-bonding interactions are listed in Table 4.

Related literature top

For related literature, see: Bar & Bernstein (1985); Basak et al. (1984); Bernstein (1988); Gelbrich et al. (2007).

Experimental top

All the sulfapyridine crystals were prepared by slow evaporation from a saturated solution of sulfapyridine and solvent [ethanol for (I), dioxane for (II), tetrahydrofuran for (III), and piperidine for (IV)]. Mixtures were allowed to stand at room temperature for a few days after mixing. Single crystals were collected from the evaporation mixtures and allowed to air dry.

Refinement top

H atoms were located in difference maps except in the disordered dioxane and tetrahydrofuran solvent molecules where they were calculated. The dioxane and the tetrahydrofuran solvent molecules were refined with a disorder model. In this model, the disordered pair in each structure was divided into parts 1 and 2 with constraints applied such that the sum of the occupancies was 1.0 and bond lengths of similar bond types were equal and within a defined tolerance, i.e. Csp3—Csp3 bonds were constrained to be equal within a tolerance of 0.002 Å and Csp3—Osp3 bonds were constrained to be equal within a tolerance of 0.002 Å. H atoms bonded to N atoms likely to be involved in hydrogen-bonding interactions were allowed to refine independently assuming they converged to chemically reasonable values. In sulfapyridine, H atoms bonded to N1 and N3 were allowed to refine independently. In the dioxane solvent molecule, only the H atom on N2 was allowed to refine independently (H3A and H3B bonded to N3 did not converge during refinement to chemically reasonable values). In the piperidinium cation, the H atoms on N3 were allowed to refine independently. In the tetrahydrofuran solvent molecule, all atoms were allowed to refine independently, except those bonded to the tetrahydrofuran ring. All other H atoms were treated as riding, with C—H distances of 0.95 Å and N—H distances of 0.88 Å. The Uiso(H) values of the riding atoms were set at 1.2 times the Ueq values of the parent atom. The resolution of the data collected for the piperidine solvate is of lower resolution than the data collected for the other crystals in this series. This is due to the weak scattering at high theta angle. The Bruker SMART X2S software does not allow the user to modify the scan rate. However, even with the data collected at the faster scan rate, the quality of the final refined structure is comparable in quality to the other sulfapyridine structures in this series.

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of sulfapyridine (polymorph III), (I), at 173 K. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of sulfapyridine dioxane solvate, (II), at 173 K. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. The molecular structure of sulfapyridine tetrahydrofuran solvate, (III), at 173 K. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. The molecular structure of sulfapyridine piperidine solvate, (IV), at 173 K. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 5] Fig. 5. Packing diagram showing the hydrogen-bonding interactions in (1). H atoms not involved in hydrogen-bonding interactions have been omitted for clarity. The symmetry codes are as in Table 3.
[Figure 6] Fig. 6. Packing diagram showing the hydrogen-bonding interactions in (2). H atoms not involved in hydrogen-bonding interactions have been omitted for clarity. The symmetry codes are as in Table 3; additionally, (xiv) -x, y+1/2, -z+1/2.
[Figure 7] Fig. 7. Packing diagram showing the hydrogen bonding interactions in (3). H atoms not involved in hydrogen-bonding interactions have been omitted for clarity. The symmetry codes are as in Table 3.
[Figure 8] Fig. 8. Packing diagram showing the hydrogen bonding interactions in (4). H atoms not involved in hydrogen-bonding interactions have been omitted for clarity. The symmetry codes are as in Table 3.
(1) 4-amino-N-(1,2-dihydropyridin-2-ylidene)benzenesulfonamide top
Crystal data top
C11H11N3O2SF(000) = 1040
Mr = 249.29Dx = 1.453 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3053 reflections
a = 12.7350 (16) Åθ = 2.7–25.0°
b = 11.6945 (15) ŵ = 0.28 mm1
c = 15.3357 (18) ÅT = 173 K
β = 93.546 (3)°Block, yellow
V = 2279.6 (5) Å30.75 × 0.70 × 0.35 mm
Z = 8
Data collection top
Bruker SMART X2S
diffractometer
1987 independent reflections
Radiation source: microfocus sealed tube1743 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.043
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2004)
h = 1514
Tmin = 0.819, Tmax = 0.909k = 1313
6574 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0447P)2 + 2.3901P]
where P = (Fo2 + 2Fc2)/3
1987 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C11H11N3O2SV = 2279.6 (5) Å3
Mr = 249.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.7350 (16) ŵ = 0.28 mm1
b = 11.6945 (15) ÅT = 173 K
c = 15.3357 (18) Å0.75 × 0.70 × 0.35 mm
β = 93.546 (3)°
Data collection top
Bruker SMART X2S
diffractometer
1987 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2004)
1743 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.909Rint = 0.043
6574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
1987 reflectionsΔρmin = 0.40 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20295 (3)0.04278 (3)0.56159 (3)0.01977 (17)
O10.13357 (11)0.05260 (10)0.54268 (9)0.0276 (3)
O20.20233 (10)0.13306 (10)0.49613 (8)0.0244 (3)
N10.31848 (12)0.01057 (12)0.58007 (11)0.0235 (4)
N20.40667 (13)0.17069 (13)0.57700 (11)0.0228 (4)
N30.12411 (15)0.23650 (15)0.90740 (12)0.0313 (4)
C10.16910 (13)0.10389 (15)0.66023 (12)0.0200 (4)
C20.14436 (14)0.03156 (15)0.72860 (13)0.0227 (4)
H20.13900.04850.71880.027*
C30.12780 (14)0.07514 (15)0.80965 (12)0.0232 (4)
H30.11010.02510.85530.028*
C40.13683 (14)0.19362 (15)0.82585 (12)0.0220 (4)
C50.15854 (15)0.26569 (15)0.75575 (13)0.0245 (4)
H50.16180.34600.76470.029*
C60.17511 (14)0.22172 (15)0.67432 (12)0.0225 (4)
H60.19060.27150.62790.027*
C70.40435 (15)0.05569 (15)0.59211 (12)0.0219 (4)
C80.50124 (15)0.00607 (18)0.62270 (14)0.0327 (5)
H80.50500.07400.63310.039*
C90.58889 (17)0.07112 (19)0.63746 (16)0.0402 (6)
H90.65300.03610.65810.048*
C100.58575 (16)0.19013 (18)0.62248 (15)0.0372 (5)
H100.64670.23600.63370.045*
C110.49401 (15)0.23712 (17)0.59179 (13)0.0297 (5)
H110.49020.31690.58040.036*
H10.352 (2)0.203 (2)0.5520 (15)0.038 (6)*
H3A0.1224 (19)0.186 (2)0.9494 (16)0.044 (7)*
H3B0.1467 (19)0.303 (2)0.9171 (16)0.044 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0240 (3)0.0146 (2)0.0205 (3)0.00291 (16)0.00035 (19)0.00017 (16)
O10.0330 (8)0.0220 (7)0.0278 (8)0.0090 (5)0.0013 (6)0.0043 (5)
O20.0301 (7)0.0193 (6)0.0236 (7)0.0013 (5)0.0012 (5)0.0037 (5)
N10.0271 (9)0.0157 (7)0.0278 (9)0.0004 (6)0.0032 (7)0.0023 (6)
N20.0228 (8)0.0195 (8)0.0258 (9)0.0010 (6)0.0006 (7)0.0033 (6)
N30.0527 (12)0.0199 (9)0.0218 (10)0.0033 (8)0.0048 (8)0.0007 (8)
C10.0198 (9)0.0181 (9)0.0218 (10)0.0005 (7)0.0006 (7)0.0012 (7)
C20.0240 (9)0.0170 (9)0.0268 (11)0.0023 (7)0.0001 (8)0.0001 (7)
C30.0268 (10)0.0201 (9)0.0227 (11)0.0032 (7)0.0014 (8)0.0044 (8)
C40.0227 (9)0.0207 (9)0.0223 (10)0.0014 (7)0.0010 (7)0.0008 (8)
C50.0314 (10)0.0144 (9)0.0278 (11)0.0009 (7)0.0019 (8)0.0005 (8)
C60.0257 (10)0.0182 (9)0.0235 (11)0.0007 (7)0.0012 (8)0.0039 (7)
C70.0266 (10)0.0206 (9)0.0190 (10)0.0012 (7)0.0044 (8)0.0024 (7)
C80.0304 (11)0.0258 (10)0.0421 (13)0.0036 (8)0.0042 (9)0.0111 (9)
C90.0261 (11)0.0424 (12)0.0514 (15)0.0037 (9)0.0029 (10)0.0159 (11)
C100.0266 (11)0.0389 (12)0.0451 (14)0.0097 (9)0.0048 (9)0.0087 (10)
C110.0302 (11)0.0246 (10)0.0341 (12)0.0073 (8)0.0019 (9)0.0046 (8)
Geometric parameters (Å, º) top
S1—O11.4413 (13)C3—C41.411 (2)
S1—O21.4566 (13)C3—H30.9500
S1—N11.6070 (15)C4—C51.407 (3)
S1—C11.7509 (18)C5—C61.379 (3)
N1—C71.344 (2)C5—H50.9500
N2—C111.364 (2)C6—H60.9500
N2—C71.365 (2)C7—C81.417 (3)
N2—H10.86 (3)C8—C91.358 (3)
N3—C41.366 (3)C8—H80.9500
N3—H3A0.87 (3)C9—C101.411 (3)
N3—H3B0.84 (3)C9—H90.9500
C1—C61.396 (2)C10—C111.349 (3)
C1—C21.398 (3)C10—H100.9500
C2—C31.372 (3)C11—H110.9500
C2—H20.9500
O1—S1—O2116.43 (8)N3—C4—C3120.57 (17)
O1—S1—N1106.15 (8)C5—C4—C3118.13 (17)
O2—S1—N1111.65 (8)C6—C5—C4121.13 (16)
O1—S1—C1108.00 (8)C6—C5—H5119.4
O2—S1—C1107.97 (8)C4—C5—H5119.4
N1—S1—C1106.12 (8)C5—C6—C1119.88 (17)
C7—N1—S1121.92 (13)C5—C6—H6120.1
C11—N2—C7123.97 (17)C1—C6—H6120.1
C11—N2—H1117.3 (15)N1—C7—N2124.80 (17)
C7—N2—H1118.5 (15)N1—C7—C8119.60 (17)
C4—N3—H3A116.1 (16)N2—C7—C8115.60 (17)
C4—N3—H3B116.3 (17)C9—C8—C7121.04 (19)
H3A—N3—H3B121 (2)C9—C8—H8119.5
C6—C1—C2119.59 (17)C7—C8—H8119.5
C6—C1—S1121.49 (14)C8—C9—C10120.70 (19)
C2—C1—S1118.68 (13)C8—C9—H9119.6
C3—C2—C1120.61 (16)C10—C9—H9119.6
C3—C2—H2119.7C11—C10—C9118.29 (19)
C1—C2—H2119.7C11—C10—H10120.9
C2—C3—C4120.59 (17)C9—C10—H10120.9
C2—C3—H3119.7C10—C11—N2120.37 (18)
C4—C3—H3119.7C10—C11—H11119.8
N3—C4—C5121.30 (17)
O1—S1—N1—C7173.78 (14)C3—C4—C5—C62.8 (3)
O2—S1—N1—C745.93 (17)C4—C5—C6—C10.8 (3)
C1—S1—N1—C771.48 (16)C2—C1—C6—C51.2 (3)
O1—S1—C1—C6144.54 (15)S1—C1—C6—C5173.21 (14)
O2—S1—C1—C617.86 (17)S1—N1—C7—N210.6 (3)
N1—S1—C1—C6101.98 (16)S1—N1—C7—C8169.32 (15)
O1—S1—C1—C241.03 (16)C11—N2—C7—N1178.21 (18)
O2—S1—C1—C2167.72 (13)C11—N2—C7—C81.8 (3)
N1—S1—C1—C272.44 (15)N1—C7—C8—C9178.5 (2)
C6—C1—C2—C31.1 (3)N2—C7—C8—C91.5 (3)
S1—C1—C2—C3173.39 (14)C7—C8—C9—C100.1 (4)
C1—C2—C3—C40.9 (3)C8—C9—C10—C111.1 (4)
C2—C3—C4—N3177.60 (18)C9—C10—C11—N20.9 (3)
C2—C3—C4—C52.8 (3)C7—N2—C11—C100.6 (3)
N3—C4—C5—C6177.62 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O2i0.86 (3)2.15 (2)2.874 (2)140 (2)
N2—H1···O20.86 (3)2.19 (2)2.847 (2)132 (2)
N3—H1A···O1ii0.87 (3)2.12 (3)2.985 (2)172 (2)
N3—H1B···N1iii0.84 (3)2.23 (3)3.050 (2)168 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+3/2.
(2) 4-amino-N-(1,2-dihydropyridin-2-ylidene)benzenesulfonamide 1,3-dioxane monosolvate top
Crystal data top
C11H11N3O2S·C4H8O2F(000) = 712
Mr = 337.39Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6136 reflections
a = 9.0258 (10) Åθ = 2.3–25.0°
b = 9.9264 (12) ŵ = 0.23 mm1
c = 17.988 (2) ÅT = 173 K
β = 100.720 (3)°Block, colourless
V = 1583.5 (3) Å30.75 × 0.63 × 0.38 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
2778 independent reflections
Radiation source: microfocus sealed tube2488 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.847, Tmax = 0.918k = 1111
13599 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0882P)2 + 1.9762P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2778 reflectionsΔρmax = 0.59 e Å3
268 parametersΔρmin = 0.56 e Å3
377 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (14)
Crystal data top
C11H11N3O2S·C4H8O2V = 1583.5 (3) Å3
Mr = 337.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0258 (10) ŵ = 0.23 mm1
b = 9.9264 (12) ÅT = 173 K
c = 17.988 (2) Å0.75 × 0.63 × 0.38 mm
β = 100.720 (3)°
Data collection top
Bruker SMART X2S
diffractometer
2778 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2004)
2488 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.918Rint = 0.028
13599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050377 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.59 e Å3
2778 reflectionsΔρmin = 0.56 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.20843 (7)0.30900 (6)0.94602 (3)0.0218 (2)
O10.1117 (2)0.42247 (19)0.95387 (10)0.0280 (4)
O20.1851 (2)0.19084 (18)0.98994 (10)0.0289 (5)
O3A0.5235 (4)0.2848 (3)0.64699 (19)0.0261 (9)0.490 (4)
O3B0.6401 (7)0.1660 (6)0.6473 (3)0.0763 (16)0.510 (4)
O4A0.5713 (7)0.2699 (6)0.7843 (3)0.0660 (15)0.490 (4)
O4B0.6867 (3)0.1352 (3)0.76941 (17)0.0192 (8)0.510 (4)
N10.3760 (2)0.3681 (2)0.96608 (11)0.0234 (5)
N20.6313 (2)0.3557 (2)0.97731 (12)0.0243 (5)
N30.0756 (3)0.1605 (3)0.62164 (14)0.0444 (7)
H3B0.03550.08170.60740.053*
H3A0.09500.21820.58760.053*
C10.1744 (3)0.2605 (3)0.85035 (13)0.0221 (5)
C20.1112 (3)0.1360 (3)0.82776 (15)0.0270 (6)
H20.09080.07350.86460.032*
C30.0781 (3)0.1030 (3)0.75183 (15)0.0307 (6)
H30.03440.01790.73680.037*
C40.1080 (3)0.1933 (3)0.69691 (15)0.0285 (6)
C50.1734 (3)0.3184 (3)0.72014 (15)0.0282 (6)
H50.19600.38030.68350.034*
C60.2050 (3)0.3518 (3)0.79595 (14)0.0256 (6)
H60.24770.43720.81120.031*
C70.4972 (3)0.2893 (3)0.96250 (13)0.0228 (5)
C80.5032 (3)0.1508 (3)0.94450 (14)0.0267 (6)
H80.41280.09960.93370.032*
C90.6384 (3)0.0904 (3)0.94255 (15)0.0319 (6)
H90.64090.00260.93050.038*
C100.7732 (3)0.1635 (3)0.95802 (16)0.0325 (6)
H100.86710.12110.95680.039*
C110.7665 (3)0.2969 (3)0.97483 (15)0.0295 (6)
H110.85630.34900.98480.035*
C12A0.6796 (10)0.3127 (14)0.6765 (11)0.050 (2)0.490 (4)
H12A0.70230.40770.66600.060*0.490 (4)
H12B0.74410.25410.65140.060*0.490 (4)
C12B0.6926 (13)0.2960 (12)0.6759 (10)0.053 (2)0.510 (4)
H12C0.61480.36610.66070.064*0.510 (4)
H12D0.78590.32210.65810.064*0.510 (4)
C13A0.7134 (15)0.2880 (13)0.7605 (11)0.050 (2)0.490 (4)
H13A0.77670.20650.77210.060*0.490 (4)
H13B0.76820.36570.78710.060*0.490 (4)
C13B0.7220 (16)0.2745 (8)0.7599 (11)0.042 (2)0.510 (4)
H13C0.82880.29340.78210.050*0.510 (4)
H13D0.65680.33370.78440.050*0.510 (4)
C14A0.5181 (11)0.1433 (9)0.7508 (7)0.045 (2)0.490 (4)
H14A0.42120.12030.76600.054*0.490 (4)
H14B0.59170.07180.77020.054*0.490 (4)
C14B0.5309 (7)0.1053 (9)0.7405 (6)0.0352 (18)0.510 (4)
H14C0.46670.15460.77040.042*0.510 (4)
H14D0.51300.00770.74570.042*0.510 (4)
C15A0.4957 (11)0.1471 (8)0.6650 (7)0.036 (2)0.490 (4)
H15A0.56750.08590.64650.043*0.490 (4)
H15B0.39160.12020.64200.043*0.490 (4)
C15B0.4881 (11)0.1454 (12)0.6582 (7)0.050 (2)0.510 (4)
H15C0.43620.07220.62610.059*0.510 (4)
H15D0.42690.22880.65080.059*0.510 (4)
H2A0.630 (3)0.446 (3)0.9945 (17)0.033 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0213 (4)0.0236 (4)0.0209 (4)0.0015 (2)0.0046 (2)0.0012 (2)
O10.0250 (9)0.0308 (10)0.0285 (9)0.0053 (8)0.0058 (7)0.0036 (8)
O20.0318 (10)0.0300 (10)0.0266 (10)0.0008 (8)0.0093 (8)0.0033 (7)
O3A0.0283 (19)0.0238 (18)0.0237 (18)0.0063 (14)0.0017 (14)0.0089 (14)
O3B0.086 (3)0.078 (3)0.068 (3)0.002 (3)0.022 (3)0.004 (3)
O4A0.066 (3)0.064 (3)0.068 (3)0.005 (3)0.015 (3)0.007 (3)
O4B0.0220 (16)0.0152 (16)0.0179 (16)0.0043 (12)0.0025 (12)0.0003 (12)
N10.0224 (11)0.0238 (11)0.0227 (10)0.0021 (9)0.0012 (8)0.0030 (8)
N20.0223 (11)0.0260 (12)0.0240 (11)0.0020 (9)0.0026 (8)0.0028 (9)
N30.0505 (16)0.0559 (17)0.0260 (13)0.0166 (13)0.0048 (11)0.0109 (11)
C10.0188 (12)0.0244 (12)0.0228 (12)0.0018 (10)0.0035 (9)0.0021 (10)
C20.0263 (13)0.0262 (13)0.0292 (13)0.0033 (11)0.0064 (10)0.0007 (10)
C30.0291 (14)0.0285 (14)0.0337 (14)0.0075 (11)0.0042 (11)0.0078 (11)
C40.0229 (13)0.0367 (15)0.0251 (13)0.0009 (11)0.0022 (10)0.0073 (10)
C50.0294 (14)0.0311 (14)0.0247 (13)0.0014 (11)0.0061 (11)0.0022 (10)
C60.0250 (13)0.0245 (13)0.0272 (13)0.0024 (10)0.0046 (10)0.0016 (10)
C70.0235 (13)0.0268 (13)0.0177 (11)0.0025 (10)0.0032 (10)0.0006 (9)
C80.0274 (13)0.0254 (13)0.0273 (13)0.0018 (10)0.0052 (10)0.0010 (10)
C90.0364 (15)0.0273 (14)0.0322 (14)0.0062 (11)0.0071 (12)0.0031 (11)
C100.0255 (14)0.0376 (15)0.0341 (15)0.0105 (12)0.0052 (11)0.0026 (12)
C110.0217 (13)0.0384 (15)0.0275 (13)0.0025 (11)0.0026 (10)0.0034 (11)
C12A0.048 (4)0.046 (4)0.054 (4)0.010 (4)0.007 (4)0.001 (4)
C12B0.058 (4)0.047 (4)0.056 (4)0.007 (4)0.015 (4)0.015 (4)
C13A0.041 (4)0.054 (5)0.051 (4)0.006 (4)0.005 (4)0.001 (5)
C13B0.041 (4)0.030 (3)0.052 (4)0.002 (3)0.006 (4)0.001 (3)
C14A0.047 (4)0.041 (5)0.044 (4)0.008 (3)0.001 (3)0.008 (4)
C14B0.033 (3)0.032 (4)0.039 (4)0.002 (3)0.006 (3)0.005 (3)
C15A0.027 (3)0.041 (4)0.043 (4)0.001 (3)0.015 (3)0.004 (4)
C15B0.049 (4)0.057 (5)0.037 (4)0.001 (4)0.008 (4)0.007 (4)
Geometric parameters (Å, º) top
S1—O11.4478 (19)C7—C81.416 (4)
S1—O21.4512 (19)C8—C91.365 (4)
S1—N11.600 (2)C8—H80.9500
S1—C11.758 (2)C9—C101.399 (4)
O3A—C12A1.437 (5)C9—H90.9500
O3A—C15A1.437 (5)C10—C111.363 (4)
O3B—C15B1.437 (5)C10—H100.9500
O3B—C12B1.437 (5)C11—H110.9500
O4A—C13A1.437 (5)C12A—C13A1.505 (7)
O4A—C14A1.438 (5)C12A—H12A0.9900
O4B—C13B1.437 (5)C12A—H12B0.9900
O4B—C14B1.437 (5)C12B—C13B1.500 (7)
N1—C71.356 (3)C12B—H12C0.9900
N2—C71.360 (3)C12B—H12D0.9900
N2—C111.360 (3)C13A—H13A0.9900
N2—H2A0.95 (3)C13A—H13B0.9900
N3—C41.370 (4)C13B—H13C0.9900
N3—H3B0.8800C13B—H13D0.9900
N3—H3A0.8800C14A—C15A1.520 (7)
C1—C21.389 (4)C14A—H14A0.9900
C1—C61.399 (4)C14A—H14B0.9900
C2—C31.382 (4)C14B—C15B1.512 (7)
C2—H20.9500C14B—H14C0.9900
C3—C41.397 (4)C14B—H14D0.9900
C3—H30.9500C15A—H15A0.9900
C4—C51.404 (4)C15A—H15B0.9900
C5—C61.381 (4)C15B—H15C0.9900
C5—H50.9500C15B—H15D0.9900
C6—H60.9500
O1—S1—O2115.12 (11)C10—C11—H11120.0
O1—S1—N1104.73 (11)O3A—C12A—C13A110.0 (14)
O2—S1—N1113.62 (11)O3A—C12A—H12A109.7
O1—S1—C1108.05 (11)C13A—C12A—H12A109.7
O2—S1—C1107.15 (12)O3A—C12A—H12B109.7
N1—S1—C1107.87 (11)C13A—C12A—H12B109.7
C12A—O3A—C15A107.5 (8)H12A—C12A—H12B108.2
C15B—O3B—C12B109.8 (9)O3B—C12B—C13B102.6 (11)
C13A—O4A—C14A103.4 (8)O3B—C12B—H12C111.2
C13B—O4B—C14B112.3 (8)C13B—C12B—H12C111.2
C7—N1—S1120.97 (18)O3B—C12B—H12D111.2
C7—N2—C11123.8 (2)C13B—C12B—H12D111.2
C7—N2—H2A117.0 (18)H12C—C12B—H12D109.2
C11—N2—H2A118.9 (19)O4A—C13A—C12A107.1 (14)
C4—N3—H3B120.0O4A—C13A—H13A110.3
C4—N3—H3A120.0C12A—C13A—H13A110.3
H3B—N3—H3A120.0O4A—C13A—H13B110.3
C2—C1—C6119.7 (2)C12A—C13A—H13B110.3
C2—C1—S1121.15 (19)H13A—C13A—H13B108.5
C6—C1—S1119.08 (19)O4B—C13B—C12B104.8 (11)
C3—C2—C1120.1 (2)O4B—C13B—H13C110.8
C3—C2—H2120.0C12B—C13B—H13C110.8
C1—C2—H2120.0O4B—C13B—H13D110.8
C2—C3—C4120.8 (2)C12B—C13B—H13D110.8
C2—C3—H3119.6H13C—C13B—H13D108.9
C4—C3—H3119.6O4A—C14A—C15A112.0 (9)
N3—C4—C3120.8 (3)O4A—C14A—H14A109.2
N3—C4—C5120.3 (3)C15A—C14A—H14A109.2
C3—C4—C5118.9 (2)O4A—C14A—H14B109.2
C6—C5—C4120.3 (2)C15A—C14A—H14B109.2
C6—C5—H5119.9H14A—C14A—H14B107.9
C4—C5—H5119.9O4B—C14B—C15B110.8 (8)
C5—C6—C1120.2 (2)O4B—C14B—H14C109.5
C5—C6—H6119.9C15B—C14B—H14C109.5
C1—C6—H6119.9O4B—C14B—H14D109.5
N1—C7—N2114.0 (2)C15B—C14B—H14D109.5
N1—C7—C8129.5 (2)H14C—C14B—H14D108.1
N2—C7—C8116.4 (2)O3A—C15A—C14A104.9 (8)
C9—C8—C7120.3 (3)O3A—C15A—H15A110.8
C9—C8—H8119.9C14A—C15A—H15A110.8
C7—C8—H8119.9O3A—C15A—H15B110.8
C8—C9—C10121.1 (3)C14A—C15A—H15B110.8
C8—C9—H9119.5H15A—C15A—H15B108.8
C10—C9—H9119.5O3B—C15B—C14B95.4 (8)
C11—C10—C9118.4 (3)O3B—C15B—H15C112.7
C11—C10—H10120.8C14B—C15B—H15C112.7
C9—C10—H10120.8O3B—C15B—H15D112.7
N2—C11—C10120.1 (3)C14B—C15B—H15D112.7
N2—C11—H11120.0H15C—C15B—H15D110.1
O1—S1—N1—C7178.20 (18)C11—N2—C7—N1178.2 (2)
O2—S1—N1—C755.4 (2)C11—N2—C7—C80.7 (4)
C1—S1—N1—C763.3 (2)N1—C7—C8—C9178.6 (2)
O1—S1—C1—C2114.5 (2)N2—C7—C8—C90.1 (4)
O2—S1—C1—C210.1 (2)C7—C8—C9—C100.1 (4)
N1—S1—C1—C2132.7 (2)C8—C9—C10—C110.3 (4)
O1—S1—C1—C662.3 (2)C7—N2—C11—C101.2 (4)
O2—S1—C1—C6173.06 (19)C9—C10—C11—N20.9 (4)
N1—S1—C1—C650.4 (2)C15A—O3A—C12A—C13A58.2 (10)
C6—C1—C2—C30.3 (4)C15B—O3B—C12B—C13B75.0 (10)
S1—C1—C2—C3176.5 (2)C14A—O4A—C13A—C12A68.9 (10)
C1—C2—C3—C40.3 (4)O3A—C12A—C13A—O4A10.9 (11)
C2—C3—C4—N3179.8 (3)C14B—O4B—C13B—C12B62.8 (9)
C2—C3—C4—C50.4 (4)O3B—C12B—C13B—O4B1.3 (10)
N3—C4—C5—C6179.5 (3)C13A—O4A—C14A—C15A61.2 (12)
C3—C4—C5—C61.1 (4)C13B—O4B—C14B—C15B56.2 (10)
C4—C5—C6—C11.1 (4)C12A—O3A—C15A—C14A65.4 (10)
C2—C1—C6—C50.4 (4)O4A—C14A—C15A—O3A5.3 (9)
S1—C1—C6—C5177.3 (2)C12B—O3B—C15B—C14B80.5 (12)
S1—N1—C7—N2176.74 (17)O4B—C14B—C15B—O3B12.4 (9)
S1—N1—C7—C82.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.95 (3)1.98 (3)2.930 (3)178 (3)
N3—H3A···O2ii0.882.263.104 (3)162
N3—H3B···O1iii0.882.223.071 (3)162
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z1/2; (iii) x, y1/2, z+3/2.
(3) 4-amino-N-(1,2-dihydropyridin-2-ylidene)benzenesulfonamide tetrahydrofuran monosolvate top
Crystal data top
C11H11N3O2S·C4H8OF(000) = 680
Mr = 321.39Dx = 1.336 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3068 reflections
a = 11.212 (2) Åθ = 2.4–25.4°
b = 12.449 (2) ŵ = 0.22 mm1
c = 11.6209 (19) ÅT = 173 K
β = 99.888 (5)°Block, colourless
V = 1597.8 (5) Å31.00 × 0.65 × 0.50 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
2809 independent reflections
Radiation source: microfocus sealed tube2232 reflections with I > 2σ(I)
Doubly curved silicon crytsal monochromatorRint = 0.046
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2004)
h = 913
Tmin = 0.811, Tmax = 0.899k = 1414
7648 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.102P)2 + 0.2263P]
where P = (Fo2 + 2Fc2)/3
2809 reflections(Δ/σ)max = 0.009
271 parametersΔρmax = 0.48 e Å3
273 restraintsΔρmin = 0.39 e Å3
Crystal data top
C11H11N3O2S·C4H8OV = 1597.8 (5) Å3
Mr = 321.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.212 (2) ŵ = 0.22 mm1
b = 12.449 (2) ÅT = 173 K
c = 11.6209 (19) Å1.00 × 0.65 × 0.50 mm
β = 99.888 (5)°
Data collection top
Bruker SMART X2S
diffractometer
2809 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2004)
2232 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.899Rint = 0.046
7648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053273 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.48 e Å3
2809 reflectionsΔρmin = 0.39 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.72186 (5)0.32545 (5)0.06833 (5)0.0472 (3)
O10.74470 (19)0.33014 (15)0.04977 (16)0.0626 (5)
O20.70244 (17)0.22051 (13)0.11454 (17)0.0585 (5)
O3A0.7328 (6)0.6274 (4)0.4348 (4)0.1471 (19)0.822 (9)
O3B0.660 (2)0.679 (2)0.386 (2)0.147 (4)0.178 (9)
N10.60726 (18)0.40371 (17)0.06921 (17)0.0505 (5)
N20.46902 (19)0.49345 (17)0.1544 (2)0.0515 (5)
N31.1285 (3)0.5312 (3)0.3839 (4)0.0868 (10)
C10.8458 (2)0.38275 (18)0.1603 (2)0.0455 (6)
C20.8842 (2)0.3445 (2)0.2728 (2)0.0516 (6)
C30.9773 (2)0.3938 (2)0.3456 (3)0.0595 (7)
C41.0371 (2)0.4827 (2)0.3090 (3)0.0591 (7)
C50.9995 (3)0.5191 (2)0.1950 (3)0.0632 (7)
C60.9052 (3)0.4705 (2)0.1223 (3)0.0564 (7)
C70.5560 (2)0.41654 (19)0.1654 (2)0.0458 (6)
C80.5805 (3)0.3625 (2)0.2731 (2)0.0579 (7)
C90.5197 (3)0.3896 (3)0.3609 (3)0.0750 (9)
C100.4335 (3)0.4694 (3)0.3462 (3)0.0839 (11)
C110.4082 (3)0.5201 (3)0.2412 (3)0.0673 (8)
C12A0.7370 (8)0.6469 (6)0.3152 (6)0.140 (2)0.822 (9)
H12A0.76960.58410.27850.169*0.822 (9)
H12B0.65590.66480.27110.169*0.822 (9)
C12B0.763 (3)0.6373 (11)0.346 (3)0.144 (4)0.178 (9)
H12C0.81590.59600.40760.173*0.178 (9)
H12D0.74110.59220.27540.173*0.178 (9)
C130.8166 (7)0.7360 (6)0.3213 (6)0.165 (2)
H13A0.90090.71080.32410.198*
H13B0.79430.78190.25140.198*
C140.8078 (7)0.7936 (5)0.4207 (7)0.166 (2)
H14A0.77310.86560.40020.200*
H14B0.88850.80240.46990.200*
C15A0.7305 (10)0.7329 (6)0.4803 (8)0.157 (3)0.822 (9)
H15A0.64720.76230.46520.188*0.822 (9)
H15B0.76050.73340.56550.188*0.822 (9)
C15B0.712 (4)0.753 (4)0.473 (4)0.159 (4)0.178 (9)
H15C0.65440.80990.48640.191*0.178 (9)
H15D0.74270.71610.54820.191*0.178 (9)
H20.846 (3)0.288 (2)0.297 (2)0.059 (8)*
H2A0.449 (2)0.526 (2)0.077 (3)0.062 (8)*
H31.007 (3)0.376 (3)0.426 (3)0.087 (10)*
H3A1.137 (4)0.503 (4)0.448 (4)0.115 (18)*
H3B1.154 (4)0.579 (3)0.355 (3)0.087 (13)*
H51.040 (3)0.582 (3)0.177 (3)0.094 (11)*
H60.880 (3)0.494 (3)0.049 (3)0.069 (9)*
H80.632 (3)0.313 (2)0.288 (2)0.048 (7)*
H90.535 (3)0.346 (3)0.432 (3)0.091 (11)*
H100.396 (4)0.481 (3)0.399 (3)0.102 (13)*
H110.346 (3)0.573 (3)0.216 (3)0.078 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0533 (4)0.0396 (4)0.0485 (4)0.0077 (3)0.0081 (3)0.0027 (2)
O10.0738 (12)0.0663 (13)0.0486 (11)0.0175 (9)0.0135 (9)0.0078 (8)
O20.0647 (11)0.0374 (10)0.0714 (12)0.0016 (8)0.0062 (9)0.0026 (8)
O3A0.189 (5)0.106 (3)0.158 (4)0.007 (3)0.063 (3)0.040 (3)
O3B0.167 (7)0.132 (7)0.154 (7)0.013 (6)0.061 (6)0.002 (6)
N10.0531 (11)0.0511 (12)0.0477 (12)0.0120 (9)0.0101 (9)0.0041 (9)
N20.0535 (11)0.0535 (12)0.0471 (13)0.0153 (10)0.0074 (9)0.0043 (10)
N30.0760 (19)0.083 (2)0.098 (3)0.0259 (17)0.0048 (17)0.003 (2)
C10.0477 (12)0.0393 (12)0.0518 (14)0.0070 (10)0.0148 (10)0.0018 (10)
C20.0502 (13)0.0461 (14)0.0586 (15)0.0020 (11)0.0096 (11)0.0095 (12)
C30.0556 (14)0.0641 (17)0.0567 (16)0.0012 (12)0.0042 (12)0.0066 (13)
C40.0501 (13)0.0583 (16)0.0703 (17)0.0046 (12)0.0145 (12)0.0084 (13)
C50.0701 (17)0.0479 (16)0.0762 (19)0.0083 (13)0.0252 (14)0.0044 (13)
C60.0696 (16)0.0480 (15)0.0546 (16)0.0007 (12)0.0197 (13)0.0069 (12)
C70.0458 (12)0.0429 (13)0.0482 (13)0.0032 (10)0.0064 (10)0.0004 (10)
C80.0555 (14)0.0609 (16)0.0583 (16)0.0185 (14)0.0124 (12)0.0133 (13)
C90.0780 (19)0.095 (2)0.0548 (17)0.0274 (17)0.0187 (14)0.0238 (16)
C100.083 (2)0.117 (3)0.0563 (18)0.041 (2)0.0247 (16)0.0137 (18)
C110.0680 (17)0.080 (2)0.0555 (17)0.0287 (16)0.0153 (13)0.0053 (14)
C12A0.168 (5)0.128 (4)0.133 (4)0.027 (4)0.051 (4)0.050 (4)
C12B0.186 (8)0.113 (6)0.150 (8)0.016 (7)0.075 (7)0.014 (7)
C130.198 (5)0.150 (5)0.164 (5)0.045 (4)0.083 (4)0.001 (4)
C140.192 (5)0.109 (4)0.197 (6)0.023 (4)0.029 (4)0.036 (4)
C15A0.193 (6)0.170 (6)0.119 (4)0.041 (5)0.056 (4)0.018 (4)
C15B0.192 (8)0.142 (8)0.151 (7)0.026 (7)0.050 (6)0.015 (7)
Geometric parameters (Å, º) top
S1—O11.440 (2)C7—C81.406 (4)
S1—O21.4431 (18)C8—C91.363 (4)
S1—N11.614 (2)C8—H80.84 (3)
S1—C11.753 (3)C9—C101.376 (5)
O3A—C15A1.418 (6)C9—H90.98 (4)
O3A—C12A1.419 (6)C10—C111.360 (5)
O3B—C15B1.419 (6)C10—H100.81 (4)
O3B—C12B1.419 (6)C11—H110.97 (3)
N1—C71.352 (3)C12A—C131.418 (6)
N2—C111.351 (4)C12A—H12A0.9900
N2—C71.357 (3)C12A—H12B0.9900
N2—H2A0.97 (3)C12B—C131.417 (7)
N3—C41.366 (4)C12B—H12C0.9900
N3—H3A0.82 (5)C12B—H12D0.9900
N3—H3B0.77 (4)C13—C141.378 (9)
C1—C21.388 (4)C13—H13A0.9900
C1—C61.391 (4)C13—H13B0.9900
C2—C31.371 (4)C14—C15A1.417 (6)
C2—H20.89 (3)C14—C15B1.417 (7)
C3—C41.398 (4)C14—H14A0.9900
C3—H30.96 (4)C14—H14B0.9900
C4—C51.395 (4)C15A—H15A0.9900
C5—C61.375 (4)C15A—H15B0.9900
C5—H50.94 (4)C15B—H15C0.9900
C6—H60.90 (3)C15B—H15D0.9900
O1—S1—O2117.02 (11)N2—C11—H11111.8 (18)
O1—S1—N1104.69 (11)C10—C11—H11128.0 (18)
O2—S1—N1111.89 (11)C13—C12A—O3A102.2 (5)
O1—S1—C1108.22 (12)C13—C12A—H12A111.3
O2—S1—C1107.21 (11)O3A—C12A—H12A111.3
N1—S1—C1107.41 (11)C13—C12A—H12B111.3
C15A—O3A—C12A102.3 (6)O3A—C12A—H12B111.3
C15B—O3B—C12B102.3 (7)H12A—C12A—H12B109.2
C7—N1—S1121.91 (17)C13—C12B—O3B98.2 (14)
C11—N2—C7123.3 (2)C13—C12B—H12C112.1
C11—N2—H2A121.3 (17)O3B—C12B—H12C112.1
C7—N2—H2A115.3 (17)C13—C12B—H12D112.2
C4—N3—H3A110 (3)O3B—C12B—H12D112.2
C4—N3—H3B111 (3)H12C—C12B—H12D109.8
H3A—N3—H3B139 (4)C14—C13—C12B100.8 (13)
C2—C1—C6118.8 (2)C14—C13—C12A108.3 (5)
C2—C1—S1121.30 (19)C12B—C13—C12A17.9 (19)
C6—C1—S1119.9 (2)C14—C13—H13A110.0
C3—C2—C1120.5 (3)C12B—C13—H13A98.7
C3—C2—H2121.2 (18)C12A—C13—H13A110.0
C1—C2—H2118.3 (18)C14—C13—H13B110.0
C2—C3—C4121.4 (3)C12B—C13—H13B127.7
C2—C3—H3127 (2)C12A—C13—H13B110.0
C4—C3—H3112 (2)H13A—C13—H13B108.4
N3—C4—C5122.3 (3)C13—C14—C15A105.7 (5)
N3—C4—C3120.1 (3)C13—C14—C15B110.2 (10)
C5—C4—C3117.6 (3)C15A—C14—C15B13 (3)
C6—C5—C4121.1 (3)C13—C14—H14A110.6
C6—C5—H5125 (2)C15A—C14—H14A110.6
C4—C5—H5114 (2)C15B—C14—H14A97.6
C5—C6—C1120.6 (3)C13—C14—H14B110.6
C5—C6—H6122 (2)C15A—C14—H14B110.6
C1—C6—H6118 (2)C15B—C14—H14B118.3
N1—C7—N2114.0 (2)H14A—C14—H14B108.7
N1—C7—C8129.4 (2)C14—C15A—O3A105.0 (5)
N2—C7—C8116.7 (2)C14—C15A—H15A110.7
C9—C8—C7120.1 (3)O3A—C15A—H15A110.7
C9—C8—H8116.2 (18)C14—C15A—H15B110.7
C7—C8—H8123.7 (18)O3A—C15A—H15B110.7
C8—C9—C10121.1 (3)H15A—C15A—H15B108.8
C8—C9—H9117 (2)C14—C15B—O3B99.7 (14)
C10—C9—H9121 (2)C14—C15B—H15C111.8
C11—C10—C9118.7 (3)O3B—C15B—H15C111.8
C11—C10—H10122 (3)C14—C15B—H15D111.8
C9—C10—H10119 (3)O3B—C15B—H15D111.9
N2—C11—C10120.1 (3)H15C—C15B—H15D109.6
O1—S1—N1—C7177.3 (2)N1—C7—C8—C9178.5 (3)
O2—S1—N1—C749.6 (2)N2—C7—C8—C91.2 (4)
C1—S1—N1—C767.8 (2)C7—C8—C9—C100.3 (5)
O1—S1—C1—C2145.9 (2)C8—C9—C10—C111.0 (6)
O2—S1—C1—C218.8 (2)C7—N2—C11—C100.4 (5)
N1—S1—C1—C2101.6 (2)C9—C10—C11—N21.4 (6)
O1—S1—C1—C636.2 (2)C15A—O3A—C12A—C1339.6 (10)
O2—S1—C1—C6163.29 (19)C15B—O3B—C12B—C1353 (3)
N1—S1—C1—C676.3 (2)O3B—C12B—C13—C1446 (2)
C6—C1—C2—C31.3 (4)O3B—C12B—C13—C12A70 (4)
S1—C1—C2—C3176.6 (2)O3A—C12A—C13—C1428.3 (10)
C1—C2—C3—C40.7 (4)O3A—C12A—C13—C12B39 (3)
C2—C3—C4—N3179.1 (3)C12B—C13—C14—C15A11.5 (19)
C2—C3—C4—C50.7 (4)C12A—C13—C14—C15A5.3 (10)
N3—C4—C5—C6178.4 (3)C12B—C13—C14—C15B24 (4)
C3—C4—C5—C61.3 (4)C12A—C13—C14—C15B8 (3)
C4—C5—C6—C10.7 (4)C13—C14—C15A—O3A20.0 (11)
C2—C1—C6—C50.6 (4)C15B—C14—C15A—O3A132 (7)
S1—C1—C6—C5177.3 (2)C12A—O3A—C15A—C1437.3 (11)
S1—N1—C7—N2173.50 (18)C13—C14—C15B—O3B8 (4)
S1—N1—C7—C86.2 (4)C15A—C14—C15B—O3B80 (4)
C11—N2—C7—N1178.8 (3)C12B—O3B—C15B—C1437 (4)
C11—N2—C7—C80.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.97 (3)1.92 (3)2.892 (3)173 (2)
N3—H3A···O3Aii0.82 (5)2.43 (5)3.103 (7)140 (4)
N3—H3B···O2iii0.77 (4)2.37 (4)3.023 (4)143 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y+1/2, z+1/2.
(4) piperidin-1-ium 4-amino-N-(pyridin-2-yl)benzenesulfonamidate top
Crystal data top
C5H12N+·C11H10N3O2SF(000) = 712
Mr = 334.44Dx = 1.335 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1508 reflections
a = 8.6639 (16) Åθ = 2.4–21.4°
b = 12.586 (2) ŵ = 0.21 mm1
c = 15.833 (3) ÅT = 173 K
β = 105.447 (6)°Block, colourless
V = 1664.1 (5) Å30.27 × 0.25 × 0.14 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
1922 independent reflections
Radiation source: microfocus sealed tube1482 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.068
ϕ and ω scansθmax = 21.6°, θmin = 2.1°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2004)
h = 87
Tmin = 0.946, Tmax = 0.971k = 1212
7118 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.2051P]
where P = (Fo2 + 2Fc2)/3
1922 reflections(Δ/σ)max = 0.001
216 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C5H12N+·C11H10N3O2SV = 1664.1 (5) Å3
Mr = 334.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6639 (16) ŵ = 0.21 mm1
b = 12.586 (2) ÅT = 173 K
c = 15.833 (3) Å0.27 × 0.25 × 0.14 mm
β = 105.447 (6)°
Data collection top
Bruker SMART X2S
diffractometer
1922 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2004)
1482 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.971Rint = 0.068
7118 measured reflectionsθmax = 21.6°
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.20 e Å3
1922 reflectionsΔρmin = 0.31 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41673 (8)0.79423 (5)0.54918 (5)0.0204 (2)
O10.5272 (2)0.86371 (15)0.52049 (12)0.0262 (5)
O20.4671 (2)0.68354 (14)0.56238 (12)0.0259 (5)
N10.2509 (3)0.81171 (17)0.48073 (14)0.0221 (6)
N20.0219 (3)0.80428 (18)0.43191 (16)0.0290 (6)
N30.3801 (3)0.9632 (3)0.8937 (2)0.0314 (7)
H3A0.397 (3)0.920 (2)0.9345 (18)0.011 (9)*
H3B0.389 (3)1.025 (2)0.9013 (19)0.021 (10)*
N40.7822 (3)1.00336 (18)0.61447 (15)0.0244 (6)
H4A0.77011.05940.57600.029*
H4B0.69730.95780.59410.029*
C10.4042 (3)0.8423 (2)0.65175 (18)0.0179 (7)
C20.4191 (3)0.7752 (2)0.72328 (19)0.0208 (7)
H20.43520.70130.71700.025*
C30.4109 (3)0.8147 (2)0.80329 (19)0.0227 (7)
H30.42060.76760.85130.027*
C40.3884 (3)0.9230 (2)0.81448 (18)0.0199 (7)
C50.3703 (3)0.9901 (2)0.74187 (19)0.0218 (7)
H50.35241.06380.74770.026*
C60.3782 (3)0.9501 (2)0.66184 (18)0.0216 (7)
H60.36570.99660.61330.026*
C70.1102 (3)0.7587 (2)0.48441 (18)0.0212 (7)
C80.0997 (3)0.6696 (2)0.53403 (19)0.0305 (8)
H80.19400.63760.56970.037*
C90.0479 (4)0.6279 (3)0.5313 (2)0.0376 (9)
H90.05620.56740.56560.045*
C100.1840 (3)0.6741 (3)0.4786 (2)0.0373 (9)
H100.28760.64710.47600.045*
C110.1635 (3)0.7607 (3)0.4302 (2)0.0353 (9)
H110.25660.79200.39270.042*
C120.9636 (4)0.8581 (2)0.6827 (2)0.0388 (9)
H12A1.06820.82460.68550.047*
H12B0.87940.80330.66440.047*
C130.9639 (4)0.8995 (3)0.7722 (2)0.0439 (10)
H13A1.05450.94930.79300.053*
H13B0.97850.83960.81410.053*
C140.8082 (3)0.9561 (3)0.76901 (19)0.0330 (8)
H14A0.71860.90460.75420.040*
H14B0.81310.98660.82730.040*
C150.7783 (3)1.0437 (2)0.70140 (19)0.0300 (8)
H15A0.67261.07630.69720.036*
H15B0.86091.09950.72020.036*
C160.9334 (3)0.9468 (2)0.61644 (19)0.0300 (8)
H16A1.02380.99760.63130.036*
H16B0.92700.91720.55770.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0170 (4)0.0250 (5)0.0177 (5)0.0003 (3)0.0017 (3)0.0006 (3)
O10.0208 (10)0.0358 (12)0.0225 (12)0.0060 (9)0.0065 (9)0.0015 (9)
O20.0259 (11)0.0254 (12)0.0243 (12)0.0061 (8)0.0032 (9)0.0010 (9)
N10.0166 (13)0.0302 (15)0.0171 (15)0.0032 (10)0.0003 (10)0.0014 (11)
N20.0218 (15)0.0343 (16)0.0276 (16)0.0001 (12)0.0006 (12)0.0048 (12)
N30.0438 (18)0.027 (2)0.023 (2)0.0049 (15)0.0079 (14)0.0040 (18)
N40.0205 (13)0.0290 (15)0.0198 (15)0.0014 (10)0.0017 (11)0.0025 (12)
C10.0137 (15)0.0211 (18)0.0164 (18)0.0003 (12)0.0001 (12)0.0000 (14)
C20.0163 (15)0.0198 (17)0.024 (2)0.0007 (12)0.0012 (13)0.0011 (15)
C30.0206 (16)0.0285 (19)0.0170 (19)0.0042 (13)0.0016 (13)0.0025 (15)
C40.0125 (15)0.0274 (19)0.0190 (19)0.0056 (12)0.0026 (12)0.0057 (16)
C50.0184 (16)0.0205 (17)0.025 (2)0.0015 (12)0.0024 (13)0.0028 (16)
C60.0170 (15)0.0253 (19)0.021 (2)0.0024 (12)0.0020 (13)0.0035 (15)
C70.0206 (18)0.0274 (18)0.0142 (18)0.0009 (13)0.0025 (13)0.0064 (14)
C80.0247 (18)0.039 (2)0.025 (2)0.0049 (14)0.0022 (14)0.0061 (16)
C90.033 (2)0.043 (2)0.038 (2)0.0109 (16)0.0108 (16)0.0036 (16)
C100.0184 (18)0.051 (2)0.042 (2)0.0094 (15)0.0064 (16)0.0096 (19)
C110.0181 (19)0.042 (2)0.041 (2)0.0004 (15)0.0008 (15)0.0078 (18)
C120.0286 (18)0.038 (2)0.049 (3)0.0108 (15)0.0087 (16)0.0057 (18)
C130.0274 (19)0.069 (3)0.031 (2)0.0042 (16)0.0005 (15)0.0249 (19)
C140.0245 (18)0.053 (2)0.0214 (19)0.0045 (15)0.0053 (14)0.0006 (16)
C150.0297 (18)0.0330 (19)0.030 (2)0.0015 (14)0.0117 (15)0.0072 (16)
C160.0283 (18)0.036 (2)0.027 (2)0.0073 (14)0.0097 (14)0.0033 (15)
Geometric parameters (Å, º) top
S1—O11.4554 (19)C6—H60.9500
S1—O21.4583 (19)C7—C81.386 (4)
S1—N11.568 (2)C8—C91.372 (4)
S1—C11.763 (3)C8—H80.9500
N1—C71.404 (4)C9—C101.379 (4)
N2—C111.338 (4)C9—H90.9500
N2—C71.350 (3)C10—C111.371 (4)
N3—C41.372 (4)C10—H100.9500
N3—H3A0.83 (3)C11—H110.9500
N3—H3B0.79 (3)C12—C161.506 (4)
N4—C151.476 (3)C12—C131.508 (4)
N4—C161.484 (3)C12—H12A0.9900
N4—H4A0.9200C12—H12B0.9900
N4—H4B0.9200C13—C141.515 (4)
C1—C21.391 (4)C13—H13A0.9900
C1—C61.392 (4)C13—H13B0.9900
C2—C31.380 (4)C14—C151.510 (4)
C2—H20.9500C14—H14A0.9900
C3—C41.394 (4)C14—H14B0.9900
C3—H30.9500C15—H15A0.9900
C4—C51.401 (4)C15—H15B0.9900
C5—C61.382 (4)C16—H16A0.9900
C5—H50.9500C16—H16B0.9900
O1—S1—O2114.96 (11)C7—C8—H8120.2
O1—S1—N1104.93 (12)C8—C9—C10119.9 (3)
O2—S1—N1114.67 (11)C8—C9—H9120.1
O1—S1—C1106.75 (12)C10—C9—H9120.1
O2—S1—C1106.58 (12)C11—C10—C9117.1 (3)
N1—S1—C1108.59 (12)C11—C10—H10121.4
C7—N1—S1123.39 (19)C9—C10—H10121.4
C11—N2—C7117.4 (3)N2—C11—C10124.7 (3)
C4—N3—H3A115.4 (19)N2—C11—H11117.7
C4—N3—H3B118 (2)C10—C11—H11117.7
H3A—N3—H3B123 (3)C16—C12—C13110.8 (3)
C15—N4—C16112.6 (2)C16—C12—H12A109.5
C15—N4—H4A109.1C13—C12—H12A109.5
C16—N4—H4A109.1C16—C12—H12B109.5
C15—N4—H4B109.1C13—C12—H12B109.5
C16—N4—H4B109.1H12A—C12—H12B108.1
H4A—N4—H4B107.8C12—C13—C14110.7 (2)
C2—C1—C6118.8 (3)C12—C13—H13A109.5
C2—C1—S1121.8 (2)C14—C13—H13A109.5
C6—C1—S1119.5 (2)C12—C13—H13B109.5
C3—C2—C1120.8 (3)C14—C13—H13B109.5
C3—C2—H2119.6H13A—C13—H13B108.1
C1—C2—H2119.6C15—C14—C13110.5 (3)
C2—C3—C4120.8 (3)C15—C14—H14A109.6
C2—C3—H3119.6C13—C14—H14A109.6
C4—C3—H3119.6C15—C14—H14B109.6
N3—C4—C3121.3 (3)C13—C14—H14B109.6
N3—C4—C5120.4 (3)H14A—C14—H14B108.1
C3—C4—C5118.3 (3)N4—C15—C14111.6 (2)
C6—C5—C4120.7 (3)N4—C15—H15A109.3
C6—C5—H5119.6C14—C15—H15A109.3
C4—C5—H5119.6N4—C15—H15B109.3
C5—C6—C1120.6 (3)C14—C15—H15B109.3
C5—C6—H6119.7H15A—C15—H15B108.0
C1—C6—H6119.7N4—C16—C12111.0 (2)
N2—C7—C8121.3 (2)N4—C16—H16A109.4
N2—C7—N1112.0 (2)C12—C16—H16A109.4
C8—C7—N1126.6 (2)N4—C16—H16B109.4
C9—C8—C7119.5 (3)C12—C16—H16B109.4
C9—C8—H8120.2H16A—C16—H16B108.0
C7—N1—S1—O1179.8 (2)S1—C1—C6—C5179.0 (2)
C7—N1—S1—O252.7 (3)C11—N2—C7—C80.5 (4)
C7—N1—S1—C166.4 (2)C11—N2—C7—N1179.8 (2)
O1—S1—C1—C2131.7 (2)S1—N1—C7—N2165.5 (2)
O2—S1—C1—C28.3 (2)S1—N1—C7—C814.9 (4)
N1—S1—C1—C2115.7 (2)N2—C7—C8—C91.3 (4)
O1—S1—C1—C648.6 (2)N1—C7—C8—C9179.1 (3)
O2—S1—C1—C6171.92 (19)C7—C8—C9—C100.7 (5)
N1—S1—C1—C664.1 (2)C8—C9—C10—C110.6 (5)
C6—C1—C2—C31.0 (4)C7—N2—C11—C100.9 (5)
S1—C1—C2—C3179.22 (19)C9—C10—C11—N21.4 (5)
C1—C2—C3—C40.4 (4)C16—C12—C13—C1456.4 (3)
C2—C3—C4—N3180.0 (2)C12—C13—C14—C1555.7 (4)
C2—C3—C4—C51.6 (4)C16—N4—C15—C1455.2 (3)
N3—C4—C5—C6179.9 (2)C13—C14—C15—N454.9 (3)
C3—C4—C5—C61.5 (4)C15—N4—C16—C1255.3 (3)
C4—C5—C6—C10.0 (4)C13—C12—C16—N455.6 (3)
C2—C1—C6—C51.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.83 (3)2.35 (3)3.169 (4)172 (2)
N3—H3B···O2ii0.79 (3)2.34 (3)3.071 (4)155 (3)
N4—H4A···N1iii0.921.842.746 (3)168
N4—H4B···O1iv0.922.012.904 (3)165
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+2, z+1; (iv) x1, y, z.

Experimental details

(1)(2)(3)(4)
Crystal data
Chemical formulaC11H11N3O2SC11H11N3O2S·C4H8O2C11H11N3O2S·C4H8OC5H12N+·C11H10N3O2S
Mr249.29337.39321.39334.44
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)173173173173
a, b, c (Å)12.7350 (16), 11.6945 (15), 15.3357 (18)9.0258 (10), 9.9264 (12), 17.988 (2)11.212 (2), 12.449 (2), 11.6209 (19)8.6639 (16), 12.586 (2), 15.833 (3)
β (°) 93.546 (3) 100.720 (3) 99.888 (5) 105.447 (6)
V3)2279.6 (5)1583.5 (3)1597.8 (5)1664.1 (5)
Z8444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.280.230.220.21
Crystal size (mm)0.75 × 0.70 × 0.350.75 × 0.63 × 0.381.00 × 0.65 × 0.500.27 × 0.25 × 0.14
Data collection
DiffractometerBruker SMART X2S
diffractometer
Bruker SMART X2S
diffractometer
Bruker SMART X2S
diffractometer
Bruker SMART X2S
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 2004)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 2004)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 2004)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.819, 0.9090.847, 0.9180.811, 0.8990.946, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
6574, 1987, 1743 13599, 2778, 2488 7648, 2809, 2232 7118, 1922, 1482
Rint0.0430.0280.0460.068
θmax (°)25.025.025.021.6
(sin θ/λ)max1)0.5950.5940.5940.517
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.05 0.050, 0.157, 1.08 0.053, 0.163, 1.08 0.037, 0.090, 1.02
No. of reflections1987277828091922
No. of parameters166268271216
No. of restraints03772730
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.400.59, 0.560.48, 0.390.20, 0.31

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O2i0.86 (3)2.15 (2)2.874 (2)140 (2)
N2—H1···O20.86 (3)2.19 (2)2.847 (2)132 (2)
N3—H1A···O1ii0.87 (3)2.12 (3)2.985 (2)172 (2)
N3—H1B···N1iii0.84 (3)2.23 (3)3.050 (2)168 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.95 (3)1.98 (3)2.930 (3)178 (3)
N3—H3A···O2ii0.882.263.104 (3)161.7
N3—H3B···O1iii0.882.223.071 (3)162.4
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z1/2; (iii) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (3) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.97 (3)1.92 (3)2.892 (3)173 (2)
N3—H3A···O3Aii0.82 (5)2.43 (5)3.103 (7)140 (4)
N3—H3B···O2iii0.77 (4)2.37 (4)3.023 (4)143 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (4) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.83 (3)2.35 (3)3.169 (4)172 (2)
N3—H3B···O2ii0.79 (3)2.34 (3)3.071 (4)155 (3)
N4—H4A···N1iii0.921.842.746 (3)168.2
N4—H4B···O1iv0.922.012.904 (3)165.2
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+2, z+1; (iv) x1, y, z.
Table 2. Dihedral angles (°) top
Planes(1)(2)(3)(4)
Phenyl and pyridine86.37 (9)85.35 (13)87.13 (19)89.01 (9)
Phenyl and C1/S1/N175.14 (7)48.76 (12)76.67 (18)64.24 (12)
Pyridine and C1/S1/N176.25 (7)63.88 (12)70.37 (11)74.45 (10)
Table 3. Torsion angles (°) top
(1)(2)(3)(4)
N2—C7—N1—S1-10.6 (3)176.74 (17)173.50 (18)165.5 (2)
C8—C7—N1—S1169.32 (15)-2.0 (4)-6.2 (4)-14.9 (4)
C6—C1—S1—N1101.98 (16)-50.4 (2)-76.3 (2)-64.1 (2)
C2—C1—S1—N1-72.44 (15)132.7 (2)101.6 (2)115.7 (2)
O1—S1—N1—C7173.78 (14)-178.20 (18)177.3 (2)179.8 (2)
C1—S1—N1—C7-71.48 (16)-63.3 (2)-67.8 (2)-66.4 (2)
O2—S1—N1—C745.93 (17)55.4 (2)49.6 (2)52.7 (2)
Table 4. Hydrogen-bond geometry (Å, °) top
Symmetry codes: (i) -x+1/2, -y+1/2, -z+1; (ii) x, -y, z+1/2; (iii) -x+1/2, y+1/2, -z+3/2; (iv) -x+1, -y+1, -z+2; (v) x, -y+1/2, z-1/2; (vi) -x, y-1/2, -z+3/2; (vii) -x+1, -y+1, -z; (viii) -x+2, y+1, -z+1; (ix) -x+2, y+1/2, -z+1/2; (x) x, -y+3/2, z+1/2; (xi) -x+1, y+1/2, -z+3/2; (xii) -x, -y+2, -z+1; (xiii) x-1, y, z.
D—H···AD—HH···AD···AD—H···A
(I)
N2—H1···O20.86 (2)2.19 (2)2.847 (2)132 (2)
N2—H1···O2i0.86 (2)2.15 (2)2.874 (2)140 (2)
N3—H1A···O1ii0.87 (2)2.12 (2)2.985 (2)172 (2)
N3—H1B···N1iii0.84 (2)2.23 (2)3.050 (2)168 (2)
(II)
N2—H2A···N1iv0.95 (3)1.98 (3)2.930 (3)178 (3)
N3—H3A···O2v0.882.263.104 (3)162
N3—H3B···O1vi0.882.223.071 (3)162
(III)
N2—H2A···N1vii0.97 (3)1.92 (3)2.892 (3)173 (2)
N3—H3A···O3Aviii0.82 (5)2.43 (5)3.103 (7)140 (4)
N3—H3B···O2ix0.77 (4)2.37 (4)3.023 (4)143 (4)
(IV)
N3—H3A···O2x0.83 (3)2.35 (3)3.169 (4)172 (2)
N3—H3B···O2xi0.79 (3)2.34 (3)3.071 (4)155 (3)
N4—H4A···N1xii0.921.842.746 (3)168
N4—H4B···O1xiii0.922.002.904 (3)165
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds