Download citation
Download citation
link to html
The title compounds, trans-bis­(1H-benzimidazole-2-carbox­ylato-[kappa]2N3,O)bis­(ethanol-[kappa]O)cadmium(II), [Cd(C8H5N2O2)2(C2H6O)2], (I), and trans-bis­(1H-benzimidazole-[kappa]N3)bis­(1H-benzimidazole-2-carboxyl­ato-[kappa]2N3,O)nickel(II), [Ni(C8H5N2O2)2(C7H6N2)2], (II), are hydrogen-bonded supra­molecular complexes. In (I), the CdII ion is six-coordinated by two O atoms from two ethanol mol­ecules, and by two O and two N atoms from two bidentate benzimidazole-2-carboxyl­ate (HBIC) ligands, giving a distorted octa­hedral geometry. The combination of O-H...O and N-H...O hydrogen bonds results in two-dimensional layers parallel to the ab plane. In (II), the six-coordinated NiII atom, which lies on an inversion centre, shows a similar distorted octa­hedral geometry to the CdII ion in (I); two benzimidazole mol­ecules occupy the axial sites and the equatorial plane contains two chelating HBIC ligands. Pairs of N-H...O hydrogen bonds between pairs of HBIC anions connect adjacent NiII coordination units to form a one-dimensional chain parallel to the a axis. Moreover, these one-dimensional chains are further linked via N-H...O hydrogen bonds between HBIC anions and benzimidazole mol­ecules to generate a three-dimensional supra­molecular framework. The two compounds show quite different supra­molecular networks, which may be explained by the fact that different co-ligands occupy the axial sites in the coordination units.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111041837/qs3005sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111041837/qs3005Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111041837/qs3005IIsup3.hkl
Contains datablock II

CCDC references: 855949; 855950

Comment top

The design and construction of coordination architectures with unprecedented topologies have attracted considerable attention over recent decades (Moulton & Zaworotko, 2001; Roesky & Andruh, 2003). Discrete coordination assemblies are linked through numerous weak interactions, such as hydrogen bonds and ππ stacking, thereby resulting in higher-dimensional supramolecular networks with multiple structural features and properties (Kitaura et al., 2003; Custelcean et al., 2006; Madalan et al., 2006; Jiang et al., 2008, 2009). It has been demonstrated that the number and orientation of weak attraction sites on the discrete building blocks have a significant effect on the resulting supramolecular structures. Thus, minor changes in interaction sites in the building blocks may affect the packing and even the overall network. Related studies will help us rationally design crystallized materials with desirable structures.

Assembly of the complexes based on bis(chelating) bridging ligands has been of intense interest, mainly because of the multiple coordination modes of these ligands, intriguing structural features and potential properties of the resulting complexes (Zhang, Cheng et al., 2008; Zhang, Ma et al., 2008; Colacio et al., 2009; Mota et al., 2010). For example, a great many magnetically ordered materials based on oxalate and its derivatives have been explored in recent years (Ruiz et al., 1999; Xu et al., 2007; Train et al., 2008). Benzimidazole-2-carboxylic acid (H2BIC) represents a new kind of bis(chelating) bridging ligand and is less well explored than oxalate and its derivatives. Until now, several complexes constructed from H2BIC molecules have been investigated, and they exhibited low-dimensional structural features, such as mononuclear, discrete six-membered rings and a two-dimensional honeycomb network containing bowl-shaped voids (Dutta & Satapathi, 1981; Rettig et al., 1999; Saczewski et al., 2006; Zheng et al., 2011). In this work, we present the structures and supramolecular assembly via hydrogen bonds of two new complexes with H2BIC ligands, namely, trans-bis(1H-benzimidazole-2-carboxylato-κ2N3,O)bis(ethanol-κO)cadmium, (I), and trans-bis(1H-benzimidazole-2-carboxylato-κ2N3,O)bis(1H-benzimidazole-κN3)nickel(II), (II). Both possess similar mononuclear structures and one-dimensional hydrogen-bonding chains, but different hydrogen bonds involving the group on the axial sites result in quite different higher-dimensional networks.

The molecule of complex (I) consists of one CdII ion, two HBIC anions (HBIC is benzimidazole-2-carboxylate) and two ligated ethanol molecules (Fig. 1), while in complex (II), the asymmetric unit only contains half a NiII ion, one HBIC anion and one benzimidazole molecule as the NiII ion lies on a crystallographic inversion centre (Fig. 2). (I) and (II) are mononuclear complexes, in which the metal centre displays a distorted octahedral coordination geometry completed by two N atoms and two O atoms from two bidentate chelating HBIC ligands in the equatorial plane, and two donors from the different coligands in axial sites [O atoms from two ethanol molecules in (I) and N atoms from two benzimidazole molecules in (II)]. Selected bond lengths and angles for the title compounds are listed in Table 1 and the M—O and M—N bond distances [M = Cd in (I) and Ni in (II)] are in the normal ranges (Sarma et al., 2009; Yang & Wu, 2009). In (I), two trans-oriented HBIC ligands at the equatorial positions are almost coplanar, with a dihedral angle between the Cd1/N1/O1 and Cd1/N3/O3 planes of 9.97°. Two ligated ethanol molecules occupy the axial sites and the axial O5—Cd1—O6 angle [179.94 (19)°] deviates only slightly from 180°. In (II), two HBIC anions also occupy the equatorial plane, forming five-membered chelate rings and the dihedral angle between the Ni1/N1/O1 and Ni1/N1i/O1i planes [symmetry code: (i) -x+2, -y, -z] is 0°.

In the title compounds, pairs of N—H···O hydrogen bonds are formed between pairs of HBIC anions from adjacent mononuclear building blocks [N2—H2···O4ii and N4—H4···O2iii, symmetry codes: (ii) x+1, y-1, z; (iii) x-1, y+1, z for (I); N2—H2···O2iv, symmetry code: (iv) -x+1, -y, -z for (II)], which yield centrosymmetric R22(10) rings. Thus, the connection of these hydrogen bonds leads to similar one-dimensional chain-like structures in both complexes (Fig. 3). However, further investigation indicates that these one-dimensional chains are arranged in a quite different manner through the linkage of intermolecular attractions, thereby resulting in quite different supramolecular frameworks, mainly due to the difference in the apical ligand of the metal centres.

In compound (I), two ligated ethanol molecules act as hydrogen-bond donors to form two hydrogen bonds with carboxylate O atoms (O1 and O3) of HBIC ligands from adjacent one-dimensional chains. The angle between the ethanol O—H group and the equatorial plane is 81.027° and this orientation of the hydrogen-bond donor favours the formation of a ring. Thus, intermolecular O5—H5···O3v and O6—H6···O1vi hydrogen bonds between adjacent mononuclear building units [symmetry codes: (v) x+1, y, z; (vi) x-1, y, z], which generate R22(8) rings, serve to further link the one-dimensional chains into an extended two-dimensional supramolecular layer, which runs along the ab plane (Fig. 4). In the structure of (I), all potential strong hydrogen-bonding sites are involved in the formation of hydrogen bonds in the two-dimensional supramolecular network.

In compound (II), benzimidazole molecules occupying the axial sites also act as hydrogen-bond donors to generate N4—H4···O1vii hydrogen bonds [symmetry code: (vii) -x+2, y+1/2, -z+1/2], with carboxylate O atoms (O2) of HBIC anions. Although the angle between the benzimidazole N—H group and the equatorial plane is 44.891° and the orientation of the hydrogen-bond donor in (II) is not suitable for the formation of a hydrogen-bond ring, these hydrogen-bond interaction sites cannot be restrained in a two-dimensional layer, thereby resulting in a three-dimensional supramolecular network (Fig. 5).

The topological analysis approach was employed to better describe the structural characteristics of (II). The topology of this three-dimensional supramolecular framework can be simplified by considering the NiII coordination units as six-connected nodes and the intermolecular hydrogen bonds as two-connected linkers between these nodes. As a result, a three-dimensional network structure of 412.63-pcu topology is formed.

IR spectra of the two compounds show characteristic absorptions for the carboxylate stretching vibrations. The characteristic bands of carboxylate groups are seen in the range 1648–1520 cm-1 for asymmetric stretching and 1490–1458 cm-1 for symmetric stretching (Zheng et al., 2011). The absence of strong absorption peaks around 1700 cm-1 indicates that all carboxyl groups (–COOH) are deprotonated. Moreover, a strong and broad absorption band at 3587 cm-1 is assigned to the ν(O—H) vibration of ethanol molecules in complex (I).

In summary, two new complexes were constructed from the reaction between various metal salts and H2BIC molecules with different coligands. They show a similar mononuclear structure, where the metal ions reside in a distorted octahedral coordination environment and in which two bidentate chelating HBIC anions exist in the equatorial positions. However, intermolecular hydrogen bonds link discrete coordination units to form different supramolecular networks.

Related literature top

For general background, see: Jiang, et al. (2008); Jiang, et al. (2009); Kitaura, et al. (2003); Madalan, et al. (2006); Moulton & Zaworotko, (2001); Roesky & Andruh, (2003); For related compounds, see: Dutta, et al. (1981); Rettig, et al. (1999); Saczewski, et al. (2006); Zheng et al.(2011).

Experimental top

For the synthesis of complex (I), benzimidazole-2-carboxylic acid (H2BIC, 16.2 mg, 0.10 mmol) was dissolved in water (5 ml) and the pH was adjusted to about 8 with NaOH solution. A solution of Cd(ClO4)2.6H2O (41.9 mg, 0.10 mmol) in ethanol (5 ml) was then layered on the aqueous H2BIC solution. The system was left for about 2 months at room temperature and colourless block-shaped crystals of (I) were obtained by filtration (yield 56%). IR (KBr pellet, ν, cm-1): 3587 (s), 3100 (s), 1648 (s), 1582 (w), 1520 (s), 1484 (m), 1458 (s), 1391 (m), 1331 (s), 1212 (w), 1147 (w), 1018 (s), 994 (w), 948 (w), 911 (w), 857 (m), 819 (m), 757 (s), 631 (w), 593 (w), 547 (w), 436 (w).

For the preparation of (II), a mixture of NiCl2.6H2O (23.8 mg, 0.10 mmol), H2BIC (16.2 mg, 0.10 mmol) and benzimidazole (11.8 mg, 0.10 mmol) in H2O–C2H5OH (3:1v/v, 4 ml) was sealed in a sample bottle reactor (10 ml), and heated at 383 K under autogenous pressure for 48 h. After the sample was cooled to room temperature at a rate of 5 K h-1, block-shaped pale-purple crystals of (II) were collected (yield, 68%). IR (KBr pellet, ν, cm-1): 3098 (s), 1627 (s), 1614 (s), 1523 (m), 1490 (m), 1464 (s), 1391 (s), 1372 (w), 1343 (s), 1302 (w), 1273 (w), 1145 (w), 1023 (m), 966 (w), 914 (w), 858 (w), 823 (m), 766 (w), 743 (s), 637 (w), 597 (w), 433 (w).

Refinement top

A SIMU instruction (SHELXL97; Sheldrick, 2008) was used for several C atoms with large displacement parameters in the refinement of both structures. H atoms of the ethanol molecules were located in difference Fourier maps and the others were placed in calculated positions and refined as riding atoms, with isotropic displacement parameters [C—H = 0.97 Å (methyl), 0.96 Å (methylene) and 0.93 Å (aromatic), and N—H = 0.86 Å; Uiso(H) = 1.2Ueq(C), 1.2Ueq(N) and 1.5Ueq(O)].

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level. All H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II), with displacement ellipsoids at the 30% probability level. [Symmetry code: (i) -x+2, -y, -z.]
[Figure 3] Fig. 3. (a) A packing diagram of (I), showing a one-dimensional chain formed by pairs of intermolecular hydrogen bonds (dashed lines). (b) A packing diagram of (II), showing a one-dimensional chain. Dashed lines represent N—H···O interactions.
[Figure 4] Fig. 4. A packing diagram of (I), showing the two-dimensional layer-like structure along the ab plane. Dashed lines represent hydrogen-bonding interactions.
[Figure 5] Fig. 5. A packing diagram of (II), showing the three-dimensional supramolecular network formed by intermolecular hydrogen bonds (dashed lines).
(I) trans-bis(1H-benzimidazole-2-carboxylato- κ2N3,O)bis(ethanol-κO)cadmium top
Crystal data top
[Cd(C8H5N2O2)2(C2H6O)2]Z = 2
Mr = 526.82F(000) = 532
Triclinic, P1Dx = 1.617 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4761 (11) ÅCell parameters from 3684 reflections
b = 10.477 (2) Åθ = 2.1–28.0°
c = 19.896 (4) ŵ = 1.05 mm1
α = 75.31 (3)°T = 298 K
β = 88.67 (3)°Block, colorless
γ = 78.54 (3)°0.35 × 0.28 × 0.22 mm
V = 1081.7 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3804 independent reflections
Radiation source: fine-focus sealed tube3228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 66
Tmin = 0.709, Tmax = 0.801k = 812
5344 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.091P)2 + 0.8152P]
where P = (Fo2 + 2Fc2)/3
3804 reflections(Δ/σ)max < 0.001
270 parametersΔρmax = 0.93 e Å3
12 restraintsΔρmin = 1.26 e Å3
Crystal data top
[Cd(C8H5N2O2)2(C2H6O)2]γ = 78.54 (3)°
Mr = 526.82V = 1081.7 (4) Å3
Triclinic, P1Z = 2
a = 5.4761 (11) ÅMo Kα radiation
b = 10.477 (2) ŵ = 1.05 mm1
c = 19.896 (4) ÅT = 298 K
α = 75.31 (3)°0.35 × 0.28 × 0.22 mm
β = 88.67 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3804 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3228 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.801Rint = 0.021
5344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05612 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.17Δρmax = 0.93 e Å3
3804 reflectionsΔρmin = 1.26 e Å3
270 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.3408 (11)0.3004 (6)0.2742 (3)0.0332 (14)
C21.1412 (11)0.2866 (6)0.2266 (3)0.0331 (14)
C30.8147 (11)0.3459 (6)0.1589 (3)0.0328 (14)
C40.5996 (13)0.4078 (7)0.1185 (4)0.0416 (16)
H40.52640.49720.11540.050*
C50.4981 (14)0.3328 (8)0.0831 (4)0.0512 (19)
H50.35540.37250.05530.061*
C60.6057 (14)0.1984 (8)0.0884 (4)0.0522 (19)
H60.53120.15040.06410.063*
C70.8173 (14)0.1340 (7)0.1279 (4)0.0456 (17)
H70.88740.04400.13140.055*
C80.9204 (11)0.2111 (6)0.1624 (3)0.0317 (13)
C90.5649 (11)0.8315 (5)0.2267 (3)0.0306 (10)
C100.7642 (11)0.8349 (5)0.2746 (3)0.0306 (10)
C110.9695 (12)0.9084 (6)0.3467 (3)0.0362 (14)
C121.0590 (15)0.9781 (8)0.3879 (4)0.0528 (19)
H120.97621.06330.39040.063*
C131.2764 (16)0.9149 (9)0.4251 (4)0.064 (2)
H131.34210.95860.45360.077*
C141.4025 (14)0.7869 (9)0.4217 (4)0.055 (2)
H141.55100.74810.44710.066*
C151.3104 (13)0.7175 (7)0.3814 (4)0.0451 (17)
H151.39310.63210.37920.054*
C161.0885 (11)0.7799 (6)0.3437 (3)0.0320 (13)
C171.114 (2)0.7606 (15)0.0884 (5)0.106 (3)
H17A1.26270.75920.06100.127*
H17B1.05510.85250.09160.127*
C180.933 (2)0.7243 (14)0.0534 (5)0.106 (3)
H18A0.82110.68420.08630.158*
H18B1.01070.66080.02830.158*
H18C0.84050.80300.02140.158*
C190.803 (2)0.3672 (13)0.4042 (5)0.102 (4)
H19A0.65880.37630.43310.122*
H19B0.83340.27640.39820.122*
C201.002 (2)0.3785 (16)0.4404 (5)0.121 (4)
H20A1.06370.29440.47340.181*
H20B0.95160.44780.46440.181*
H20C1.13100.40140.40880.181*
Cd10.96009 (8)0.56762 (4)0.24707 (2)0.0340 (2)
N10.9573 (9)0.3935 (5)0.2001 (3)0.0306 (11)
N21.1252 (10)0.1804 (5)0.2066 (3)0.0338 (12)
H21.22550.10360.21890.041*
N30.9557 (9)0.7379 (4)0.2984 (2)0.0276 (11)
N40.7641 (10)0.9422 (5)0.3027 (3)0.0372 (12)
H4A0.65581.01640.29430.045*
O11.3254 (7)0.4140 (4)0.2869 (2)0.0389 (11)
O21.5031 (9)0.1989 (4)0.2973 (3)0.0449 (12)
O30.5918 (8)0.7217 (4)0.2081 (2)0.0367 (10)
O40.3923 (8)0.9285 (5)0.2086 (3)0.0488 (12)
O51.1789 (9)0.6796 (5)0.1549 (2)0.0505 (13)
H5A1.28420.68070.18530.076*
O60.7399 (9)0.4546 (5)0.3399 (2)0.0466 (12)
H6A0.62720.43480.31830.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (3)0.027 (3)0.043 (4)0.005 (3)0.001 (3)0.017 (3)
C20.038 (3)0.035 (3)0.032 (3)0.003 (3)0.004 (3)0.023 (3)
C30.032 (3)0.029 (3)0.040 (4)0.005 (3)0.002 (3)0.014 (3)
C40.039 (4)0.037 (4)0.050 (4)0.003 (3)0.005 (3)0.016 (3)
C50.042 (4)0.067 (5)0.049 (4)0.013 (4)0.011 (3)0.020 (4)
C60.051 (4)0.060 (5)0.060 (5)0.021 (4)0.006 (4)0.033 (4)
C70.050 (4)0.042 (4)0.054 (4)0.013 (3)0.000 (3)0.024 (3)
C80.029 (3)0.030 (3)0.039 (3)0.007 (3)0.001 (3)0.013 (3)
C90.029 (2)0.015 (2)0.047 (3)0.0009 (17)0.0031 (19)0.0070 (18)
C100.029 (2)0.015 (2)0.047 (3)0.0009 (17)0.0031 (19)0.0070 (18)
C110.035 (3)0.033 (3)0.043 (4)0.007 (3)0.001 (3)0.015 (3)
C120.056 (5)0.040 (4)0.070 (5)0.010 (3)0.011 (4)0.027 (4)
C130.067 (6)0.070 (6)0.070 (6)0.027 (5)0.012 (4)0.033 (5)
C140.038 (4)0.068 (5)0.058 (5)0.016 (4)0.010 (3)0.010 (4)
C150.040 (4)0.044 (4)0.046 (4)0.003 (3)0.007 (3)0.012 (3)
C160.027 (3)0.029 (3)0.041 (4)0.007 (3)0.002 (3)0.009 (3)
C170.093 (6)0.155 (8)0.063 (5)0.052 (5)0.019 (4)0.004 (5)
C180.093 (6)0.155 (8)0.063 (5)0.052 (5)0.019 (4)0.004 (5)
C190.085 (7)0.129 (9)0.078 (7)0.048 (7)0.035 (6)0.023 (6)
C200.104 (8)0.198 (12)0.060 (6)0.073 (8)0.026 (6)0.003 (7)
Cd10.0293 (3)0.0239 (3)0.0508 (3)0.00079 (18)0.00493 (19)0.0173 (2)
N10.027 (3)0.025 (3)0.042 (3)0.001 (2)0.003 (2)0.015 (2)
N20.037 (3)0.015 (2)0.050 (3)0.000 (2)0.005 (2)0.013 (2)
N30.028 (3)0.018 (2)0.037 (3)0.000 (2)0.004 (2)0.010 (2)
N40.035 (3)0.028 (3)0.050 (3)0.001 (2)0.009 (2)0.016 (2)
O10.025 (2)0.037 (3)0.058 (3)0.0013 (18)0.0109 (19)0.019 (2)
O20.047 (3)0.015 (2)0.071 (3)0.009 (2)0.020 (2)0.016 (2)
O30.034 (2)0.018 (2)0.059 (3)0.0038 (17)0.012 (2)0.018 (2)
O40.034 (3)0.041 (3)0.070 (3)0.006 (2)0.017 (2)0.020 (2)
O50.049 (3)0.067 (3)0.040 (3)0.026 (3)0.006 (2)0.011 (2)
O60.043 (3)0.054 (3)0.045 (3)0.020 (2)0.008 (2)0.010 (2)
Geometric parameters (Å, º) top
C1—O21.235 (7)C14—C151.374 (10)
C1—O11.265 (7)C14—H140.9300
C1—C21.515 (8)C15—C161.394 (9)
C2—N21.291 (7)C15—H150.9300
C2—N11.350 (8)C16—N31.376 (7)
C3—N11.386 (8)C17—O51.388 (11)
C3—C41.389 (9)C17—C181.391 (14)
C3—C81.400 (8)C17—H17A0.9700
C4—C51.376 (10)C17—H17B0.9700
C4—H40.9300C18—H18A0.9600
C5—C61.393 (11)C18—H18B0.9600
C5—H50.9300C18—H18C0.9600
C6—C71.371 (10)C19—C201.359 (12)
C6—H60.9300C19—O61.377 (10)
C7—C81.387 (9)C19—H19A0.9700
C7—H70.9300C19—H19B0.9700
C8—N21.376 (8)C20—H20A0.9600
C9—O41.226 (7)C20—H20B0.9600
C9—O31.276 (7)C20—H20C0.9600
C9—C101.477 (8)Cd1—N12.254 (5)
C10—N31.309 (7)Cd1—N32.265 (5)
C10—N41.376 (8)Cd1—O12.317 (4)
C11—N41.374 (8)Cd1—O32.327 (4)
C11—C121.383 (9)Cd1—O52.354 (5)
C11—C161.390 (8)Cd1—O62.372 (5)
C12—C131.372 (11)N2—H20.8600
C12—H120.9300N4—H4A0.8600
C13—C141.399 (11)O5—H5A0.8483
C13—H130.9300O6—H6A0.8475
O2—C1—O1126.1 (6)C17—C18—H18A109.5
O2—C1—C2116.7 (5)C17—C18—H18B109.5
O1—C1—C2117.1 (5)H18A—C18—H18B109.5
N2—C2—N1113.6 (5)C17—C18—H18C109.5
N2—C2—C1126.7 (6)H18A—C18—H18C109.5
N1—C2—C1119.6 (5)H18B—C18—H18C109.5
N1—C3—C4131.5 (6)C20—C19—O6119.0 (9)
N1—C3—C8108.9 (5)C20—C19—H19A107.6
C4—C3—C8119.7 (6)O6—C19—H19A107.6
C5—C4—C3118.0 (6)C20—C19—H19B107.6
C5—C4—H4121.0O6—C19—H19B107.6
C3—C4—H4121.0H19A—C19—H19B107.0
C4—C5—C6121.0 (7)C19—C20—H20A109.5
C4—C5—H5119.5C19—C20—H20B109.5
C6—C5—H5119.5H20A—C20—H20B109.5
C7—C6—C5122.5 (7)C19—C20—H20C109.5
C7—C6—H6118.7H20A—C20—H20C109.5
C5—C6—H6118.7H20B—C20—H20C109.5
C6—C7—C8116.0 (7)N1—Cd1—N3177.57 (17)
C6—C7—H7122.0N1—Cd1—O174.26 (16)
C8—C7—H7122.0N3—Cd1—O1105.53 (16)
N2—C8—C7131.9 (6)N1—Cd1—O3105.98 (16)
N2—C8—C3105.3 (5)N3—Cd1—O374.21 (15)
C7—C8—C3122.8 (6)O1—Cd1—O3179.45 (15)
O4—C9—O3125.7 (6)N1—Cd1—O593.64 (18)
O4—C9—C10120.3 (5)N3—Cd1—O588.78 (18)
O3—C9—C10114.1 (5)O1—Cd1—O589.37 (17)
N3—C10—N4110.8 (5)O3—Cd1—O591.10 (17)
N3—C10—C9126.1 (5)N1—Cd1—O686.32 (18)
N4—C10—C9123.0 (5)N3—Cd1—O691.26 (17)
N4—C11—C12131.5 (6)O1—Cd1—O690.58 (17)
N4—C11—C16106.1 (5)O3—Cd1—O688.95 (17)
C12—C11—C16122.4 (6)O5—Cd1—O6179.94 (19)
C13—C12—C11116.5 (7)C2—N1—C3103.9 (5)
C13—C12—H12121.8C2—N1—Cd1112.6 (4)
C11—C12—H12121.8C3—N1—Cd1142.7 (4)
C12—C13—C14122.1 (7)C2—N2—C8108.4 (5)
C12—C13—H13118.9C2—N2—H2125.8
C14—C13—H13118.9C8—N2—H2125.8
C15—C14—C13121.0 (7)C10—N3—C16107.4 (5)
C15—C14—H14119.5C10—N3—Cd1109.8 (4)
C13—C14—H14119.5C16—N3—Cd1142.8 (4)
C14—C15—C16117.6 (7)C11—N4—C10107.1 (5)
C14—C15—H15121.2C11—N4—H4A126.5
C16—C15—H15121.2C10—N4—H4A126.5
N3—C16—C11108.6 (5)C1—O1—Cd1115.0 (4)
N3—C16—C15130.9 (6)C9—O3—Cd1115.3 (4)
C11—C16—C15120.4 (6)C17—O5—Cd1134.8 (6)
O5—C17—C18115.3 (10)C17—O5—H5A132.4
O5—C17—H17A108.4Cd1—O5—H5A87.1
C18—C17—H17A108.4C19—O6—Cd1135.6 (5)
O5—C17—H17B108.4C19—O6—H6A113.5
C18—C17—H17B108.4Cd1—O6—H6A101.7
H17A—C17—H17B107.5
O2—C1—C2—N21.3 (10)N1—C2—N2—C80.7 (7)
O1—C1—C2—N2179.1 (6)C1—C2—N2—C8178.6 (6)
O2—C1—C2—N1179.4 (6)C7—C8—N2—C2178.5 (7)
O1—C1—C2—N10.2 (9)C3—C8—N2—C20.7 (7)
N1—C3—C4—C5179.6 (7)N4—C10—N3—C160.1 (7)
C8—C3—C4—C50.0 (10)C9—C10—N3—C16177.2 (6)
C3—C4—C5—C60.9 (11)N4—C10—N3—Cd1177.2 (4)
C4—C5—C6—C70.7 (12)C9—C10—N3—Cd15.5 (8)
C5—C6—C7—C80.4 (11)C11—C16—N3—C100.1 (7)
C6—C7—C8—N2178.8 (7)C15—C16—N3—C10177.8 (7)
C6—C7—C8—C31.3 (10)C11—C16—N3—Cd1175.7 (5)
N1—C3—C8—N20.5 (7)C15—C16—N3—Cd12.0 (12)
C4—C3—C8—N2179.2 (6)O1—Cd1—N3—C10175.1 (4)
N1—C3—C8—C7178.5 (6)O3—Cd1—N3—C105.4 (4)
C4—C3—C8—C71.1 (10)O5—Cd1—N3—C1086.1 (4)
O4—C9—C10—N3179.1 (6)O6—Cd1—N3—C1094.0 (4)
O3—C9—C10—N30.5 (9)O1—Cd1—N3—C160.6 (7)
O4—C9—C10—N42.1 (10)O3—Cd1—N3—C16178.9 (7)
O3—C9—C10—N4177.4 (6)O5—Cd1—N3—C1689.7 (7)
N4—C11—C12—C13178.6 (7)O6—Cd1—N3—C1690.3 (7)
C16—C11—C12—C131.4 (11)C12—C11—N4—C10180.0 (8)
C11—C12—C13—C140.1 (13)C16—C11—N4—C100.0 (7)
C12—C13—C14—C151.1 (13)N3—C10—N4—C110.0 (7)
C13—C14—C15—C160.5 (12)C9—C10—N4—C11177.3 (6)
N4—C11—C16—N30.1 (7)O2—C1—O1—Cd1170.9 (5)
C12—C11—C16—N3179.9 (6)C2—C1—O1—Cd18.7 (7)
N4—C11—C16—C15178.0 (6)N1—Cd1—O1—C19.8 (4)
C12—C11—C16—C152.0 (11)N3—Cd1—O1—C1167.7 (4)
C14—C15—C16—N3178.4 (7)O5—Cd1—O1—C1103.8 (5)
C14—C15—C16—C110.9 (10)O6—Cd1—O1—C176.2 (5)
N2—C2—N1—C30.4 (7)O4—C9—O3—Cd1175.5 (5)
C1—C2—N1—C3179.0 (5)C10—C9—O3—Cd14.9 (7)
N2—C2—N1—Cd1172.2 (4)N1—Cd1—O3—C9176.7 (4)
C1—C2—N1—Cd18.5 (7)N3—Cd1—O3—C95.8 (4)
C4—C3—N1—C2179.5 (7)O5—Cd1—O3—C982.6 (4)
C8—C3—N1—C20.1 (7)O6—Cd1—O3—C997.4 (4)
C4—C3—N1—Cd110.9 (12)C18—C17—O5—Cd137.1 (18)
C8—C3—N1—Cd1168.7 (5)N1—Cd1—O5—C1780.2 (10)
O1—Cd1—N1—C29.1 (4)N3—Cd1—O5—C17100.1 (10)
O3—Cd1—N1—C2170.4 (4)O1—Cd1—O5—C17154.4 (10)
O5—Cd1—N1—C297.4 (4)O3—Cd1—O5—C1725.9 (10)
O6—Cd1—N1—C282.5 (4)C20—C19—O6—Cd132.6 (19)
O1—Cd1—N1—C3177.2 (7)N1—Cd1—O6—C1994.7 (10)
O3—Cd1—N1—C32.3 (7)N3—Cd1—O6—C1985.0 (10)
O5—Cd1—N1—C394.5 (7)O1—Cd1—O6—C1920.5 (10)
O6—Cd1—N1—C385.5 (7)O3—Cd1—O6—C19159.2 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.861.942.743 (6)155
N4—H4A···O2ii0.861.942.761 (6)158
O5—H5A···O3iii0.851.912.678 (6)150
O6—H6A···O1iv0.851.852.678 (6)164
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z.
(II) trans-bis(1H-benzimidazole-κN3)bis(1H- benzimidazole-2-carboxylato-κ2N3,O)nickel(II) top
Crystal data top
[Ni(C8H5N2O2)2(C7H6N2)2]F(000) = 636
Mr = 617.27Dx = 1.444 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3310 reflections
a = 10.321 (2) Åθ = 2.1–28.1°
b = 12.923 (3) ŵ = 0.74 mm1
c = 11.495 (2) ÅT = 298 K
β = 112.21 (3)°Block, pale-purple
V = 1419.5 (5) Å30.42 × 0.35 × 0.26 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2787 independent reflections
Radiation source: fine-focus sealed tube2374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.748, Tmax = 0.832k = 1515
7496 measured reflectionsl = 148
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.7528P]
where P = (Fo2 + 2Fc2)/3
2787 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.79 e Å3
6 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Ni(C8H5N2O2)2(C7H6N2)2]V = 1419.5 (5) Å3
Mr = 617.27Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.321 (2) ŵ = 0.74 mm1
b = 12.923 (3) ÅT = 298 K
c = 11.495 (2) Å0.42 × 0.35 × 0.26 mm
β = 112.21 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2787 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2374 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.832Rint = 0.022
7496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0356 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.09Δρmax = 0.79 e Å3
2787 reflectionsΔρmin = 0.48 e Å3
184 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7526 (2)0.04615 (16)0.04493 (19)0.0273 (4)
C20.7228 (2)0.04756 (16)0.03733 (19)0.0271 (4)
C30.6268 (2)0.18568 (17)0.1464 (2)0.0327 (5)
C40.5430 (3)0.2680 (2)0.2108 (2)0.0458 (6)
H40.45080.27460.21720.055*
C50.6027 (3)0.3386 (2)0.2643 (2)0.0513 (7)
H50.54930.39410.30860.062*
C60.7409 (3)0.3298 (2)0.2542 (2)0.0479 (6)
H60.77750.37970.29150.057*
C70.8247 (3)0.24921 (19)0.1907 (2)0.0405 (5)
H70.91720.24390.18360.049*
C80.7652 (2)0.17588 (16)0.13728 (19)0.0306 (4)
C91.1027 (3)0.19649 (18)0.1560 (2)0.0436 (6)
H91.07440.23480.08200.052*
C101.1328 (3)0.07230 (19)0.2859 (2)0.0435 (6)
C111.1320 (5)0.0205 (2)0.3448 (3)0.0761 (11)
H111.08670.07850.29990.091*
C121.2015 (5)0.0230 (3)0.4731 (3)0.1030 (9)
H121.20620.08510.51550.124*
C131.2650 (5)0.0644 (3)0.5413 (3)0.1030 (9)
H131.30700.06000.62840.124*
C141.2677 (5)0.1568 (3)0.4843 (3)0.1030 (9)
H141.31370.21450.52960.124*
C151.1979 (3)0.1594 (2)0.3554 (2)0.0476 (6)
N10.82193 (17)0.08804 (13)0.06899 (16)0.0284 (4)
N20.60315 (17)0.10275 (14)0.08198 (17)0.0322 (4)
H20.52650.08880.07200.039*
N31.07517 (18)0.09767 (14)0.15964 (17)0.0344 (4)
N41.1758 (2)0.23675 (16)0.2697 (2)0.0471 (5)
H4A1.20350.29980.28540.057*
Ni11.00000.00000.00000.02517 (13)
O10.87434 (14)0.08174 (11)0.07459 (14)0.0315 (3)
O20.66174 (15)0.08014 (12)0.08110 (16)0.0405 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0256 (10)0.0271 (10)0.0298 (10)0.0018 (8)0.0111 (8)0.0005 (8)
C20.0222 (9)0.0286 (10)0.0310 (10)0.0017 (8)0.0107 (8)0.0011 (9)
C30.0293 (11)0.0333 (11)0.0334 (11)0.0019 (9)0.0094 (9)0.0026 (9)
C40.0353 (12)0.0476 (14)0.0478 (14)0.0117 (11)0.0081 (10)0.0084 (12)
C50.0567 (16)0.0413 (14)0.0477 (15)0.0137 (12)0.0105 (12)0.0159 (12)
C60.0577 (16)0.0403 (13)0.0453 (14)0.0003 (12)0.0192 (12)0.0153 (11)
C70.0403 (12)0.0405 (13)0.0445 (13)0.0005 (10)0.0203 (11)0.0096 (11)
C80.0295 (10)0.0310 (11)0.0306 (10)0.0020 (8)0.0105 (9)0.0023 (9)
C90.0521 (14)0.0347 (12)0.0431 (13)0.0022 (11)0.0169 (11)0.0041 (11)
C100.0510 (14)0.0396 (13)0.0373 (13)0.0006 (11)0.0137 (11)0.0039 (10)
C110.125 (3)0.0495 (17)0.0438 (17)0.0114 (19)0.0200 (18)0.0003 (13)
C120.166 (2)0.0707 (13)0.0426 (11)0.0016 (15)0.0051 (13)0.0036 (9)
C130.166 (2)0.0707 (13)0.0426 (11)0.0016 (15)0.0051 (13)0.0036 (9)
C140.166 (2)0.0707 (13)0.0426 (11)0.0016 (15)0.0051 (13)0.0036 (9)
C150.0519 (15)0.0445 (14)0.0427 (14)0.0036 (12)0.0137 (12)0.0105 (11)
N10.0246 (8)0.0288 (9)0.0336 (9)0.0023 (7)0.0130 (7)0.0048 (7)
N20.0212 (8)0.0361 (10)0.0403 (10)0.0023 (7)0.0126 (7)0.0053 (8)
N30.0344 (10)0.0326 (10)0.0365 (10)0.0014 (8)0.0138 (8)0.0029 (8)
N40.0550 (13)0.0348 (11)0.0529 (13)0.0090 (10)0.0219 (10)0.0128 (10)
Ni10.02038 (19)0.0257 (2)0.0310 (2)0.00080 (14)0.01162 (15)0.00160 (15)
O10.0240 (7)0.0309 (8)0.0417 (8)0.0025 (6)0.0146 (6)0.0074 (6)
O20.0311 (8)0.0403 (9)0.0572 (10)0.0020 (7)0.0246 (8)0.0132 (8)
Geometric parameters (Å, º) top
C1—O21.241 (2)C10—C111.379 (4)
C1—O11.258 (2)C10—N31.384 (3)
C1—C21.495 (3)C10—C151.396 (3)
C2—N11.317 (3)C11—C121.375 (5)
C2—N21.349 (3)C11—H110.9300
C3—N21.376 (3)C12—C131.391 (5)
C3—C41.394 (3)C12—H120.9300
C3—C81.398 (3)C13—C141.367 (5)
C4—C51.370 (4)C13—H130.9300
C4—H40.9300C14—C151.382 (4)
C5—C61.392 (4)C14—H140.9300
C5—H50.9300C15—N41.361 (3)
C6—C71.374 (3)N1—Ni12.0492 (17)
C6—H60.9300N2—H20.8600
C7—C81.391 (3)N3—Ni12.1181 (18)
C7—H70.9300N4—H4A0.8600
C8—N11.378 (3)Ni1—N1i2.0492 (17)
C9—N31.312 (3)Ni1—O1i2.0915 (14)
C9—N41.342 (3)Ni1—O12.0915 (14)
C9—H90.9300Ni1—N3i2.1181 (18)
O2—C1—O1125.71 (19)C14—C13—H13119.0
O2—C1—C2119.85 (17)C12—C13—H13119.0
O1—C1—C2114.40 (17)C13—C14—C15116.0 (3)
N1—C2—N2112.34 (18)C13—C14—H14122.0
N1—C2—C1120.07 (17)C15—C14—H14122.0
N2—C2—C1127.51 (17)N4—C15—C14132.1 (3)
N2—C3—C4132.8 (2)N4—C15—C10105.4 (2)
N2—C3—C8105.86 (18)C14—C15—C10122.5 (3)
C4—C3—C8121.4 (2)C2—N1—C8106.13 (16)
C5—C4—C3116.9 (2)C2—N1—Ni1110.44 (13)
C5—C4—H4121.5C8—N1—Ni1143.43 (14)
C3—C4—H4121.5C2—N2—C3107.05 (17)
C4—C5—C6121.9 (2)C2—N2—H2126.5
C4—C5—H5119.0C3—N2—H2126.5
C6—C5—H5119.0C9—N3—C10104.6 (2)
C7—C6—C5121.7 (2)C9—N3—Ni1124.40 (17)
C7—C6—H6119.1C10—N3—Ni1129.71 (15)
C5—C6—H6119.1C9—N4—C15107.4 (2)
C6—C7—C8117.2 (2)C9—N4—H4A126.3
C6—C7—H7121.4C15—N4—H4A126.3
C8—C7—H7121.4N1—Ni1—N1i180
N1—C8—C7130.5 (2)N1—Ni1—O1i99.52 (6)
N1—C8—C3108.61 (18)N1i—Ni1—O1i80.48 (6)
C7—C8—C3120.9 (2)N1—Ni1—O180.48 (6)
N3—C9—N4113.2 (2)N1i—Ni1—O199.52 (6)
N3—C9—H9123.4O1i—Ni1—O1180
N4—C9—H9123.4N1—Ni1—N389.17 (7)
C11—C10—N3129.9 (2)N1i—Ni1—N390.83 (7)
C11—C10—C15120.7 (3)O1i—Ni1—N388.48 (7)
N3—C10—C15109.4 (2)O1—Ni1—N391.52 (7)
C12—C11—C10116.8 (3)N1—Ni1—N3i90.83 (7)
C12—C11—H11121.6N1i—Ni1—N3i89.17 (7)
C10—C11—H11121.6O1i—Ni1—N3i91.52 (7)
C11—C12—C13121.9 (4)O1—Ni1—N3i88.48 (7)
C11—C12—H12119.0N3—Ni1—N3i180
C13—C12—H12119.0C1—O1—Ni1114.51 (13)
C14—C13—C12122.0 (3)
O2—C1—C2—N1175.41 (19)C1—C2—N2—C3176.2 (2)
O1—C1—C2—N12.4 (3)C4—C3—N2—C2179.5 (3)
O2—C1—C2—N21.2 (3)C8—C3—N2—C20.1 (2)
O1—C1—C2—N2178.92 (19)N4—C9—N3—C101.1 (3)
N2—C3—C4—C5179.4 (2)N4—C9—N3—Ni1166.88 (16)
C8—C3—C4—C50.1 (4)C11—C10—N3—C9178.1 (3)
C3—C4—C5—C60.6 (4)C15—C10—N3—C91.4 (3)
C4—C5—C6—C70.4 (4)C11—C10—N3—Ni114.8 (4)
C5—C6—C7—C80.5 (4)C15—C10—N3—Ni1165.70 (16)
C6—C7—C8—N1179.9 (2)N3—C9—N4—C150.4 (3)
C6—C7—C8—C31.2 (3)C14—C15—N4—C9179.1 (4)
N2—C3—C8—N10.4 (2)C10—C15—N4—C90.5 (3)
C4—C3—C8—N1180.0 (2)C2—N1—Ni1—O1i177.35 (14)
N2—C3—C8—C7178.6 (2)C8—N1—Ni1—O1i3.0 (2)
C4—C3—C8—C71.1 (3)C2—N1—Ni1—O12.65 (14)
N3—C10—C11—C12178.6 (3)C8—N1—Ni1—O1177.0 (2)
C15—C10—C11—C122.0 (6)C2—N1—Ni1—N394.33 (15)
C10—C11—C12—C132.5 (7)C8—N1—Ni1—N385.4 (2)
C11—C12—C13—C143.1 (8)C2—N1—Ni1—N3i85.67 (15)
C12—C13—C14—C152.9 (7)C8—N1—Ni1—N3i94.6 (2)
C13—C14—C15—N4178.1 (4)C9—N3—Ni1—N163.25 (19)
C13—C14—C15—C102.4 (6)C10—N3—Ni1—N1131.9 (2)
C11—C10—C15—N4178.3 (3)C9—N3—Ni1—N1i116.75 (19)
N3—C10—C15—N41.2 (3)C10—N3—Ni1—N1i48.1 (2)
C11—C10—C15—C142.0 (5)C9—N3—Ni1—O1i36.30 (19)
N3—C10—C15—C14178.4 (3)C10—N3—Ni1—O1i128.5 (2)
N2—C2—N1—C80.8 (2)C9—N3—Ni1—O1143.70 (19)
C1—C2—N1—C8176.29 (18)C10—N3—Ni1—O151.5 (2)
N2—C2—N1—Ni1179.43 (14)O2—C1—O1—Ni1177.79 (18)
C1—C2—N1—Ni13.5 (2)C2—C1—O1—Ni10.2 (2)
C7—C8—N1—C2178.2 (2)N1—Ni1—O1—C11.54 (14)
C3—C8—N1—C20.7 (2)N1i—Ni1—O1—C1178.46 (14)
C7—C8—N1—Ni11.5 (4)N3—Ni1—O1—C190.45 (15)
C3—C8—N1—Ni1179.63 (18)N3i—Ni1—O1—C189.55 (15)
N1—C2—N2—C30.6 (2)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1ii0.862.563.111 (2)123
N4—H4A···O2ii0.862.253.030 (3)150
N2—H2···O2iii0.861.912.753 (2)167
Symmetry codes: (ii) x+2, y+1/2, z+1/2; (iii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cd(C8H5N2O2)2(C2H6O)2][Ni(C8H5N2O2)2(C7H6N2)2]
Mr526.82617.27
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)298298
a, b, c (Å)5.4761 (11), 10.477 (2), 19.896 (4)10.321 (2), 12.923 (3), 11.495 (2)
α, β, γ (°)75.31 (3), 88.67 (3), 78.54 (3)90, 112.21 (3), 90
V3)1081.7 (4)1419.5 (5)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.050.74
Crystal size (mm)0.35 × 0.28 × 0.220.42 × 0.35 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Bruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Multi-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.709, 0.8010.748, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
5344, 3804, 3228 7496, 2787, 2374
Rint0.0210.022
(sin θ/λ)max1)0.6000.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.161, 1.17 0.035, 0.096, 1.09
No. of reflections38042787
No. of parameters270184
No. of restraints126
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 1.260.79, 0.48

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Bruker, 2004).

Selected geometric parameters (Å, º) for (I) top
Cd1—N12.254 (5)Cd1—O32.327 (4)
Cd1—N32.265 (5)Cd1—O52.354 (5)
Cd1—O12.317 (4)Cd1—O62.372 (5)
N1—Cd1—N3177.57 (17)O1—Cd1—O589.37 (17)
N1—Cd1—O174.26 (16)O3—Cd1—O591.10 (17)
N3—Cd1—O1105.53 (16)N1—Cd1—O686.32 (18)
N1—Cd1—O3105.98 (16)N3—Cd1—O691.26 (17)
N3—Cd1—O374.21 (15)O1—Cd1—O690.58 (17)
O1—Cd1—O3179.45 (15)O3—Cd1—O688.95 (17)
N1—Cd1—O593.64 (18)O5—Cd1—O6179.94 (19)
N3—Cd1—O588.78 (18)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.861.942.743 (6)155.2
N4—H4A···O2ii0.861.942.761 (6)158.1
O5—H5A···O3iii0.851.912.678 (6)149.8
O6—H6A···O1iv0.851.852.678 (6)164.4
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z.
Selected geometric parameters (Å, º) for (II) top
N1—Ni12.0492 (17)Ni1—O1i2.0915 (14)
N3—Ni12.1181 (18)Ni1—O12.0915 (14)
Ni1—N1i2.0492 (17)Ni1—N3i2.1181 (18)
N1—Ni1—N1i180O1i—Ni1—N388.48 (7)
N1—Ni1—O1i99.52 (6)O1—Ni1—N391.52 (7)
N1i—Ni1—O1i80.48 (6)N1—Ni1—N3i90.83 (7)
N1—Ni1—O180.48 (6)N1i—Ni1—N3i89.17 (7)
N1i—Ni1—O199.52 (6)O1i—Ni1—N3i91.52 (7)
O1i—Ni1—O1180O1—Ni1—N3i88.48 (7)
N1—Ni1—N389.17 (7)N3—Ni1—N3i180
N1i—Ni1—N390.83 (7)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1ii0.862.563.111 (2)122.7
N4—H4A···O2ii0.862.253.030 (3)150.0
N2—H2···O2iii0.861.912.753 (2)166.7
Symmetry codes: (ii) x+2, y+1/2, z+1/2; (iii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds