Download citation
Download citation
link to html
An unexpected global disorder (co-existing rotational disorder and glide disorder) has been observed during an X-ray investigation of the crystal structure of (E)-[1-(biphenyl-4-yl)ethyl­idene]hydrazine, C14H14N2, at room temperature. When the temperature decreases to 273 K, the disorder disappears, but the quality of the data set is low. The diffraction data were collected again at 110 K. Differential scanning calorimetry (DSC) analysis and polarizing-microscopy experiments, as well as a fourth set of single-crystal data collected at 283 K, proved that the order–disorder transformation occurs continuously. The analyses of these crystal structures and full-range relaxed potential energy surface scans showed that this kind of global disorder is not very difficult to achieve inside the crystal. Experimental and theoretical studies via UV–Vis and fluorescence spectra impart an understanding on the prediction methods of optical properties, which are essential for the rational design of biphenyl-based materials with pre-defined properties.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618013773/qp3015sup1.cif
Contains datablocks o-BEH-110, dBEH, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618013773/qp3015o-BEH-110sup2.hkl
Contains datablock o-BEH-110

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618013773/qp3015dBEHsup3.hkl
Contains datablock dBEH

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618013773/qp3015o-BEH-110sup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618013773/qp3015dBEHsup5.cml
Supplementary material

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618013773/qp3015sup6.cif
CIF for o-BEH-273 data

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618013773/qp3015sup7.cif
CIF for o-BEH-283 data

CCDC references: 1835377; 1842281

Computing details top

For both structures, data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b). Molecular graphics: SHELXTL (Bruker, 2000), PLATON (Spek, 2009) WinGX2014 (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 1999) for o-BEH-110; SHELXTL (Bruker, 2000) and PLATON (Spek, 2009) for dBEH. For both structures, software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

(E)-[1-(Biphenyl-4-yl)ethylidene]hydrazine (o-BEH-110) top
Crystal data top
C14H14N2Dx = 1.264 Mg m3
Mr = 210.27Melting point: 422.7(4) K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 24.740 (2) ÅCell parameters from 380 reflections
b = 5.5154 (6) Åθ = 2.5–26.0°
c = 8.1367 (8) ŵ = 0.08 mm1
β = 95.727 (9)°T = 110 K
V = 1104.71 (19) Å3Plate, colorless
Z = 40.6 × 0.4 × 0.05 mm
F(000) = 448
Data collection top
Bruker SMART CCD area detector
diffractometer
2249 independent reflections
Radiation source: fine-focus sealed tube1283 reflections with I > 2σ(I)
Detector resolution: 10.10 pixels mm-1Rint = 0.036
phi and ω scansθmax = 26.4°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3030
Tmin = 0.976, Tmax = 0.991k = 66
6798 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049All H-atom parameters refined
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0556P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2249 reflectionsΔρmax = 0.13 e Å3
201 parametersΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The structures were solved by SHELXL-97 [Sheldrick, 2015]. Diagrams and publication material were prepared using PLATON [Spek, 2009]. WinGX-2014 [Farrugia, 2012] and DIAMOND (crystal packing diagram) [Brandenburg & Putz, 1999] were also used.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.87333 (7)0.6786 (3)0.4854 (2)0.0502 (5)
C20.92711 (7)0.6754 (4)0.5540 (2)0.0569 (5)
C30.94541 (7)0.4964 (3)0.6609 (2)0.0513 (5)
C40.91024 (7)0.3212 (4)0.7026 (2)0.0581 (5)
C50.85648 (7)0.3229 (3)0.6346 (2)0.0486 (5)
C60.83701 (6)0.5017 (3)0.52435 (17)0.0356 (4)
C70.77929 (6)0.5012 (2)0.44764 (17)0.0332 (4)
C80.74336 (7)0.3197 (3)0.4809 (2)0.0499 (5)
C90.69049 (7)0.3165 (3)0.4096 (2)0.0499 (5)
C100.67029 (6)0.4953 (2)0.30037 (17)0.0344 (4)
C110.70597 (7)0.6775 (3)0.2679 (2)0.0504 (5)
C120.75911 (7)0.6797 (3)0.3400 (2)0.0483 (4)
C130.61364 (6)0.4869 (3)0.21933 (18)0.0378 (4)
C140.59471 (9)0.6695 (4)0.0922 (3)0.0564 (5)
N10.58372 (5)0.3143 (2)0.26501 (17)0.0471 (4)
N20.53027 (6)0.3034 (3)0.1868 (2)0.0564 (4)
H10.8610 (7)0.808 (3)0.407 (2)0.069 (6)*
H20.9521 (8)0.801 (3)0.525 (2)0.072 (6)*
H30.9819 (8)0.493 (3)0.706 (2)0.069 (5)*
H40.9212 (8)0.199 (3)0.780 (2)0.076 (6)*
H50.8320 (7)0.195 (3)0.662 (2)0.061 (5)*
H80.7540 (8)0.192 (3)0.558 (2)0.077 (6)*
H90.6656 (8)0.184 (3)0.437 (2)0.077 (6)*
H110.6939 (8)0.802 (3)0.192 (2)0.072 (6)*
H120.7813 (7)0.808 (3)0.311 (2)0.068 (6)*
H14A0.6175 (10)0.796 (4)0.084 (3)0.102 (8)*
H14B0.5573 (9)0.726 (3)0.106 (2)0.084 (6)*
H14C0.5906 (9)0.600 (4)0.015 (3)0.105 (8)*
H15A0.5151 (7)0.144 (4)0.209 (2)0.069 (6)*
H15B0.5285 (8)0.323 (4)0.079 (3)0.076 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0435 (10)0.0475 (11)0.0577 (10)0.0082 (8)0.0044 (8)0.0084 (9)
C20.0461 (11)0.0601 (12)0.0632 (11)0.0162 (9)0.0015 (8)0.0036 (10)
C30.0358 (9)0.0609 (12)0.0561 (11)0.0012 (9)0.0013 (8)0.0037 (10)
C40.0459 (11)0.0603 (12)0.0666 (11)0.0061 (9)0.0019 (9)0.0138 (10)
C50.0393 (9)0.0469 (10)0.0595 (10)0.0007 (8)0.0045 (8)0.0138 (9)
C60.0366 (8)0.0352 (9)0.0358 (8)0.0003 (7)0.0080 (6)0.0038 (7)
C70.0346 (8)0.0316 (8)0.0338 (8)0.0007 (6)0.0062 (6)0.0023 (7)
C80.0441 (10)0.0455 (10)0.0575 (10)0.0072 (8)0.0082 (8)0.0223 (9)
C90.0415 (10)0.0470 (10)0.0594 (10)0.0106 (8)0.0035 (8)0.0171 (9)
C100.0349 (8)0.0344 (8)0.0346 (8)0.0017 (7)0.0072 (6)0.0012 (7)
C110.0416 (10)0.0457 (10)0.0628 (11)0.0009 (8)0.0011 (8)0.0190 (9)
C120.0383 (9)0.0439 (10)0.0620 (10)0.0085 (7)0.0012 (8)0.0190 (9)
C130.0355 (8)0.0406 (9)0.0376 (8)0.0028 (7)0.0061 (6)0.0041 (8)
C140.0407 (10)0.0642 (14)0.0635 (12)0.0055 (10)0.0009 (9)0.0135 (11)
N10.0365 (7)0.0477 (8)0.0562 (8)0.0025 (6)0.0004 (6)0.0000 (7)
N20.0370 (8)0.0564 (11)0.0732 (11)0.0045 (7)0.0074 (7)0.0013 (9)
Geometric parameters (Å, º) top
C1—C61.384 (2)C9—C101.387 (2)
C1—C21.391 (2)C9—H90.994 (19)
C1—H10.983 (18)C10—C111.380 (2)
C2—C31.363 (2)C10—C131.489 (2)
C2—H20.973 (19)C11—C121.385 (2)
C3—C41.366 (2)C11—H110.950 (19)
C3—H30.939 (18)C12—H120.942 (18)
C4—C51.389 (2)C13—N11.2835 (18)
C4—H40.94 (2)C13—C141.486 (2)
C5—C61.387 (2)C14—H14A0.91 (2)
C5—H50.970 (17)C14—H14B0.99 (2)
C6—C71.5003 (19)C14—H14C0.95 (2)
C7—C121.378 (2)N1—N21.4104 (18)
C7—C81.383 (2)N2—H15A0.98 (2)
C8—C91.377 (2)N2—H15B0.88 (2)
C8—H80.960 (19)
C6—C1—C2121.06 (17)C8—C9—H9119.9 (11)
C6—C1—H1119.5 (10)C10—C9—H9118.3 (11)
C2—C1—H1119.5 (10)C11—C10—C9116.35 (15)
C3—C2—C1120.60 (17)C11—C10—C13121.98 (14)
C3—C2—H2119.5 (11)C9—C10—C13121.64 (13)
C1—C2—H2119.9 (11)C10—C11—C12121.57 (16)
C2—C3—C4119.46 (17)C10—C11—H11119.0 (11)
C2—C3—H3120.6 (11)C12—C11—H11119.4 (11)
C4—C3—H3120.0 (11)C7—C12—C11122.08 (15)
C3—C4—C5120.32 (18)C7—C12—H12120.9 (11)
C3—C4—H4121.6 (12)C11—C12—H12117.0 (11)
C5—C4—H4118.0 (12)N1—C13—C14123.62 (15)
C6—C5—C4121.31 (16)N1—C13—C10116.07 (13)
C6—C5—H5118.8 (10)C14—C13—C10120.30 (14)
C4—C5—H5119.9 (10)C13—C14—H14A114.9 (15)
C1—C6—C5117.24 (15)C13—C14—H14B111.4 (10)
C1—C6—C7121.23 (14)H14A—C14—H14B111.2 (18)
C5—C6—C7121.52 (13)C13—C14—H14C111.4 (14)
C12—C7—C8116.26 (15)H14A—C14—H14C104 (2)
C12—C7—C6122.19 (13)H14B—C14—H14C102.6 (17)
C8—C7—C6121.56 (13)C13—N1—N2116.27 (14)
C9—C8—C7121.93 (15)N1—N2—H15A108.2 (11)
C9—C8—H8116.8 (12)N1—N2—H15B113.3 (13)
C7—C8—H8121.2 (12)H15A—N2—H15B108.3 (17)
C8—C9—C10121.81 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H15A···N2i0.98 (2)2.39 (2)3.349 (2)167.0 (14)
Symmetry code: (i) x+1, y1/2, z+1/2.
(E)-[1-(Biphenyl-4-yl)ethylidene]hydrazine (dBEH) top
Crystal data top
C14H14N2Dx = 1.258 Mg m3
Mr = 210.27Melting point: 422.7(4) K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 24.8153 (19) ÅCell parameters from 380 reflections
b = 5.5146 (4) Åθ = 2.5–26.0°
c = 8.1513 (9) ŵ = 0.08 mm1
β = 95.719 (9)°T = 298 K
V = 1109.92 (17) Å3Plate, colorless
Z = 40.30 × 0.25 × 0.06 mm
F(000) = 448
Data collection top
Bruker SMART CCD area detector
diffractometer
2643 independent reflections
Radiation source: fine-focus sealed tube1328 reflections with I > 2σ(I)
Detector resolution: 10.13 pixels mm-1Rint = 0.040
phi and ω scansθmax = 29.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3333
Tmin = 0.976, Tmax = 0.991k = 76
7644 measured reflectionsl = 710
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.073H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.243 w = 1/[σ2(Fo2) + (0.1217P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2643 reflectionsΔρmax = 0.19 e Å3
339 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.058 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.3306 (2)0.3201 (9)0.5939 (6)0.0939 (15)0.587 (2)
H1A0.30710.19730.61910.109 (16)*0.587 (2)
C2A0.3836 (2)0.3115 (19)0.6653 (11)0.053 (2)0.587 (2)
H2A0.39570.18470.73470.16 (2)*0.587 (2)
C3A0.41696 (19)0.4930 (9)0.6308 (6)0.0814 (13)0.587 (2)
H3A0.45240.49550.68050.12 (3)*0.587 (2)
C4A0.3989 (3)0.6794 (11)0.5201 (10)0.0403 (14)0.587 (2)
H4A0.42310.79710.49150.34 (8)*0.587 (2)
C5A0.3474 (3)0.6881 (11)0.4563 (8)0.1256 (2)0.587 (2)
H5A0.33480.81710.38980.13 (2)*0.587 (2)
C6A0.3116 (5)0.493 (3)0.492 (2)0.042 (3)0.587 (2)
C7A0.2523 (2)0.4981 (9)0.4070 (6)0.0891 (14)0.587 (2)
C8A0.2332 (4)0.6777 (12)0.3093 (15)0.045 (2)0.587 (2)
H8A0.25530.80750.28700.14 (2)*0.587 (2)
C9A0.1797 (2)0.6680 (10)0.2410 (6)0.0942 (15)0.587 (2)
H9A0.16680.79780.17550.14 (2)*0.587 (2)
C10A0.1435 (4)0.4789 (19)0.2625 (8)0.0257 (11)0.587 (2)
C11A0.1625 (3)0.3111 (11)0.3787 (8)0.1095 (18)0.587 (2)
H11A0.13930.19250.41180.14 (2)*0.587 (2)
C12A0.21717 (15)0.3166 (7)0.4487 (6)0.0325 (9)0.587 (2)
H12A0.22970.19710.52340.069 (13)*0.587 (2)
C13A0.08530 (18)0.4874 (8)0.1799 (5)0.0786 (12)0.587 (2)
C14A0.0682 (7)0.659 (2)0.0592 (16)0.081 (3)0.587 (2)
H14A0.03450.72870.08410.095*0.587 (2)
H14B0.06320.58070.04660.16 (2)*0.587 (2)
H14C0.09500.78360.05730.098*0.587 (2)
N1A0.05682 (7)0.3088 (3)0.2274 (3)0.0319 (6)0.587 (2)
N2A0.00263 (15)0.3039 (9)0.1401 (6)0.0851 (12)0.587 (2)
C1B0.3822 (6)0.340 (3)0.6724 (16)0.069 (5)0.413 (2)
H1B0.35780.22840.70850.14 (3)*0.413 (2)
C2B0.4359 (3)0.3351 (12)0.7403 (10)0.088 (2)0.413 (2)
H2B0.44730.21840.81860.18 (4)*0.413 (2)
C3B0.4719 (2)0.5008 (7)0.6927 (5)0.0451 (12)0.413 (2)
H3B0.50850.49070.73010.13 (2)*0.413 (2)
C4B0.4527 (3)0.6842 (11)0.5873 (8)0.0784 (17)0.413 (2)
H4B0.47510.81300.56500.083 (18)*0.413 (2)
C5B0.4051 (8)0.675 (3)0.522 (2)0.103 (5)0.413 (2)
H5B0.39470.79390.44440.109*0.413 (2)
C6B0.3648 (2)0.5017 (10)0.5554 (7)0.0673 (16)0.413 (2)
C7B0.3051 (6)0.517 (4)0.483 (3)0.026 (3)0.413 (2)
C8B0.2840 (2)0.6726 (8)0.3711 (7)0.0624 (14)0.413 (2)
H8B0.30770.79280.34250.12 (2)*0.413 (2)
C9B0.2321 (6)0.686 (3)0.289 (3)0.072 (5)0.413 (2)
H9B0.22150.80250.21060.18 (4)*0.413 (2)
C10B0.1975 (2)0.5039 (9)0.3383 (6)0.0540 (13)0.413 (2)
C11B0.2168 (9)0.320 (3)0.436 (2)0.1518 (7)0.413 (2)
H11B0.19480.18500.44650.252*0.413 (2)
C12B0.2696 (2)0.3231 (9)0.5225 (7)0.0678 (15)0.413 (2)
H12B0.28060.20620.60100.22 (5)*0.413 (2)
C13B0.1403 (8)0.528 (3)0.2582 (19)0.060 (5)0.413 (2)
C14B0.11061 (16)0.3231 (7)0.3007 (6)0.0457 (11)0.413 (2)
H14D0.11020.31640.41820.205*0.413 (2)
H14E0.12730.17880.26320.12 (2)*0.413 (2)
H14F0.07410.33460.24950.123*0.413 (2)
N1B0.12152 (18)0.6649 (7)0.1208 (5)0.0656 (13)0.413 (2)
N2B0.0690 (8)0.727 (3)0.101 (2)0.098 (4)0.413 (2)
H2M0.006 (2)0.417 (11)0.068 (6)0.12 (2)*0.587 (2)
H2N0.016 (2)0.199 (8)0.171 (6)0.097 (18)*0.587 (2)
H2O0.047 (3)0.673 (14)0.174 (11)0.11 (3)*0.413 (2)
H2P0.057 (3)0.802 (14)0.013 (10)0.10 (3)*0.413 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.085 (3)0.107 (4)0.088 (3)0.022 (3)0.000 (3)0.029 (3)
C2A0.021 (2)0.060 (4)0.075 (5)0.002 (2)0.007 (2)0.001 (3)
C3A0.064 (3)0.094 (3)0.087 (3)0.007 (2)0.011 (2)0.012 (3)
C4A0.032 (2)0.037 (3)0.050 (3)0.0163 (19)0.005 (2)0.007 (2)
C5A0.1070.1300.1390.008 (3)0.012 (4)0.061 (4)
C6A0.055 (7)0.024 (2)0.051 (5)0.015 (3)0.017 (4)0.003 (3)
C7A0.083 (3)0.084 (3)0.103 (4)0.000 (3)0.023 (3)0.019 (3)
C8A0.056 (5)0.028 (2)0.052 (3)0.004 (3)0.003 (3)0.023 (2)
C9A0.090 (3)0.100 (4)0.091 (3)0.002 (3)0.004 (3)0.009 (3)
C10A0.029 (2)0.019 (3)0.029 (2)0.0075 (19)0.0030 (14)0.0027 (14)
C11A0.107 (5)0.111 (4)0.110 (4)0.011 (4)0.009 (4)0.005 (3)
C12A0.0202 (12)0.0282 (14)0.0471 (18)0.0088 (14)0.0057 (15)0.0236 (18)
C13A0.092 (3)0.082 (3)0.063 (3)0.001 (2)0.008 (2)0.010 (2)
C14A0.087 (4)0.086 (6)0.069 (6)0.007 (4)0.001 (4)0.022 (4)
N1A0.0156 (9)0.0306 (11)0.0472 (13)0.0020 (7)0.0078 (8)0.0054 (9)
N2A0.060 (2)0.084 (3)0.107 (3)0.0024 (19)0.009 (2)0.001 (3)
C1B0.096 (9)0.045 (5)0.074 (7)0.016 (4)0.054 (6)0.022 (4)
C2B0.063 (4)0.076 (4)0.117 (5)0.001 (3)0.029 (3)0.003 (4)
C3B0.028 (2)0.054 (3)0.051 (3)0.0027 (16)0.0084 (17)0.0028 (19)
C4B0.068 (4)0.084 (4)0.082 (4)0.019 (3)0.003 (3)0.009 (3)
C5B0.098 (11)0.131 (11)0.083 (10)0.033 (8)0.026 (8)0.016 (8)
C6B0.065 (4)0.078 (4)0.060 (3)0.015 (3)0.013 (3)0.015 (3)
C7B0.011 (2)0.036 (7)0.032 (4)0.000 (4)0.0003 (19)0.000 (4)
C8B0.048 (3)0.041 (3)0.099 (4)0.001 (2)0.011 (3)0.018 (2)
C9B0.049 (6)0.098 (8)0.066 (7)0.040 (5)0.004 (4)0.018 (6)
C10B0.075 (4)0.045 (3)0.045 (3)0.005 (2)0.019 (2)0.010 (2)
C11B0.1590.1520.1530.037 (12)0.059 (10)0.032 (12)
C12B0.063 (3)0.059 (3)0.079 (4)0.009 (2)0.006 (3)0.029 (3)
C13B0.051 (5)0.039 (8)0.094 (8)0.019 (4)0.024 (4)0.004 (4)
C14B0.033 (2)0.038 (2)0.067 (3)0.0043 (17)0.0081 (19)0.0040 (19)
N1B0.061 (3)0.066 (3)0.069 (3)0.011 (2)0.006 (2)0.018 (2)
N2B0.092 (6)0.107 (10)0.095 (10)0.005 (7)0.006 (7)0.003 (6)
Geometric parameters (Å, º) top
C1A—C6A1.316 (17)C1B—C2B1.393 (15)
C1A—C2A1.386 (9)C1B—C6B1.346 (15)
C1A—H1A0.9300C1B—H1B0.9300
C2A—C3A1.347 (10)C2B—C3B1.361 (8)
C2A—H2A0.9300C2B—H2B0.9300
C3A—C4A1.412 (10)C3B—C4B1.381 (8)
C3A—H3A0.9300C3B—H3B0.9300
C4A—C5A1.330 (10)C4B—C5B1.247 (19)
C4A—H4A0.9300C4B—H4B0.9300
C5A—C6A1.446 (15)C5B—C6B1.429 (19)
C5A—H5A0.9300C5B—H5B0.9300
C6A—C7A1.565 (14)C6B—C7B1.542 (17)
C7A—C8A1.328 (11)C7B—C8B1.32 (2)
C7A—C12A1.392 (7)C7B—C12B1.444 (17)
C8A—C9A1.390 (11)C8B—C9B1.392 (18)
C8A—H8A0.9300C8B—H8B0.9300
C9A—C10A1.398 (12)C9B—C10B1.403 (15)
C9A—H9A0.9300C9B—H9B0.9300
C10A—C11A1.373 (12)C10B—C11B1.35 (2)
C10A—C13A1.532 (10)C10B—C13B1.509 (18)
C11A—C12A1.419 (8)C11B—C12B1.43 (2)
C11A—H11A0.9300C11B—H11B0.9300
C12A—H12A0.9300C12B—H12B0.9300
C13A—N1A1.294 (4)C13B—N1B1.393 (17)
C13A—C14A1.399 (17)C13B—C14B1.409 (18)
C14A—H14A0.9600C14B—H14D0.9600
C14A—H14B0.9600C14B—H14E0.9600
C14A—H14C0.9600C14B—H14F0.9600
N1A—N2A1.458 (4)N1B—N2B1.34 (2)
N2A—H2M0.87 (5)N2B—H2O0.89 (9)
N2A—H2N0.79 (5)N2B—H2P0.86 (8)
C6A—C1A—C2A123.6 (8)C2B—C1B—C6B121.3 (10)
C6A—C1A—H1A118.2C2B—C1B—H1B119.3
C2A—C1A—H1A118.2C6B—C1B—H1B119.3
C3A—C2A—C1A117.7 (7)C3B—C2B—C1B120.3 (8)
C3A—C2A—H2A121.2C3B—C2B—H2B119.9
C1A—C2A—H2A121.2C1B—C2B—H2B119.9
C2A—C3A—C4A120.8 (5)C2B—C3B—C4B118.3 (6)
C2A—C3A—H3A119.6C2B—C3B—H3B120.9
C4A—C3A—H3A119.6C4B—C3B—H3B120.9
C5A—C4A—C3A120.5 (5)C3B—C4B—C5B119.3 (11)
C5A—C4A—H4A119.7C3B—C4B—H4B120.4
C3A—C4A—H4A119.7C5B—C4B—H4B120.4
C4A—C5A—C6A118.6 (8)C6B—C5B—C4B126.7 (17)
C4A—C5A—H5A120.7C6B—C5B—H5B116.7
C6A—C5A—H5A120.7C4B—C5B—H5B116.7
C1A—C6A—C5A118.6 (10)C5B—C6B—C1B113.5 (12)
C1A—C6A—C7A123.7 (10)C5B—C6B—C7B123.6 (12)
C5A—C6A—C7A117.7 (12)C1B—C6B—C7B122.4 (10)
C8A—C7A—C12A119.2 (6)C8B—C7B—C12B115.3 (12)
C8A—C7A—C6A123.0 (8)C8B—C7B—C6B126.9 (11)
C12A—C7A—C6A117.5 (7)C12B—C7B—C6B117.2 (15)
C7A—C8A—C9A118.8 (7)C7B—C8B—C9B130.4 (10)
C7A—C8A—H8A120.6C7B—C8B—H8B114.8
C9A—C8A—H8A120.6C9B—C8B—H8B114.8
C8A—C9A—C10A125.3 (6)C8B—C9B—C10B113.0 (13)
C8A—C9A—H9A117.3C8B—C9B—H9B123.5
C10A—C9A—H9A117.3C10B—C9B—H9B123.5
C11A—C10A—C9A114.1 (7)C11B—C10B—C9B121.0 (12)
C11A—C10A—C13A124.6 (7)C11B—C10B—C13B125.7 (12)
C9A—C10A—C13A120.7 (7)C9B—C10B—C13B113.1 (11)
C10A—C11A—C12A120.8 (6)C10B—C11B—C12B122.5 (15)
C10A—C11A—H11A119.6C10B—C11B—H11B118.8
C12A—C11A—H11A119.6C12B—C11B—H11B118.8
C7A—C12A—C11A121.0 (4)C11B—C12B—C7B116.7 (13)
C7A—C12A—H12A119.5C11B—C12B—H12B121.6
C11A—C12A—H12A119.5C7B—C12B—H12B121.6
N1A—C13A—C14A126.0 (7)N1B—C13B—C14B119.4 (13)
N1A—C13A—C10A111.3 (5)N1B—C13B—C10B128.3 (13)
C14A—C13A—C10A122.5 (8)C14B—C13B—C10B108.5 (11)
C13A—C14A—H14A109.5C13B—C14B—H14D109.5
C13A—C14A—H14B109.5C13B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C13A—C14A—H14C109.5C13B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
C13A—N1A—N2A111.9 (3)N2B—N1B—C13B118.4 (12)
N1A—N2A—H2M118 (4)N1B—N2B—H2O119 (5)
N1A—N2A—H2N113 (4)N1B—N2B—H2P119 (6)
H2M—N2A—H2N129 (6)H2O—N2B—H2P122 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2M···N2Ai0.87 (5)2.30 (5)3.139 (12)163 (5)
N2A—H2N···N1Aii0.79 (5)2.56 (5)3.334 (6)168 (5)
C14A—H14A···N2Aiii0.962.553.255 (14)131
C14A—H14B···N2Ai0.961.852.280 (16)104
C14B—H14F···N2B0.962.472.89 (2)106
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2.
Comparison of calculated UV–Vis characteristic peaks and predicted transitions top
Theoretical methodsλ (f)iMO transitions (configurations)ii
B3LYP310.23 (0.8955)H-0 L+0(+98%)
PBE1PBE303.27 (0.9293)H-0 L+0(+98%)
M062X273.69 (0.9760)H-0 L+0(+93%)
MP2247.97 (0.9885)H-0 L+1(+70%)
Notes: (i) calculated results in methanol solution [the unit of wavelength (λ) is nm and f means oscillator strength]; (ii) contour plots and energies of frontier molecular orbitals (see Fig. 6c).
Comparison of calculated fluorescence characteristic peaks and predicted transitions top
Theoretical methodsλ (f)iMO transitions (configurations)ii
B3LYP422.97 (1.3216)L+0 H-0 (+99%)
PBE1PBE412.66 (1.3484)L+0 H-0 (+98%)
M062X394.71 (1.2891)L+0 H-0 (+93%)
MP2405.37 (1.5108)L+0 H-0 (+90%)
CIS382.67 (1.0978)L+0 H-0 (+99%)
Notes: (i) calculated results in methanol solution [the unit of wavelength (λ) is nm and f means oscillator strength]; (ii) contour plots and energies of frontier molecular orbitals (see Fig. 7c).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds