research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-1-(3,5-di­chloro-2-hy­dr­oxy­phen­yl)-3-(5-methyl­furan-2-yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Adichunchanagiri Institute of Technology, Chikamagaluru 577 102, Karnataka, India, bDepartment of Physics, Government Engineering College, Hassan 573 201, Karnataka, India, and cDepartment of Chemistry, Adichunchanagiri Institute of Technology, Chikamagaluru 577 102, Karnataka, India
*Correspondence e-mail: bnlphysics@gmail.com

Edited by P. McArdle, National University of Ireland, Ireland (Received 21 August 2018; accepted 28 August 2018; online 18 September 2018)

The title chalcone derivative, C14H10Cl2O3, is almost planar, with a dihedral angle of 7.0 (2) ° between the 3,5-di­chloro-2-hy­droxy­phenyl and 5-methyl­furan rings. There is an intra­molecular O—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal, mol­ecules are linked by bifurcated C—H/H⋯O hydrogen bonds, enclosing an R12(6) ring motif, forming a 21 helix propagating along the b-axis direction. The inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis.

1. Chemical context

Chalcone derivatives are an important class of organic compounds comprising two aromatic rings connected via an α,β unsaturated carbonyl system. They belong to the flavonoid family, which are basically found in fruits and vegetables (Hijova 2006[Hijova, E. (2006). Bratisl. Lek. Listy, 107, 80-84.]). Chalcones occupy an important place in the pharmaceutical industry since their derivatives serve as the core structures for many organic compounds possessing various biological activities such as anti­bacterial (Vibhute & Baseer, 2003[Vibhute, Y. B. & Baseer, M. A. (2003). Indian J. Chem. 42, 202-205.]), anti-microbial (Prasad et al., 2006[Prasad, Y. R., Kumar, P. R., Deepti, C. A. & Ramana, M. V. (2006). E-J. Chem. 3, 236-241.]), anti-inflammatory (Lee et al., 2006[Lee, S. H., Seo, G. S., Kim, J. Y., Jin, X. Y., Kim, H. D. & Sohn, D. H. (2006). Eur. J. Pharmacol. 532, 178-186.]), anti-hyperglycemic (Satyanarayana et al., 2004[Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883-889.]), anti-malarial (Syahri et al., 2017[Syahri, J., Yuanita, E., Nurohmah, B. A., Armunanto, R. & Purwono, B. (2017). Asian Pac. J. Trop. Biomed. 7, 675-679.]) and anti-oxidant (Cheng et al., 2008[Cheng, J. H., Hung, C. F., Yang, S. C., Wang, J. P., Won, S.-J. & Lin, C. N. (2008). Bioorg. Med. Chem. 16, 7270-7276.]). Chalcones also exhibit some non-linear optical (NLO) properties and also find applications in laser technologies such as optical communications, data storage and signal processing because of the α,β unsaturated functionality (Shobha et al., 2017[Shobha, R. P., Upadhyaya, V. & Jayarama, A. (2017). Chem. Data Collections, 11-12, 199-210.]). Based on the above importance, we report here the crystal structure of (E)-1-(3,5-di­chloro-2-hy­droxy­phen­yl)-3-(5-methyl­furan-2-yl)prop-2-en-1-one.

[Scheme 1]

2. Structural commentary

The title mol­ecule comprises 5-methyl­furan and 3,5-di­chloro-2-hy­droxy­phenyl rings connected via an unsaturated α,β carbonyl system as shown in Fig. 1[link]. The mol­ecule is relatively planar with the furan and benzene rings being inclined to each other by 7.0 (2)°. There is an intra­molecular O—H⋯O hydrogen bond present forming an S(6) ring motif (Table 1[link] and Fig. 1[link]). The chlorine atoms positioned at C13 and C15 of the phenyl ring are in an -anti-periplanar conformation described by the torsion angles C11—C12—C13—Cl19 = −179.1 (3)° and C13—C14—C15—Cl18 = −178.6 (4)°, while methyl group at C2 of the furan ring is in a +anti-periplanar conformation [C5—O1—C2—C6 = 178.3 (4)°]. The bond lengths and angles in the title compound are similar to those observed for 3-(furan-2-yl)-1-(2-hy­droxy­phen­yl)prop-2-en-1-one (Kong & Liu, 2008[Kong, L. & Liu, Y. (2008). Acta Cryst. E64, o2161.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O17—H17⋯O10 0.82 1.76 2.489 (4) 147
C4—H4⋯O10i 0.93 2.54 3.272 (6) 135
C7—H7⋯O10i 0.93 2.57 3.359 (4) 143
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling and 50% probability displacement ellipsoids. The intra­molecular hydrogen bond (Table 1[link]) is indicated by a dashed line.

3. Supra­molecular features

In the crystal, mol­ecules are linked by bifurcated C—H/H⋯O hydrogen bonds, enclosing an R21(6) ring motif, forming a 21 helix with a pitch of 4.402 (1) Å, propagating along the b-axis direction (Table 1[link], Fig. 2[link]). The helices appear to be linked by very weak inter­molecular C—H⋯Cl contacts (Table 2[link] and Fig. 3[link]; see also Fig. 6[link] and the section below).

Table 2
Short contacts (Å) in the crystal structure of the title compound

l − vdW is the length minus the van der Waals separation.

Contact length l − vdW
O10⋯H17 1.76 −0.96
H4⋯O10i 2.54 −0.17
H7⋯O10i 2.57 −0.15
H6A⋯Cl18ii 3.21 +0.26
H6C⋯Cl18ii 3.21 +0.26
H6B⋯Cl18iii 3.14 +0.19
Cl19⋯H6Civ 3.28 +0.33
Cl19⋯H8v 3.13 +0.18
Cl19⋯H12v 3.20 +0.25
Cl18⋯H14vii 3.28 +0.33
Symmetry codes: (i) 1 − x, −[{1\over 2}] + y, −[{1\over 2}] − z; (ii) −1 + x, −2 + y, z; (iii) −1 + x, −1 + y, z; (iv) 1 − x, −1 − y, −z; (v) 1 − x, −y, −z; (vi) 2 − x, 1 − y, −z.
[Figure 2]
Figure 2
A view normal to the bc plane of the crystal packing of the title compound. The hydrogen bonds (Table 1[link]) are shown as dashed lines and only the H atoms involved in these inter­actions are shown.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. The hydrogen bonds (Table 1[link]) and short contacts (Table 2[link]) in the crystal structure are shown as dashed lines.
[Figure 6]
Figure 6
Two-dimensional fingerprints plots.

4. Hirshfeld surfaces and 2D fingerprint analysis

Three-dimensional Hirshfeld surfaces and their associated two-dimensional fingerprint plots are used to analyze inter­molecular inter­actions in crystal structures. The Hirshfeld surfaces are unique for every crystal structure based on spherical atomic electron densities and are obtained using the CrystalExplorer software (Spackman & Jayatilaka 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]).

The three-dimensional Hirshfeld surface was mapped over dnorm using a red–blue–white colour scheme where the red and blue regions indicate contact distances less then and greater than, respectively, the sums of the van der Waals radii, which have negative and positive dnorm values, respectively. In white regions where dnorm is zero the contacts are almost equal to the sum of the van der Waals radii (Shaik et al. 2017[Shaik, A., Kirubakaran, S. & Thiruvenkatam, V. (2017). Acta Cryst. E73, 531-534.]). The presence of an inter­molecular C—H⋯O inter­action is indicated by a deep-red circular spot on the dnorm surface (Fig. 4[link]). In addition, inter­molecular C—H⋯O inter­actions can also be viewed on the Hirshfeld surface mapped over electrostatic potential using a STO-3G basis set at the HF (Hartree–Fock) level of theory (Spackman & McKinnon 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; McKinnon et al. 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]) as shown in Fig. 5[link]. The donor and acceptor atoms participating in these inter­actions are shown respectively as positive (blue regions) and negative electrostatic potentials (red regions).

[Figure 4]
Figure 4
The Hirshfeld surface mapped over dnorm in the range −0.1183 to +1.0844 a.u. The circular red spots indicate inter­molecular C—H⋯O inter­actions.
[Figure 5]
Figure 5
The Hirshfeld surface mapped over electrostatic potential in the range −0.0506 to +0.0422 a.u. The donor and acceptor atoms participating in these inter­actions are shown respectively as positive (blue regions) and negative electrostatic potentials (red regions).

The two-dimensional fingerprint (Fig. 6[link]) plots were generated in the expanded mode for all major inter­molecular inter­actions giving their percentage of contribution towards packing of total Hirshfeld surface area for the mol­ecule. The H⋯Cl inter­actions make the highest (26.1%) contribution to the total Hirshfeld surface and appear as a pair of wings in the region 1.2 Å < (de + di) < 1.8 Å (di is the distance of a point on the Hirshfeld surface to the nearest nucleus inside the surface while de is the distance of the nearest nucleus outside the surface). The H⋯H contacts, with a contribution of 25.7%, are shown as blue dots spread in the middle region 1.18 Å < (de + di) < 1.62 Å. The two sharp spikes observed at 1.04 Å < (de + di) < 1.39 Å are due to the presence of a pair of O⋯H contacts making a 15.2% contribution. A pair of C⋯H contacts are observed as characteristic wings in the region of 1.18 Å < (de + di) < 1.6 Å (13.0% contribution). C⋯C, C⋯Cl and O⋯C contacts make contributions of 7.9%, 5.2% and 3.8%, respectively.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 3-(furan-2-yl)-1-(2-hy­droxy­phen­yl)prop-2-en-1-ones gave six hits. These involve only four compounds, namely: 3-(furan-2-yl)-1-(2-hy­droxy­phen­yl)prop-2-en-1-one itself (BOGVID; Kong & Liu, 2008[Kong, L. & Liu, Y. (2008). Acta Cryst. E64, o2161.]); 1-(5-bromo-2-hy­droxy­phen­yl)-3-(2-fur­yl)prop-2-en-1-one, for which variable pressure measurements were carried out (KUDMON, KUDMON01, KUDMON02; Bakowicz et al., 2015[Bakowicz, J., Galica, T. & Turowska-Tyrk, I. (2015). Z. Krist. Cryst. Mater. 230, 131-137.]); 1,1′-(4,6-dihy­droxy-1,3-phenyl­ene)bis­[3-(2-fur­yl)prop-2-en-1-one] (POHZUJ; Wera et al., 2014[Wera, M., Chalyi, A. G., Roshal, A. D., Zadykowicz, B. & Błażejowski, J. (2014). Struct. Chem. 25, 969-977.]); and 1-(5-acetyl-2,4-di­hydroxy­phen­yl)-3-(2-fur­yl)prop-2-en-1-one (POJBAT; Wera et al., 2014[Wera, M., Chalyi, A. G., Roshal, A. D., Zadykowicz, B. & Błażejowski, J. (2014). Struct. Chem. 25, 969-977.]). As in the title compound there are intra­molecular O—H⋯O hydrogen bonds present forming S(6) ring motifs. The mol­ecules are all relatively planar with the dihedral angle between the furan and 2-hy­droxy­phenyl rings varying from ca 8.35° in BOGVID, 0.20° in KUDMON, and 10.90 and 2.56° in the two independent mol­ecules of POJBAT. The only exception is POHZUJ, which possesses twofold rotation symmetry and has two [3-(2-fur­yl)prop-2-en-1-one] units meta to each other; here the dihedral angle is ca 19.87°.

6. Synthesis and crystallization

1-(3,5-Di­chloro-2-hy­droxy­phen­yl)-2-hy­droxy­ethanone (5 mmol) was dissolved in methanol (15 ml) and was stirred with 5 ml of sodium hydroxide solution for 30 min at room temperature. To this mixture, 5-methyl­furan-2-carbaldehyde (5 mmol) was added over 30 min with stirring. Stirring at room temperature was then continued for 32 h. On completion of the reaction, monitored by TLC, the mixture was quenched in ice–water and acidified with dilute hydro­chloric acid. The separated precipitate of the title compound was filtered off and recrystallized from methanol solution giving colourless block-like crystals.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were placed in calculated positions and refined as riding: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and C—H = 0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C14H10Cl2O3
Mr 297.12
Crystal system, space group Monoclinic, P21/c
Temperature (K) 290
a, b, c (Å) 10.831 (2), 4.4020 (5), 28.457 (5)
β (°) 105.254 (6)
V3) 1309.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.50
Crystal size (mm) 0.30 × 0.28 × 0.25
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.862, 0.906
No. of measured, independent and observed [I > 2σ(I)] reflections 2940, 2298, 2232
Rint 0.032
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.215, 1.09
No. of reflections 2298
No. of parameters 174
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.25
Computer programs: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

(E)-1-(3,5-Dichloro-2-hydroxyphenyl)-3-(5-methylfuran-\ 2-yl)prop-2-en-1-one top
Crystal data top
C14H10Cl2O3F(000) = 608
Mr = 297.12Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.831 (2) ÅCell parameters from 3210 reflections
b = 4.4020 (5) Åθ = 2.7–25.0°
c = 28.457 (5) ŵ = 0.50 mm1
β = 105.254 (6)°T = 290 K
V = 1309.0 (4) Å3Block, colourless
Z = 40.30 × 0.28 × 0.25 mm
Data collection top
Bruker APEXII
diffractometer
2298 independent reflections
Radiation source: graphite2232 reflections with I > 2σ(I)
Detector resolution: 0.820 pixels mm-1Rint = 0.032
SAINT (Bruker, 2006) scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1212
Tmin = 0.862, Tmax = 0.906k = 54
2940 measured reflectionsl = 3333
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.215 w = 1/[σ2(Fo2) + (0.1367P)2 + 0.3086P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2298 reflectionsΔρmax = 0.30 e Å3
174 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2523 (3)0.4421 (6)0.16266 (9)0.0723 (9)
C20.1549 (5)0.6402 (10)0.18009 (16)0.0753 (13)
C30.1426 (5)0.6924 (10)0.22703 (16)0.0762 (13)
H30.0825010.8195590.2469990.091*
C40.2352 (5)0.5237 (9)0.24105 (13)0.0707 (12)
H40.2486300.5173340.2720060.085*
C50.3028 (5)0.3696 (9)0.20109 (13)0.0657 (12)
C60.0879 (6)0.7575 (13)0.1441 (2)0.1026 (19)
H6A0.0203360.8924120.1601500.154*
H6B0.0525400.5902660.1302710.154*
H6C0.1478060.8650480.1186450.154*
C70.4044 (4)0.1635 (8)0.19346 (13)0.0640 (11)
H70.4339540.1171170.2204900.077*
C80.4640 (4)0.0255 (8)0.15184 (12)0.0650 (11)
H80.4388510.0642040.1235900.078*
C90.5671 (4)0.1829 (8)0.15071 (12)0.0614 (11)
O100.5944 (3)0.2504 (7)0.18937 (9)0.0766 (10)
C110.6450 (4)0.3207 (8)0.10472 (12)0.0612 (11)
C120.6189 (5)0.2587 (9)0.05990 (13)0.0688 (12)
H120.5509050.1328230.0585350.083*
C130.6944 (5)0.3854 (11)0.01815 (13)0.0777 (14)
C140.7946 (5)0.5709 (10)0.01895 (13)0.0773 (14)
H140.8451720.6531560.0098160.093*
C150.8201 (5)0.6350 (9)0.06256 (14)0.0683 (12)
C160.7460 (4)0.5130 (9)0.10592 (12)0.0628 (11)
O170.7747 (3)0.5862 (7)0.14744 (9)0.0786 (9)
H170.7242560.5024560.1703700.118*
Cl180.94733 (14)0.8606 (3)0.06462 (4)0.0898 (6)
Cl190.66403 (17)0.3052 (4)0.03742 (4)0.1139 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.081 (3)0.0853 (18)0.0574 (15)0.0008 (16)0.0296 (13)0.0014 (12)
C20.073 (4)0.080 (3)0.076 (3)0.001 (2)0.025 (2)0.000 (2)
C30.072 (4)0.080 (3)0.073 (3)0.002 (2)0.012 (2)0.0048 (19)
C40.075 (4)0.079 (2)0.057 (2)0.000 (2)0.0147 (18)0.0015 (17)
C50.072 (4)0.074 (2)0.053 (2)0.012 (2)0.0199 (17)0.0040 (15)
C60.101 (6)0.114 (4)0.108 (4)0.012 (3)0.055 (3)0.003 (3)
C70.066 (4)0.073 (2)0.054 (2)0.005 (2)0.0184 (17)0.0058 (15)
C80.077 (4)0.071 (2)0.0495 (19)0.002 (2)0.0218 (17)0.0082 (15)
C90.070 (4)0.069 (2)0.0466 (19)0.0047 (19)0.0188 (17)0.0031 (14)
O100.090 (3)0.0963 (19)0.0489 (15)0.0065 (16)0.0272 (13)0.0015 (12)
C110.062 (3)0.076 (2)0.0471 (19)0.0067 (19)0.0168 (16)0.0021 (15)
C120.074 (4)0.085 (2)0.049 (2)0.005 (2)0.0183 (17)0.0051 (17)
C130.092 (4)0.095 (3)0.050 (2)0.001 (3)0.025 (2)0.0022 (19)
C140.088 (4)0.089 (3)0.052 (2)0.001 (3)0.0136 (19)0.0048 (18)
C150.071 (4)0.073 (2)0.062 (2)0.002 (2)0.0202 (19)0.0013 (17)
C160.061 (3)0.076 (2)0.0537 (19)0.004 (2)0.0202 (16)0.0046 (16)
O170.086 (3)0.0982 (19)0.0562 (15)0.0112 (17)0.0270 (13)0.0045 (13)
Cl180.0900 (14)0.0995 (9)0.0818 (8)0.0179 (7)0.0260 (6)0.0063 (5)
Cl190.1348 (17)0.1627 (14)0.0488 (7)0.0341 (10)0.0326 (7)0.0011 (6)
Geometric parameters (Å, º) top
O1—C21.358 (6)C8—H80.9300
O1—C51.382 (5)C9—O101.248 (4)
C2—C31.327 (6)C9—C111.487 (5)
C2—C61.495 (6)C11—C161.390 (6)
C3—C41.389 (7)C11—C121.404 (5)
C3—H30.9300C12—C131.372 (6)
C4—C51.361 (5)C12—H120.9300
C4—H40.9300C13—C141.363 (6)
C5—C71.399 (6)C13—Cl191.734 (4)
C6—H6A0.9600C14—C151.370 (5)
C6—H6B0.9600C14—H140.9300
C6—H6C0.9600C15—C161.391 (5)
C7—C81.337 (5)C15—Cl181.712 (5)
C7—H70.9300C16—O171.338 (4)
C8—C91.439 (6)O17—H170.8200
C2—O1—C5106.9 (3)C9—C8—H8120.0
C3—C2—O1110.0 (4)O10—C9—C8119.6 (3)
C3—C2—C6133.8 (5)O10—C9—C11117.9 (4)
O1—C2—C6116.2 (4)C8—C9—C11122.5 (3)
C2—C3—C4107.9 (4)C16—C11—C12119.3 (3)
C2—C3—H3126.0C16—C11—C9119.7 (3)
C4—C3—H3126.0C12—C11—C9121.1 (4)
C5—C4—C3107.3 (4)C13—C12—C11119.4 (4)
C5—C4—H4126.4C13—C12—H12120.3
C3—C4—H4126.4C11—C12—H12120.3
C4—C5—O1108.0 (4)C14—C13—C12121.7 (4)
C4—C5—C7133.0 (4)C14—C13—Cl19118.7 (3)
O1—C5—C7119.1 (3)C12—C13—Cl19119.6 (4)
C2—C6—H6A109.5C13—C14—C15119.3 (4)
C2—C6—H6B109.5C13—C14—H14120.3
H6A—C6—H6B109.5C15—C14—H14120.3
C2—C6—H6C109.5C14—C15—C16121.1 (4)
H6A—C6—H6C109.5C14—C15—Cl18120.4 (3)
H6B—C6—H6C109.5C16—C15—Cl18118.4 (3)
C8—C7—C5127.5 (4)O17—C16—C11122.4 (3)
C8—C7—H7116.2O17—C16—C15118.4 (4)
C5—C7—H7116.2C11—C16—C15119.2 (3)
C7—C8—C9120.0 (3)C16—O17—H17109.5
C7—C8—H8120.0
C5—O1—C2—C30.2 (5)C8—C9—C11—C121.7 (6)
C5—O1—C2—C6178.3 (4)C16—C11—C12—C130.9 (6)
O1—C2—C3—C40.1 (6)C9—C11—C12—C13178.7 (4)
C6—C2—C3—C4178.0 (6)C11—C12—C13—C140.1 (7)
C2—C3—C4—C50.1 (5)C11—C12—C13—Cl19179.1 (3)
C3—C4—C5—O10.0 (5)C12—C13—C14—C150.6 (7)
C3—C4—C5—C7178.7 (5)Cl19—C13—C14—C15179.7 (3)
C2—O1—C5—C40.1 (5)C13—C14—C15—C160.3 (7)
C2—O1—C5—C7179.0 (4)C13—C14—C15—Cl18178.6 (4)
C4—C5—C7—C8179.8 (4)C12—C11—C16—O17178.7 (4)
O1—C5—C7—C81.6 (7)C9—C11—C16—O171.6 (6)
C5—C7—C8—C9179.6 (4)C12—C11—C16—C151.2 (6)
C7—C8—C9—O105.1 (6)C9—C11—C16—C15178.5 (4)
C7—C8—C9—C11174.1 (4)C14—C15—C16—O17179.4 (4)
O10—C9—C11—C161.2 (6)Cl18—C15—C16—O172.3 (6)
C8—C9—C11—C16178.0 (4)C14—C15—C16—C110.6 (7)
O10—C9—C11—C12179.1 (4)Cl18—C15—C16—C11177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H17···O100.821.762.489 (4)147
C4—H4···O10i0.932.543.272 (6)135
C7—H7···O10i0.932.573.359 (4)143
Symmetry code: (i) x+1, y1/2, z1/2.
Short contacts (Å) in the crystal structure of the title compound top
l - vdW is the length minus the van der Waals separation.
Contactlengthl - vdW
O10···H171.76-0.96
H4···O10i2.54-0.17
H7···O10i2.57-0.15
H6A···Cl18ii3.21+0.26
H6C···Cl18ii3.21+0.26
H6B···Cl18iii3.14+0.19
Cl19···H6Civ3.28+0.33
Cl19···H8v3.13+0.18
Cl19···H12v3.20+0.25
Cl18···H14vii3.28+0.33
Symmetry codes: (i) 1 - x, -1/2 + y, -1/2 - z; (ii) -1 + x, -2 + y, z; (iii) -1 + x, -1 + y, z; (iv) 1 - x, -1 - y, -z; (v) 1 - x, -y, -z; (vi) 2 - x, 1 - y, -z.
 

Acknowledgements

The authors are grateful to the Department of Physics, Adichunchanagiri Institute of Technology, for support.

References

First citationBakowicz, J., Galica, T. & Turowska-Tyrk, I. (2015). Z. Krist. Cryst. Mater. 230, 131–137.  Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J. H., Hung, C. F., Yang, S. C., Wang, J. P., Won, S.-J. & Lin, C. N. (2008). Bioorg. Med. Chem. 16, 7270–7276.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHijova, E. (2006). Bratisl. Lek. Listy, 107, 80–84.  Google Scholar
First citationKong, L. & Liu, Y. (2008). Acta Cryst. E64, o2161.  CrossRef IUCr Journals Google Scholar
First citationLee, S. H., Seo, G. S., Kim, J. Y., Jin, X. Y., Kim, H. D. & Sohn, D. H. (2006). Eur. J. Pharmacol. 532, 178–186.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrasad, Y. R., Kumar, P. R., Deepti, C. A. & Ramana, M. V. (2006). E-J. Chem. 3, 236–241.  CrossRef CAS Google Scholar
First citationSatyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883–889.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShaik, A., Kirubakaran, S. & Thiruvenkatam, V. (2017). Acta Cryst. E73, 531–534.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShobha, R. P., Upadhyaya, V. & Jayarama, A. (2017). Chem. Data Collections, 11–12, 199–210.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyahri, J., Yuanita, E., Nurohmah, B. A., Armunanto, R. & Purwono, B. (2017). Asian Pac. J. Trop. Biomed. 7, 675–679.  CrossRef Google Scholar
First citationVibhute, Y. B. & Baseer, M. A. (2003). Indian J. Chem. 42, 202–205.  Google Scholar
First citationWera, M., Chalyi, A. G., Roshal, A. D., Zadykowicz, B. & Błażejowski, J. (2014). Struct. Chem. 25, 969–977.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds