organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bi­pyridine–3,3′-disulfanediyl­bis­­(1H-1,2,4-triazole-5-amine) (1/1)

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and bKey Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: jinqh204@163.com

(Received 15 August 2012; accepted 12 October 2012; online 20 October 2012)

In the title 1:1 adduct, C10H8N2·C4H6N8S2·, the components are connected through N—H⋯N hydrogen bonds, leading to a two-dimensional structure. The C—S—S—C torsion angle is −83.6 (1)°. The dihedral angle between pyridine rings is 1.86 (15)°.

Related literature

For structures containing 1H-1,2,4-triazole-5-amine-3-thiol­ate, see: Aldoshin et al. (2003[Aldoshin, S. M., Sanina, N. A., Rakova, O. A., Shilov, G. V., Kulikov, A. V., Shulga, Yu. M. & Ovanesyan, N. S. (2003). Russ. Chem. Bull. Int. Ed. 52, 1702-1708.]); Hao et al. (2010[Hao, Z. M., Guo, C. H., Wu, H. S. & Zhang, X. M. (2010). CrystEngComm, 12, 55-58.]); Rakova et al. (2003[Rakova, O. A., Sanina, N. A., Aldoshin, S. M., Goncharova, N. V., Shilov, G. V., Shulga, Y. M. & Ovanesyan, N. S. (2003). Inorg. Chem. Commun. 6, 145-148.]). For related structures, see: Brito et al. (2007[Brito, I., Cárdenas, A., Mundaca, A., Villalobos, H. & López-Rodríguez, M. (2007). Acta Cryst. E63, o2581-o2583.]); Deng et al. (2005[Deng, Q.-J., Yao, M.-X. & Zeng, M.-H. (2005). Acta Cryst. E61, o2239-o2240.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·C4H6N8S2

  • Mr = 386.47

  • Triclinic, [P \overline 1]

  • a = 9.324 (1) Å

  • b = 9.4540 (11) Å

  • c = 11.3840 (13) Å

  • α = 109.560 (2)°

  • β = 104.089 (1)°

  • γ = 105.627 (1)°

  • V = 846.86 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 298 K

  • 0.35 × 0.30 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.]) Tmin = 0.891, Tmax = 0.933

  • 4439 measured reflections

  • 2952 independent reflections

  • 2121 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.106

  • S = 1.04

  • 2952 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.86 2.22 2.850 (3) 131
N4—H4A⋯N5i 0.86 2.29 3.058 (3) 149
N4—H4B⋯N10ii 0.86 2.18 2.977 (3) 154
N6—H6⋯N9iii 0.86 2.04 2.867 (3) 162
N8—H8A⋯N3iv 0.86 2.33 3.137 (3) 156
N8—H8B⋯N7v 0.86 2.22 3.068 (3) 167
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y, -z; (iv) x, y-1, z; (v) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of novel inorganic-organic hybrid coordination complexes have attracted the attention of many chemists in recent years. So far, there are very few literature reports of structures containing 1H-1,2,4-triazole-5-amine-3-thiolate (Rakova et al.2003; Hao et al., 2010; Aldoshin et al., 2003). We are interested in synthesizing new transition metal complexes containing 5-AMT. The title co-crystal was unexpectedly obtained in the course of synthesizing 5-AMT-Ni(II) complexes.

The molecular structure of the co-crystal is shown in Fig.1. The title compound is triclinic in the P-1 space group. C4H6N8S2.C10H8N2 contains two 5-AMT units linked by an S—S disulfide bridge. The C—S—S—C torsion angle is 83.6 (1)°. This value is close to that of 81.9 (1)° determined for 5,5'-Dithiobis(1-phenyl-1H-tetrazole) (Brito et al., 2007). The 4,4'-bipyridine molecule is connected to a C4H6N8S2 molecule through N—H···N hydrogen bonds, which are similar to those in the co-crystal of C10H8N2.2C2H3N3S2 (Deng et al., 2005). Further N—H···N hydrogen bonds between C4H6N8S2 molecules leads to a two-dimensional network (Fig.2 and Fig.3). There are face-to-face πi-πi stacking interactions between the 4,4'-bipyridine and triazole rings, the centroid-centroid distance is 3.630 Å.

Related literature top

For structures containing 1H-1,2,4-triazole-5-amine-3-thiolate, see: Aldoshin et al. (2003); Hao et al. (2010); Rakova et al. (2003). For related structures, see: Brito et al. (2007); Deng et al. (2005).

Experimental top

The title co-crystal has been prepared by adding 5-AMT(1.8 mmol), sodium hydroxide(1.2 mmol) and 4,4'-bipyridine(1.0 mmol) into a stirred mixture of CH3OH (7 mL) and H2O (5 mL) containing Ni(NO3)2.6H2O (1.0 mmol). The mixture was refluxed for 5 h and then allowed to cool to ambient temperature. The filtrate was evaporated slowly at room temperature for 3 days to yield yellow crystalline products.

Refinement top

Metal atom centers were located from the E-maps and other non-hydrogen atoms were located in successive difference Fourier syntheses. The final refinements were performed by full matrix least-squares methods with anisotropic thermal parameters for non-hydrogen atoms on F2.

The final refinements were performed by full martrix least-squares methods with anisotropic thermal parameters for non-hydrogen atoms on F2. All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded (Uiso(H) = 1.2Ueq). C-H hydrogen atoms (aromatic) were included with distance set to 0.93Å and amide N-H hydrogen atoms were included with distance set to 0.86Å.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular entities of the title compound, showing the atom-numbering scheme with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular N—H···N hydrogen bonds.
[Figure 3] Fig. 3. Intermolecular N—H···N hydrogen bonds.
4,4'-Bipyridine–3,3'-disulfanediylbis(1H-1,2,4-triazole-5-amine) (1/1) top
Crystal data top
C10H8N2·C4H6N8S2Z = 2
Mr = 386.47F(000) = 400
Triclinic, P1Dx = 1.516 Mg m3
a = 9.324 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4540 (11) ÅCell parameters from 1617 reflections
c = 11.3840 (13) Åθ = 2.4–26.4°
α = 109.560 (2)°µ = 0.34 mm1
β = 104.089 (1)°T = 298 K
γ = 105.627 (1)°Block, yellow
V = 846.86 (17) Å30.35 × 0.30 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2952 independent reflections
Radiation source: fine-focus sealed tube2121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1011
Tmin = 0.891, Tmax = 0.933k = 611
4439 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.3426P]
where P = (Fo2 + 2Fc2)/3
2952 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C10H8N2·C4H6N8S2γ = 105.627 (1)°
Mr = 386.47V = 846.86 (17) Å3
Triclinic, P1Z = 2
a = 9.324 (1) ÅMo Kα radiation
b = 9.4540 (11) ŵ = 0.34 mm1
c = 11.3840 (13) ÅT = 298 K
α = 109.560 (2)°0.35 × 0.30 × 0.21 mm
β = 104.089 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2952 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2121 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.933Rint = 0.019
4439 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
2952 reflectionsΔρmin = 0.26 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6415 (3)0.6418 (2)0.1281 (2)0.0365 (5)
N20.4984 (3)0.6630 (3)0.1020 (2)0.0367 (5)
H20.40950.59170.03940.044*
N30.6698 (3)0.8909 (2)0.2725 (2)0.0368 (5)
N40.3976 (3)0.8634 (3)0.1817 (2)0.0499 (7)
H4A0.30400.80230.12100.060*
H4B0.41430.95870.23850.060*
N50.8542 (3)0.3413 (3)0.1018 (2)0.0411 (6)
N60.8400 (3)0.2361 (3)0.1625 (2)0.0398 (6)
H60.79980.13180.12060.048*
N70.9544 (2)0.4807 (2)0.3285 (2)0.0346 (5)
N80.9016 (3)0.2543 (3)0.3827 (2)0.0505 (7)
H8A0.86500.15030.35390.061*
H8B0.94060.31550.46740.061*
N90.2801 (3)0.0985 (3)0.0248 (2)0.0488 (6)
N100.5992 (3)0.8714 (3)0.5836 (2)0.0518 (7)
S10.94031 (9)0.82733 (9)0.31441 (8)0.0479 (2)
S20.98658 (9)0.65858 (9)0.17888 (8)0.0474 (2)
C10.5172 (3)0.8101 (3)0.1876 (3)0.0342 (6)
C20.7366 (3)0.7806 (3)0.2306 (3)0.0345 (6)
C30.8980 (3)0.3206 (3)0.2961 (3)0.0349 (6)
C40.9235 (3)0.4833 (3)0.2058 (3)0.0338 (6)
C50.4333 (4)0.1698 (4)0.1025 (3)0.0540 (8)
H50.49960.11490.08280.065*
C60.5013 (3)0.3195 (3)0.2107 (3)0.0478 (8)
H6A0.61040.36260.26110.057*
C70.4085 (3)0.4057 (3)0.2443 (3)0.0328 (6)
C80.2490 (4)0.3329 (3)0.1624 (3)0.0526 (8)
H80.18000.38550.17890.063*
C90.1915 (4)0.1821 (4)0.0559 (3)0.0565 (9)
H90.08320.13640.00270.068*
C100.6900 (4)0.7885 (3)0.5540 (3)0.0473 (7)
H100.79730.83360.60970.057*
C110.6350 (3)0.6395 (3)0.4456 (3)0.0391 (7)
H110.70490.58810.42930.047*
C120.4754 (3)0.5667 (3)0.3612 (3)0.0326 (6)
C130.3814 (4)0.6530 (3)0.3920 (3)0.0490 (8)
H130.27350.61080.33880.059*
C140.4475 (4)0.8020 (4)0.5018 (3)0.0565 (9)
H140.38080.85730.51950.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0370 (13)0.0262 (12)0.0393 (13)0.0107 (10)0.0112 (11)0.0092 (10)
N20.0333 (13)0.0298 (12)0.0337 (12)0.0087 (10)0.0081 (10)0.0041 (10)
N30.0449 (14)0.0256 (11)0.0312 (12)0.0104 (10)0.0089 (11)0.0083 (10)
N40.0478 (15)0.0401 (14)0.0402 (14)0.0223 (12)0.0023 (12)0.0016 (11)
N50.0422 (14)0.0398 (14)0.0339 (13)0.0141 (11)0.0088 (11)0.0123 (11)
N60.0417 (14)0.0273 (12)0.0344 (13)0.0096 (10)0.0073 (11)0.0026 (10)
N70.0365 (13)0.0254 (11)0.0327 (12)0.0096 (10)0.0070 (10)0.0078 (10)
N80.0713 (18)0.0257 (12)0.0387 (14)0.0086 (12)0.0105 (13)0.0103 (11)
N90.0640 (18)0.0304 (13)0.0403 (14)0.0096 (13)0.0162 (13)0.0104 (11)
N100.0624 (18)0.0364 (14)0.0462 (15)0.0167 (13)0.0216 (14)0.0067 (12)
S10.0404 (4)0.0315 (4)0.0540 (5)0.0084 (3)0.0038 (4)0.0120 (3)
S20.0447 (5)0.0507 (5)0.0620 (5)0.0224 (4)0.0264 (4)0.0334 (4)
C10.0440 (17)0.0257 (14)0.0290 (14)0.0112 (12)0.0123 (13)0.0099 (12)
C20.0381 (16)0.0252 (14)0.0362 (15)0.0086 (12)0.0109 (13)0.0133 (12)
C30.0321 (15)0.0282 (14)0.0351 (15)0.0093 (12)0.0081 (12)0.0078 (12)
C40.0274 (14)0.0332 (15)0.0368 (15)0.0130 (12)0.0082 (12)0.0121 (13)
C50.056 (2)0.0391 (17)0.060 (2)0.0200 (16)0.0279 (18)0.0077 (15)
C60.0368 (17)0.0380 (16)0.0511 (18)0.0121 (13)0.0125 (14)0.0036 (14)
C70.0347 (15)0.0286 (14)0.0354 (15)0.0093 (12)0.0134 (12)0.0158 (12)
C80.0428 (18)0.0387 (17)0.057 (2)0.0166 (14)0.0068 (15)0.0065 (15)
C90.0483 (19)0.0402 (18)0.055 (2)0.0074 (15)0.0001 (16)0.0121 (16)
C100.0466 (18)0.0402 (17)0.0425 (17)0.0099 (14)0.0116 (15)0.0120 (14)
C110.0386 (16)0.0334 (15)0.0423 (16)0.0137 (13)0.0150 (13)0.0129 (13)
C120.0360 (15)0.0265 (13)0.0347 (14)0.0105 (12)0.0133 (12)0.0135 (12)
C130.0392 (17)0.0426 (17)0.0503 (18)0.0173 (14)0.0116 (14)0.0052 (14)
C140.062 (2)0.0481 (19)0.057 (2)0.0318 (17)0.0263 (18)0.0082 (16)
Geometric parameters (Å, º) top
N1—C21.309 (3)N10—C101.328 (4)
N1—N21.378 (3)S1—C21.760 (3)
N2—C11.339 (3)S1—S22.0392 (11)
N2—H20.8600S2—C41.757 (3)
N3—C11.339 (3)C5—C61.375 (4)
N3—C21.366 (3)C5—H50.9300
N4—C11.338 (3)C6—C71.376 (4)
N4—H4A0.8600C6—H6A0.9300
N4—H4B0.8600C7—C81.378 (4)
N5—C41.310 (3)C7—C121.485 (3)
N5—N61.385 (3)C8—C91.380 (4)
N6—C31.341 (3)C8—H80.9300
N6—H60.8600C9—H90.9300
N7—C31.343 (3)C10—C111.382 (4)
N7—C41.366 (3)C10—H100.9300
N8—C31.333 (3)C11—C121.386 (4)
N8—H8A0.8600C11—H110.9300
N8—H8B0.8600C12—C131.378 (4)
N9—C91.319 (4)C13—C141.380 (4)
N9—C51.321 (4)C13—H130.9300
N10—C141.322 (4)C14—H140.9300
C2—N1—N2101.2 (2)N7—C4—S2125.08 (19)
C1—N2—N1110.6 (2)N9—C5—C6124.5 (3)
C1—N2—H2124.7N9—C5—H5117.8
N1—N2—H2124.7C6—C5—H5117.8
C1—N3—C2101.9 (2)C5—C6—C7120.1 (3)
C1—N4—H4A120.0C5—C6—H6A119.9
C1—N4—H4B120.0C7—C6—H6A119.9
H4A—N4—H4B120.0C6—C7—C8115.7 (2)
C4—N5—N6101.7 (2)C6—C7—C12122.3 (2)
C3—N6—N5110.1 (2)C8—C7—C12122.0 (2)
C3—N6—H6125.0C7—C8—C9120.1 (3)
N5—N6—H6125.0C7—C8—H8120.0
C3—N7—C4102.4 (2)C9—C8—H8120.0
C3—N8—H8A120.0N9—C9—C8124.3 (3)
C3—N8—H8B120.0N9—C9—H9117.9
H8A—N8—H8B120.0C8—C9—H9117.9
C9—N9—C5115.4 (2)N10—C10—C11124.1 (3)
C14—N10—C10115.7 (2)N10—C10—H10118.0
C2—S1—S2102.20 (9)C11—C10—H10118.0
C4—S2—S1104.74 (9)C10—C11—C12119.9 (2)
N4—C1—N2122.7 (2)C10—C11—H11120.1
N4—C1—N3127.5 (2)C12—C11—H11120.1
N2—C1—N3109.8 (2)C13—C12—C11115.9 (2)
N1—C2—N3116.6 (2)C13—C12—C7121.6 (2)
N1—C2—S1123.3 (2)C11—C12—C7122.4 (2)
N3—C2—S1120.13 (19)C12—C13—C14120.1 (3)
N8—C3—N6124.6 (2)C12—C13—H13120.0
N8—C3—N7125.6 (2)C14—C13—H13120.0
N6—C3—N7109.8 (2)N10—C14—C13124.3 (3)
N5—C4—N7116.1 (2)N10—C14—H14117.8
N5—C4—S2118.5 (2)C13—C14—H14117.8
C2—N1—N2—C10.6 (3)S1—S2—C4—N744.3 (2)
C4—N5—N6—C31.1 (3)C9—N9—C5—C60.8 (5)
C2—S1—S2—C483.57 (13)N9—C5—C6—C70.1 (5)
N1—N2—C1—N4178.1 (2)C5—C6—C7—C81.0 (4)
N1—N2—C1—N30.1 (3)C5—C6—C7—C12179.1 (3)
C2—N3—C1—N4178.5 (3)C6—C7—C8—C91.0 (4)
C2—N3—C1—N20.4 (3)C12—C7—C8—C9179.1 (3)
N2—N1—C2—N30.9 (3)C5—N9—C9—C80.8 (5)
N2—N1—C2—S1178.47 (19)C7—C8—C9—N90.0 (5)
C1—N3—C2—N10.8 (3)C14—N10—C10—C110.3 (5)
C1—N3—C2—S1178.55 (19)N10—C10—C11—C121.0 (5)
S2—S1—C2—N117.6 (2)C10—C11—C12—C131.0 (4)
S2—S1—C2—N3163.10 (19)C10—C11—C12—C7179.1 (3)
N5—N6—C3—N8179.9 (3)C6—C7—C12—C13178.7 (3)
N5—N6—C3—N71.2 (3)C8—C7—C12—C131.3 (4)
C4—N7—C3—N8179.5 (3)C6—C7—C12—C111.3 (4)
C4—N7—C3—N60.8 (3)C8—C7—C12—C11178.8 (3)
N6—N5—C4—N70.6 (3)C11—C12—C13—C140.4 (4)
N6—N5—C4—S2173.25 (17)C7—C12—C13—C14179.7 (3)
C3—N7—C4—N50.1 (3)C10—N10—C14—C130.4 (5)
C3—N7—C4—S2173.50 (19)C12—C13—C14—N100.3 (5)
S1—S2—C4—N5142.40 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.222.850 (3)131
N4—H4A···N5i0.862.293.058 (3)149
N4—H4B···N10ii0.862.182.977 (3)154
N6—H6···N9iii0.862.042.867 (3)162
N8—H8A···N3iv0.862.333.137 (3)156
N8—H8B···N7v0.862.223.068 (3)167
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y, z; (iv) x, y1, z; (v) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H8N2·C4H6N8S2
Mr386.47
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.324 (1), 9.4540 (11), 11.3840 (13)
α, β, γ (°)109.560 (2), 104.089 (1), 105.627 (1)
V3)846.86 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.35 × 0.30 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.891, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
4439, 2952, 2121
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 1.04
No. of reflections2952
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.222.850 (3)130.5
N4—H4A···N5i0.862.293.058 (3)148.7
N4—H4B···N10ii0.862.182.977 (3)154.0
N6—H6···N9iii0.862.042.867 (3)162.1
N8—H8A···N3iv0.862.333.137 (3)156.0
N8—H8B···N7v0.862.223.068 (3)166.8
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y, z; (iv) x, y1, z; (v) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.21171119), the National High Technology Research and Development Program 863 of China (2012 A A063201), the Beijing Personnel Bureau, the National Keystone Basic Research Program (973 Program) under grant Nos. 2007CB310408 and 2006CB302901), the Committee of Education of the Beijing Foundation of China (grant No. KM201210028020).

References

First citationAldoshin, S. M., Sanina, N. A., Rakova, O. A., Shilov, G. V., Kulikov, A. V., Shulga, Yu. M. & Ovanesyan, N. S. (2003). Russ. Chem. Bull. Int. Ed. 52, 1702–1708.  Web of Science CrossRef CAS Google Scholar
First citationBrito, I., Cárdenas, A., Mundaca, A., Villalobos, H. & López-Rodríguez, M. (2007). Acta Cryst. E63, o2581–o2583.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.  Google Scholar
First citationDeng, Q.-J., Yao, M.-X. & Zeng, M.-H. (2005). Acta Cryst. E61, o2239–o2240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHao, Z. M., Guo, C. H., Wu, H. S. & Zhang, X. M. (2010). CrystEngComm, 12, 55–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationRakova, O. A., Sanina, N. A., Aldoshin, S. M., Goncharova, N. V., Shilov, G. V., Shulga, Y. M. & Ovanesyan, N. S. (2003). Inorg. Chem. Commun. 6, 145–148.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds