organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Methyl-3-phenyl-2-sulfanyl­­idene-1,2,3,4-tetra­hydro­quinazolin-4-one

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 16 February 2012; accepted 17 February 2012; online 29 February 2012)

The title compound, C15H12N2OS, exists as the thione tautomer in the solid state. The phenyl group is almost perpendicular [dihedral angle = 87.96 (5)°] to the fused ring system (r.m.s. deviation = 0.036 Å for 13 ring and exocyclic non-H atoms). In the crystal, centrosymmetric dimers, sustained by pairs of N—H⋯S hydrogen bonds, are connected into layers parallel to (-101) by C—H⋯O and C—H⋯S inter­actions.

Related literature

For recent studies on synthesis, drug discovery and crystal structures of quinazoline-4(3H)-one derivatives, see: El-Azab & El-Tahir (2012[El-Azab, A. S. & El-Tahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 327-333.]); El-Azab et al. (2011[El-Azab, A. S., El-Tahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837-925.], 2010[El-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188-4198.]). For the anti­microbial activity of the title compound, see: Al-Omar et al. (2004[Al-Omar, M. A., Abdel-Hamide, S. G., Al-Khamees, H. A. & El-Subbagh, H. I. (2004). Saudi Pharm. J. 12, 63-71.]). For the structures of related compounds, see: Bowman et al. (2007[Bowman, W. R., Elsegood, M. R. J., Stein, T. & Weaver, G. W. (2007). Org. Biomol. Chem. 5, 103-113.]); Hashim et al. (2010[Hashim, N. M., Osman, H., Rahim, A. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o950.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2OS

  • Mr = 268.33

  • Monoclinic, P 21 /n

  • a = 12.7770 (3) Å

  • b = 5.1384 (1) Å

  • c = 19.0973 (4) Å

  • β = 91.814 (2)°

  • V = 1253.17 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.23 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.967, Tmax = 0.998

  • 4636 measured reflections

  • 2576 independent reflections

  • 2348 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.098

  • S = 1.06

  • 2576 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1n⋯S1i 0.91 (2) 2.49 (2) 3.3662 (12) 163.6 (17)
C3—H3⋯O1ii 0.95 2.33 3.2522 (17) 163
C11—H11⋯S1iii 0.95 2.86 3.7333 (16) 154
C15—H15⋯O1iv 0.95 2.32 3.1988 (18) 154
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Quinazoline-4(3H)-one derivatives are known for their various biological activities (El-Azab & El-Tahir, 2012; El-Azab et al. (2011, 2010). The title compound (I) has been investigated previously for its anti-microbial activity (Al-Omar et al., 2004). Herein, its crystal and molecular structure is described.

The key result of the crystal structure determination of (I), Fig. 1, is the confirmation that the compound exists as the thione tautomer in the solid-state. The non-hydrogen atoms comprising the fused ring system, including the exocyclic atoms, are co-planar with a r.m.s. deviation = 0.036 Å. The maximum deviations from the least-squares plane through these atoms are 0.038 (1) Å for the S1 atom and -0.085 (1) Å for N1, consistent with some pyramidal character for the latter atom. The phenyl group is almost perpendicular to the aforementioned plane: the dihedral angle = 87.96 (5)°.

The presence of the thione tautomer confirms the results of previous structure determinations on related compounds (Bowman et al., 2007; Hashim et al., 2010).

The key feature of the crystal packing is the formation of N—H···S hydrogen bonds between centrosymmetrically related molecules, Table 1. The dimeric aggregates thus formed are connected into layers parallel to (1 0 1) by C—H···O interactions, involving the bifurcated carbonyl-O atom, and C—H···S interactions, Fig. 2 and Table 1. Layers stack with no specific intermolecular interactions between them, Fig. 3.

Related literature top

For recent studies on synthesis, drug discovery and crystal structures of quinazoline-4(3H)-one derivatives, see: El-Azab & El-Tahir (2012); El-Azab et al. (2011, 2010). For the antimicrobial activity of the title compound, see: Al-Omar et al. (2004). For the structures of related compounds, see: Bowman et al. (2007); Hashim et al. (2010).

Experimental top

A mixture of 2-amino-5-methylbenzoic acid (1.51 g m, 10 mmol) and phenyl isothiocyanate (1.35 g m, 10 mmol) in absolute ethanol (30 ml) containing triethylamine (1.1 mg, 10 mmol) was refluxed for 3 h. The reaction mixture was allowed to cool, the solvent was removed under reduced pressure, and the solid obtained was dried and recrystallized from EtOH. Yield 90%; M.pt: 340–342 K; 1H NMR (500 MHz, DMSO-d6): δ 12.98 (s, 1H, exchangeable), 7.75 (s, 1H), 7.60 (d, 1H, J=8.0 Hz), 7.48 (t, 2H, J=7.0, 7.5 Hz), 7.41 (d, 1H, J=7.0 Hz), 7.36 (d, 1H, J=8.0 Hz), 7.26 (d, 2H, J=8.0 Hz), 2.37 (s, 3H). 13C NMR (DMSO-d6): δ 176.0, 160.2, 139.8, 138.1, 137.1, 134.4, 129.5, 129.3, 128.5, 127.2, 116.5, 116.2, 20.9.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N—H atom was located in a difference Fourier map, and was refined with distance restraint of N—H = 0.88±0.01 Å; the Uiso value was refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer parallel to (1 0 1) in (I) mediated by N—H···S, C—H···O and C—H···S interactions, shown as blue, orange and brown dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents of (I). The N—H···S, C—H···O and C—H···S interactions are shown as blue, orange and brown dashed lines, respectively.
6-Methyl-3-phenyl-2-sulfanylidene-1,2,3,4-tetrahydroquinazolin-4-one top
Crystal data top
C15H12N2OSF(000) = 560
Mr = 268.33Dx = 1.422 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 2386 reflections
a = 12.7770 (3) Åθ = 3.5–76.4°
b = 5.1384 (1) ŵ = 2.23 mm1
c = 19.0973 (4) ÅT = 100 K
β = 91.814 (2)°Prism, colourless
V = 1253.17 (5) Å30.35 × 0.15 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2576 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2348 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 4.1°
ω scanh = 1516
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 56
Tmin = 0.967, Tmax = 0.998l = 1424
4636 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.3083P]
where P = (Fo2 + 2Fc2)/3
2576 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H12N2OSV = 1253.17 (5) Å3
Mr = 268.33Z = 4
Monoclinic, P21/nCu Kα radiation
a = 12.7770 (3) ŵ = 2.23 mm1
b = 5.1384 (1) ÅT = 100 K
c = 19.0973 (4) Å0.35 × 0.15 × 0.05 mm
β = 91.814 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2576 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2348 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.998Rint = 0.016
4636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
2576 reflectionsΔρmin = 0.25 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56616 (3)0.52832 (7)0.394981 (16)0.01717 (12)
O10.35822 (8)0.1192 (2)0.25706 (5)0.0181 (2)
N10.45653 (9)0.1596 (2)0.32532 (6)0.0149 (2)
H1n0.4357 (15)0.305 (4)0.4827 (11)0.029 (5)*
N20.42228 (9)0.2138 (2)0.44293 (6)0.0161 (2)
C10.37571 (11)0.0266 (3)0.31493 (7)0.0150 (3)
C20.31942 (10)0.0982 (3)0.37768 (7)0.0156 (3)
C30.24261 (10)0.2920 (3)0.37432 (7)0.0173 (3)
H30.22500.37220.33070.021*
C40.19179 (11)0.3686 (3)0.43408 (7)0.0182 (3)
C50.22073 (11)0.2484 (3)0.49797 (7)0.0195 (3)
H50.18710.30010.53940.023*
C60.29690 (11)0.0568 (3)0.50213 (7)0.0179 (3)
H60.31560.02100.54590.021*
C70.34592 (11)0.0206 (3)0.44129 (7)0.0156 (3)
C90.47714 (10)0.2888 (3)0.38744 (7)0.0149 (3)
C80.10873 (12)0.5770 (3)0.42997 (8)0.0229 (3)
H8A0.13140.71760.39930.034*
H8B0.04320.50240.41100.034*
H8C0.09760.64650.47690.034*
C100.52338 (10)0.2014 (3)0.26589 (7)0.0154 (3)
C110.60838 (11)0.0364 (3)0.25902 (8)0.0188 (3)
H110.62330.09420.29310.023*
C120.67148 (12)0.0652 (3)0.20130 (8)0.0208 (3)
H120.73030.04520.19590.025*
C130.64818 (11)0.2554 (3)0.15178 (7)0.0208 (3)
H130.69100.27460.11240.025*
C140.56249 (12)0.4182 (3)0.15946 (7)0.0217 (3)
H140.54710.54850.12540.026*
C150.49894 (11)0.3912 (3)0.21705 (7)0.0193 (3)
H150.44000.50130.22250.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0194 (2)0.01951 (19)0.01264 (19)0.00399 (12)0.00160 (13)0.00051 (12)
O10.0211 (5)0.0210 (5)0.0122 (5)0.0004 (4)0.0006 (4)0.0024 (4)
N10.0169 (5)0.0178 (6)0.0102 (5)0.0002 (4)0.0019 (4)0.0005 (4)
N20.0189 (6)0.0194 (6)0.0101 (5)0.0025 (5)0.0016 (4)0.0016 (5)
C10.0154 (6)0.0161 (6)0.0136 (6)0.0029 (5)0.0003 (5)0.0006 (5)
C20.0156 (6)0.0179 (6)0.0132 (6)0.0015 (5)0.0007 (5)0.0012 (5)
C30.0168 (6)0.0197 (7)0.0153 (6)0.0001 (5)0.0004 (5)0.0009 (5)
C40.0158 (6)0.0190 (7)0.0199 (7)0.0012 (5)0.0008 (5)0.0013 (5)
C50.0193 (6)0.0229 (7)0.0165 (6)0.0013 (5)0.0052 (5)0.0029 (6)
C60.0201 (7)0.0212 (7)0.0125 (6)0.0008 (5)0.0023 (5)0.0002 (5)
C70.0145 (6)0.0176 (6)0.0145 (6)0.0011 (5)0.0005 (5)0.0002 (5)
C90.0155 (6)0.0163 (6)0.0129 (6)0.0015 (5)0.0002 (5)0.0004 (5)
C80.0198 (7)0.0245 (7)0.0245 (7)0.0038 (6)0.0032 (6)0.0017 (6)
C100.0176 (6)0.0183 (6)0.0103 (6)0.0027 (5)0.0026 (5)0.0021 (5)
C110.0199 (7)0.0199 (7)0.0166 (7)0.0013 (5)0.0024 (5)0.0032 (5)
C120.0187 (7)0.0225 (7)0.0213 (7)0.0011 (6)0.0056 (6)0.0005 (6)
C130.0230 (7)0.0249 (7)0.0148 (6)0.0055 (6)0.0060 (5)0.0011 (6)
C140.0283 (8)0.0220 (7)0.0148 (7)0.0007 (6)0.0024 (6)0.0051 (6)
C150.0226 (7)0.0192 (7)0.0161 (6)0.0025 (6)0.0024 (5)0.0008 (6)
Geometric parameters (Å, º) top
S1—C91.6788 (14)C6—C71.3953 (19)
O1—C11.2175 (17)C6—H60.9500
N1—C91.3776 (17)C8—H8A0.9800
N1—C11.4171 (18)C8—H8B0.9800
N1—C101.4578 (16)C8—H8C0.9800
N2—C91.3454 (17)C10—C151.379 (2)
N2—C71.3913 (18)C10—C111.388 (2)
N2—H1n0.91 (2)C11—C121.3940 (19)
C1—C21.4639 (18)C11—H110.9500
C2—C71.3918 (19)C12—C131.386 (2)
C2—C31.398 (2)C12—H120.9500
C3—C41.3877 (19)C13—C141.389 (2)
C3—H30.9500C13—H130.9500
C4—C51.406 (2)C14—C151.3945 (19)
C4—C81.508 (2)C14—H140.9500
C5—C61.385 (2)C15—H150.9500
C5—H50.9500
C9—N1—C1124.38 (11)N2—C9—N1116.73 (12)
C9—N1—C10119.89 (11)N2—C9—S1120.73 (10)
C1—N1—C10115.66 (11)N1—C9—S1122.54 (10)
C9—N2—C7124.69 (12)C4—C8—H8A109.5
C9—N2—H1n115.0 (13)C4—C8—H8B109.5
C7—N2—H1n120.2 (13)H8A—C8—H8B109.5
O1—C1—N1120.20 (12)C4—C8—H8C109.5
O1—C1—C2124.34 (13)H8A—C8—H8C109.5
N1—C1—C2115.45 (12)H8B—C8—H8C109.5
C7—C2—C3120.25 (12)C15—C10—C11121.98 (12)
C7—C2—C1119.46 (13)C15—C10—N1120.36 (12)
C3—C2—C1120.24 (12)C11—C10—N1117.59 (12)
C4—C3—C2120.66 (13)C10—C11—C12118.93 (13)
C4—C3—H3119.7C10—C11—H11120.5
C2—C3—H3119.7C12—C11—H11120.5
C3—C4—C5118.17 (13)C13—C12—C11119.84 (14)
C3—C4—C8120.35 (13)C13—C12—H12120.1
C5—C4—C8121.48 (13)C11—C12—H12120.1
C6—C5—C4121.79 (13)C12—C13—C14120.37 (13)
C6—C5—H5119.1C12—C13—H13119.8
C4—C5—H5119.1C14—C13—H13119.8
C5—C6—C7119.22 (13)C13—C14—C15120.25 (13)
C5—C6—H6120.4C13—C14—H14119.9
C7—C6—H6120.4C15—C14—H14119.9
N2—C7—C2118.93 (12)C10—C15—C14118.62 (13)
N2—C7—C6121.17 (13)C10—C15—H15120.7
C2—C7—C6119.90 (13)C14—C15—H15120.7
C9—N1—C1—O1175.07 (13)C5—C6—C7—N2179.51 (13)
C10—N1—C1—O17.96 (18)C5—C6—C7—C21.2 (2)
C9—N1—C1—C26.19 (19)C7—N2—C9—N11.3 (2)
C10—N1—C1—C2170.77 (11)C7—N2—C9—S1178.88 (10)
O1—C1—C2—C7179.92 (13)C1—N1—C9—N26.2 (2)
N1—C1—C2—C71.40 (19)C10—N1—C9—N2170.65 (12)
O1—C1—C2—C32.7 (2)C1—N1—C9—S1173.97 (10)
N1—C1—C2—C3176.00 (12)C10—N1—C9—S19.18 (18)
C7—C2—C3—C40.0 (2)C9—N1—C10—C1591.74 (16)
C1—C2—C3—C4177.40 (13)C1—N1—C10—C1591.15 (16)
C2—C3—C4—C50.9 (2)C9—N1—C10—C1191.23 (16)
C2—C3—C4—C8179.76 (13)C1—N1—C10—C1185.88 (15)
C3—C4—C5—C60.6 (2)C15—C10—C11—C120.6 (2)
C8—C4—C5—C6179.97 (13)N1—C10—C11—C12177.61 (13)
C4—C5—C6—C70.4 (2)C10—C11—C12—C130.5 (2)
C9—N2—C7—C23.2 (2)C11—C12—C13—C140.2 (2)
C9—N2—C7—C6176.10 (13)C12—C13—C14—C150.2 (2)
C3—C2—C7—N2179.69 (12)C11—C10—C15—C140.6 (2)
C1—C2—C7—N22.9 (2)N1—C10—C15—C14177.45 (13)
C3—C2—C7—C61.0 (2)C13—C14—C15—C100.3 (2)
C1—C2—C7—C6176.36 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1n···S1i0.91 (2)2.49 (2)3.3662 (12)163.6 (17)
C3—H3···O1ii0.952.333.2522 (17)163
C11—H11···S1iii0.952.863.7333 (16)154
C15—H15···O1iv0.952.323.1988 (18)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H12N2OS
Mr268.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.7770 (3), 5.1384 (1), 19.0973 (4)
β (°) 91.814 (2)
V3)1253.17 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.23
Crystal size (mm)0.35 × 0.15 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.967, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
4636, 2576, 2348
Rint0.016
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.098, 1.06
No. of reflections2576
No. of parameters177
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1n···S1i0.91 (2)2.49 (2)3.3662 (12)163.6 (17)
C3—H3···O1ii0.952.333.2522 (17)163
C11—H11···S1iii0.952.863.7333 (16)154
C15—H15···O1iv0.952.323.1988 (18)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: adelazaba@yahoo.com.

Acknowledgements

This work was supported by the Research Center of Pharmacy, King Saud University, Riyadh, Saudi Arabia. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAl-Omar, M. A., Abdel-Hamide, S. G., Al-Khamees, H. A. & El-Subbagh, H. I. (2004). Saudi Pharm. J. 12, 63–71.  CAS Google Scholar
First citationBowman, W. R., Elsegood, M. R. J., Stein, T. & Weaver, G. W. (2007). Org. Biomol. Chem. 5, 103–113.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188–4198.  Web of Science CAS PubMed Google Scholar
First citationEl-Azab, A. S. & El-Tahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 327–333.  Web of Science CAS PubMed Google Scholar
First citationEl-Azab, A. S., El-Tahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837–925.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHashim, N. M., Osman, H., Rahim, A. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o950.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds