Download citation
Download citation
link to html
The dipharmacophore com­pound 3-cyclo­propyl-5-(3-methyl-[1,2,4]triazolo[4,3-a]pyridin-7-yl)-1,2,4-oxa­diazole, C12H11N5O, was studied on the assumption of its potential biological activity. Two polymorphic forms differ in both their mol­ecular and crystal structures. The monoclinic polymorphic form was crystallized from more volatile solvents and contains a conformer with a higher relative energy. The basic mol­ecule forms an abundance of inter­actions with relatively close energies. The ortho­rhom­bic polymorph was crystallized very slowly from isoamyl alcohol and contains a conformer with a much lower energy. The basic mol­ecule forms two strong inter­actions and a large number of weak interactions. Stacking inter­actions of the `head-to-head' type in the monoclinic structure and of the `head-to-tail' type in the ortho­rhom­bic structure proved to be the strongest and form stacked columns in the two polymorphs. The main structural motif of the monoclinic structure is a double column where two stacked columns inter­act through weak C—H...N hydrogen bonds and dispersive inter­actions. In the ortho­rhom­bic structure, a single stacked column is the main structural motif. Periodic calculations confirmed that the ortho­rhom­bic structure obtained by slow evaporation has a lower lattice energy (0.97 kcal mol−1) com­pared to the mono­clinic structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620015508/qf3045sup1.cif
Contains datablocks 1m, 1r, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620015508/qf30451msup2.hkl
Contains datablock 1m

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620015508/qf30451rsup3.hkl
Contains datablock 1r

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229620015508/qf30451msup4.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229620015508/qf3045sup5.pdf
Additional figures and tables

CCDC references: 2025658; 2025657

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

3-Cyclopropyl-5-(3-methyl-[1,2,4]triazolo[4,3-a]pyridin-7-yl)-1,2,4-oxadiazole (1m) top
Crystal data top
C12H11N5OF(000) = 504
Mr = 241.26Dx = 1.421 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.4041 (4) ÅCell parameters from 1056 reflections
b = 27.8787 (18) Åθ = 4.3–23.3°
c = 9.3533 (8) ŵ = 0.10 mm1
β = 100.816 (7)°T = 293 K
V = 1128.00 (16) Å3Stick, colourless
Z = 40.20 × 0.05 × 0.05 mm
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
1981 independent reflections
Radiation source: Enhance (Mo) X-ray Source1318 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.072
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 55
Tmin = 0.338, Tmax = 1.000k = 3333
7951 measured reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.196 w = 1/[σ2(Fo2) + (0.0976P)2 + 0.2527P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1981 reflectionsΔρmax = 0.21 e Å3
165 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2465 (4)0.51902 (7)0.6021 (2)0.0575 (6)
N40.6454 (5)0.53963 (8)0.7691 (2)0.0509 (6)
N30.1764 (5)0.69750 (8)0.5734 (2)0.0503 (6)
N50.3932 (6)0.47589 (8)0.6584 (3)0.0580 (7)
N10.2061 (6)0.68097 (10)0.3885 (3)0.0679 (8)
C40.3206 (6)0.60383 (9)0.6355 (3)0.0455 (7)
C80.6232 (6)0.49047 (9)0.7564 (3)0.0453 (7)
C70.4141 (6)0.55471 (9)0.6733 (3)0.0453 (7)
N20.1726 (6)0.73011 (10)0.4051 (3)0.0714 (8)
C50.0840 (6)0.61363 (10)0.5247 (3)0.0490 (7)
H50.0263400.5889200.4718410.059*
C60.0074 (7)0.66178 (10)0.4909 (3)0.0525 (7)
C30.4849 (6)0.64155 (9)0.7185 (3)0.0530 (8)
H30.6446080.6342550.7955110.064*
C90.8374 (6)0.45801 (10)0.8473 (3)0.0530 (7)
H91.0478690.4704630.8772300.064*
C20.4123 (7)0.68739 (11)0.6870 (3)0.0556 (8)
H20.5201500.7120060.7414090.067*
C110.7290 (7)0.42612 (11)0.9569 (3)0.0615 (8)
H11A0.8676450.4211101.0493180.074*
H11B0.5111970.4268660.9621660.074*
C100.8169 (8)0.40511 (11)0.8250 (3)0.0635 (8)
H10A0.6525420.3929450.7499970.076*
H10B1.0088090.3871920.8371050.076*
C10.0535 (8)0.73958 (10)0.5147 (3)0.0610 (8)
C120.1669 (9)0.78739 (11)0.5682 (4)0.0820 (11)
H12A0.1425090.7911160.6674880.123*
H12B0.0504580.8117430.5093550.123*
H12C0.3815770.7903630.5626690.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0653 (12)0.0393 (11)0.0613 (13)0.0030 (9)0.0054 (10)0.0002 (9)
N40.0515 (13)0.0403 (13)0.0570 (14)0.0019 (10)0.0002 (11)0.0041 (11)
N30.0621 (14)0.0364 (13)0.0499 (13)0.0018 (10)0.0039 (11)0.0013 (10)
N50.0662 (16)0.0411 (14)0.0618 (15)0.0014 (11)0.0006 (12)0.0041 (11)
N10.0777 (18)0.0515 (16)0.0670 (17)0.0088 (13)0.0058 (14)0.0016 (13)
C40.0500 (15)0.0382 (15)0.0468 (15)0.0007 (12)0.0050 (12)0.0001 (12)
C80.0507 (15)0.0396 (15)0.0463 (15)0.0009 (12)0.0107 (12)0.0024 (12)
C70.0502 (15)0.0391 (14)0.0457 (14)0.0047 (12)0.0065 (12)0.0039 (11)
N20.087 (2)0.0515 (16)0.0689 (18)0.0139 (13)0.0033 (15)0.0080 (13)
C50.0547 (16)0.0417 (15)0.0469 (15)0.0050 (12)0.0001 (12)0.0052 (12)
C60.0566 (16)0.0488 (16)0.0495 (15)0.0015 (13)0.0031 (13)0.0001 (13)
C30.0604 (17)0.0402 (15)0.0522 (17)0.0034 (13)0.0056 (13)0.0023 (12)
C90.0481 (15)0.0434 (16)0.0658 (18)0.0019 (12)0.0062 (13)0.0030 (13)
C20.0633 (18)0.0458 (17)0.0531 (17)0.0050 (13)0.0010 (13)0.0082 (13)
C110.0599 (18)0.0624 (19)0.0591 (18)0.0052 (15)0.0030 (14)0.0108 (15)
C100.077 (2)0.0443 (16)0.0671 (19)0.0076 (15)0.0083 (16)0.0011 (15)
C10.077 (2)0.0433 (17)0.0605 (18)0.0122 (14)0.0078 (16)0.0050 (14)
C120.116 (3)0.0384 (18)0.088 (3)0.0011 (18)0.011 (2)0.0021 (17)
Geometric parameters (Å, º) top
O1—C71.339 (3)C5—H50.9300
O1—N51.419 (3)C3—C21.337 (4)
N4—C71.294 (3)C3—H30.9300
N4—C81.377 (3)C9—C101.490 (4)
N3—C11.363 (3)C9—C111.501 (4)
N3—C21.369 (4)C9—H90.9800
N3—C61.388 (4)C2—H20.9300
N5—C81.297 (4)C11—C101.481 (4)
N1—C61.322 (4)C11—H11A0.9700
N1—N21.383 (4)C11—H11B0.9700
C4—C51.352 (4)C10—H10A0.9700
C4—C31.422 (4)C10—H10B0.9700
C4—C71.454 (4)C1—C121.477 (4)
C8—C91.460 (4)C12—H12A0.9600
N2—C11.315 (4)C12—H12B0.9600
C5—C61.406 (4)C12—H12C0.9600
C7—O1—N5106.0 (2)C10—C9—C1159.4 (2)
C7—N4—C8103.3 (2)C8—C9—H9114.8
C1—N3—C2132.5 (3)C10—C9—H9114.8
C1—N3—C6105.2 (2)C11—C9—H9114.8
C2—N3—C6122.3 (2)C3—C2—N3118.9 (3)
C8—N5—O1103.7 (2)C3—C2—H2120.6
C6—N1—N2105.9 (2)N3—C2—H2120.6
C5—C4—C3120.6 (2)C10—C11—C959.94 (19)
C5—C4—C7121.3 (2)C10—C11—H11A117.8
C3—C4—C7118.1 (2)C9—C11—H11A117.8
N5—C8—N4114.0 (2)C10—C11—H11B117.8
N5—C8—C9123.4 (2)C9—C11—H11B117.8
N4—C8—C9122.6 (2)H11A—C11—H11B114.9
N4—C7—O1113.1 (2)C11—C10—C960.7 (2)
N4—C7—C4128.7 (2)C11—C10—H10A117.7
O1—C7—C4118.3 (2)C9—C10—H10A117.7
C1—N2—N1109.6 (2)C11—C10—H10B117.7
C4—C5—C6118.9 (2)C9—C10—H10B117.7
C4—C5—H5120.5H10A—C10—H10B114.8
C6—C5—H5120.5N2—C1—N3109.0 (3)
N1—C6—N3110.3 (3)N2—C1—C12127.1 (3)
N1—C6—C5131.1 (3)N3—C1—C12123.8 (3)
N3—C6—C5118.6 (2)C1—C12—H12A109.5
C2—C3—C4120.7 (3)C1—C12—H12B109.5
C2—C3—H3119.6H12A—C12—H12B109.5
C4—C3—H3119.6C1—C12—H12C109.5
C8—C9—C10121.1 (3)H12A—C12—H12C109.5
C8—C9—C11120.8 (2)H12B—C12—H12C109.5
C7—O1—N5—C81.1 (3)C2—N3—C6—C50.6 (4)
O1—N5—C8—N40.8 (3)C4—C5—C6—N1178.8 (3)
O1—N5—C8—C9178.2 (2)C4—C5—C6—N30.5 (4)
C7—N4—C8—N50.2 (3)C5—C4—C3—C21.2 (4)
C7—N4—C8—C9178.7 (2)C7—C4—C3—C2178.9 (3)
C8—N4—C7—O10.5 (3)N5—C8—C9—C104.5 (4)
C8—N4—C7—C4179.2 (3)N4—C8—C9—C10176.6 (2)
N5—O1—C7—N41.0 (3)N5—C8—C9—C1166.0 (4)
N5—O1—C7—C4178.7 (2)N4—C8—C9—C11112.9 (3)
C5—C4—C7—N4175.2 (3)C4—C3—C2—N30.1 (4)
C3—C4—C7—N44.9 (4)C1—N3—C2—C3179.0 (3)
C5—C4—C7—O14.4 (4)C6—N3—C2—C30.9 (4)
C3—C4—C7—O1175.4 (2)C8—C9—C11—C10110.2 (3)
C6—N1—N2—C10.3 (4)C8—C9—C10—C11109.7 (3)
C3—C4—C5—C61.4 (4)N1—N2—C1—N30.2 (4)
C7—C4—C5—C6178.7 (2)N1—N2—C1—C12179.4 (3)
N2—N1—C6—N30.3 (3)C2—N3—C1—N2179.9 (3)
N2—N1—C6—C5179.1 (3)C6—N3—C1—N20.0 (3)
C1—N3—C6—N10.2 (3)C2—N3—C1—C120.6 (5)
C2—N3—C6—N1179.9 (3)C6—N3—C1—C12179.2 (3)
C1—N3—C6—C5179.3 (2)
3-Cyclopropyl-5-(3-methyl-[1,2,4]triazolo[4,3-a]pyridin-7-yl)-1,2,4-oxadiazole (1r) top
Crystal data top
C12H11N5ODx = 1.411 Mg m3
Mr = 241.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1390 reflections
a = 12.2191 (13) Åθ = 4.0–22.0°
b = 8.1593 (9) ŵ = 0.10 mm1
c = 22.788 (2) ÅT = 293 K
V = 2271.9 (4) Å3Stick, colourless
Z = 80.20 × 0.05 × 0.05 mm
F(000) = 1008
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
2002 independent reflections
Radiation source: Enhance (Mo) X-ray Source1311 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.095
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 1414
Tmin = 0.228, Tmax = 1.000k = 99
15782 measured reflectionsl = 2727
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.052P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2002 reflectionsΔρmax = 0.15 e Å3
164 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.88986 (12)0.5205 (2)0.52200 (8)0.0715 (5)
N30.80711 (15)0.2052 (2)0.70333 (9)0.0606 (5)
N40.71113 (15)0.5058 (2)0.51527 (9)0.0617 (6)
N50.86045 (17)0.6039 (2)0.46946 (10)0.0726 (6)
N10.62777 (18)0.1981 (3)0.71423 (11)0.0839 (7)
N20.6767 (2)0.1183 (3)0.76098 (11)0.0848 (7)
C70.79654 (18)0.4670 (3)0.54524 (11)0.0573 (6)
C40.80063 (17)0.3756 (3)0.60016 (10)0.0566 (6)
C80.75456 (19)0.5904 (3)0.46866 (11)0.0601 (6)
C20.90468 (18)0.2421 (3)0.67606 (11)0.0648 (7)
H20.9710010.2099780.6924580.078*
C30.90181 (18)0.3253 (3)0.62528 (11)0.0638 (7)
H30.9669720.3504750.6062120.077*
C60.70786 (19)0.2498 (3)0.67980 (12)0.0638 (7)
C50.70492 (18)0.3374 (3)0.62699 (11)0.0624 (7)
H50.6384580.3688280.6105970.075*
C90.68851 (19)0.6572 (3)0.42135 (11)0.0670 (7)
H90.7272280.7255050.3926910.080*
C10.7831 (2)0.1236 (3)0.75449 (12)0.0699 (7)
C110.5717 (2)0.7022 (3)0.43306 (12)0.0756 (8)
H11A0.5440270.6858850.4725210.091*
H11B0.5423010.7971140.4128840.091*
C100.5957 (2)0.5555 (3)0.39780 (12)0.0797 (8)
H10A0.5811750.5606040.3559930.096*
H10B0.5829010.4493400.4156490.096*
C120.8657 (2)0.0530 (3)0.79399 (12)0.0854 (8)
H12A0.9045850.0325850.7739530.128*
H12B0.8303220.0086290.8280760.128*
H12C0.9162770.1369050.8057420.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0400 (10)0.0864 (11)0.0881 (12)0.0041 (8)0.0008 (8)0.0039 (9)
N30.0425 (12)0.0646 (11)0.0746 (13)0.0054 (8)0.0040 (10)0.0144 (10)
N40.0415 (12)0.0710 (12)0.0726 (13)0.0028 (9)0.0005 (10)0.0114 (10)
N50.0469 (13)0.0832 (14)0.0877 (15)0.0008 (10)0.0023 (11)0.0083 (12)
N10.0537 (15)0.1047 (17)0.0934 (17)0.0082 (12)0.0101 (12)0.0026 (14)
N20.0638 (16)0.1004 (17)0.0902 (17)0.0112 (13)0.0103 (13)0.0011 (14)
C70.0374 (14)0.0596 (13)0.0749 (16)0.0028 (10)0.0020 (11)0.0192 (12)
C40.0405 (14)0.0606 (13)0.0686 (15)0.0020 (10)0.0009 (10)0.0188 (11)
C80.0457 (15)0.0593 (13)0.0753 (16)0.0005 (10)0.0029 (12)0.0149 (12)
C20.0374 (14)0.0764 (15)0.0807 (17)0.0004 (11)0.0013 (12)0.0113 (14)
C30.0382 (14)0.0773 (15)0.0759 (17)0.0042 (10)0.0047 (11)0.0103 (13)
C60.0389 (15)0.0723 (15)0.0802 (17)0.0049 (11)0.0088 (12)0.0159 (13)
C50.0380 (14)0.0737 (15)0.0757 (17)0.0024 (10)0.0002 (11)0.0177 (13)
C90.0491 (16)0.0733 (15)0.0786 (17)0.0022 (11)0.0010 (12)0.0040 (13)
C10.0616 (18)0.0697 (16)0.0783 (17)0.0093 (13)0.0086 (14)0.0093 (13)
C110.0557 (17)0.0889 (18)0.0822 (17)0.0112 (13)0.0028 (13)0.0073 (14)
C100.0664 (18)0.0893 (18)0.0835 (18)0.0024 (13)0.0116 (14)0.0148 (15)
C120.078 (2)0.0953 (19)0.0828 (19)0.0041 (15)0.0018 (15)0.0021 (16)
Geometric parameters (Å, º) top
O1—C71.331 (3)C2—H20.9300
O1—N51.423 (3)C3—H30.9300
N3—C11.375 (3)C6—C51.400 (3)
N3—C61.375 (3)C5—H50.9300
N3—C21.378 (3)C9—C111.497 (3)
N4—C71.287 (3)C9—C101.504 (3)
N4—C81.373 (3)C9—H90.9800
N5—C81.299 (3)C1—C121.470 (4)
N1—C61.323 (3)C11—C101.471 (3)
N1—N21.384 (3)C11—H11A0.9700
N2—C11.309 (3)C11—H11B0.9700
C7—C41.457 (3)C10—H10A0.9700
C4—C51.356 (3)C10—H10B0.9700
C4—C31.423 (3)C12—H12A0.9600
C8—C91.453 (3)C12—H12B0.9600
C2—C31.342 (3)C12—H12C0.9600
C7—O1—N5105.98 (17)C6—C5—H5120.6
C1—N3—C6105.7 (2)C8—C9—C11119.3 (2)
C1—N3—C2132.3 (2)C8—C9—C10118.4 (2)
C6—N3—C2122.0 (2)C11—C9—C1058.70 (16)
C7—N4—C8102.8 (2)C8—C9—H9116.1
C8—N5—O1102.86 (18)C11—C9—H9116.1
C6—N1—N2106.7 (2)C10—C9—H9116.1
C1—N2—N1109.1 (2)N2—C1—N3108.9 (2)
N4—C7—O1113.7 (2)N2—C1—C12126.9 (3)
N4—C7—C4127.5 (2)N3—C1—C12124.2 (2)
O1—C7—C4118.7 (2)C10—C11—C960.88 (17)
C5—C4—C3120.1 (2)C10—C11—H11A117.7
C5—C4—C7118.4 (2)C9—C11—H11A117.7
C3—C4—C7121.5 (2)C10—C11—H11B117.7
N5—C8—N4114.7 (2)C9—C11—H11B117.7
N5—C8—C9122.1 (2)H11A—C11—H11B114.8
N4—C8—C9123.2 (2)C11—C10—C960.42 (16)
C3—C2—N3118.5 (2)C11—C10—H10A117.7
C3—C2—H2120.8C9—C10—H10A117.7
N3—C2—H2120.8C11—C10—H10B117.7
C2—C3—C4121.0 (2)C9—C10—H10B117.7
C2—C3—H3119.5H10A—C10—H10B114.8
C4—C3—H3119.5C1—C12—H12A109.5
N1—C6—N3109.7 (2)C1—C12—H12B109.5
N1—C6—C5130.8 (2)H12A—C12—H12B109.5
N3—C6—C5119.5 (2)C1—C12—H12C109.5
C4—C5—C6118.9 (2)H12A—C12—H12C109.5
C4—C5—H5120.6H12B—C12—H12C109.5
C7—O1—N5—C80.5 (2)C1—N3—C6—N10.2 (3)
C6—N1—N2—C10.4 (3)C2—N3—C6—N1179.29 (19)
C8—N4—C7—O10.5 (2)C1—N3—C6—C5179.48 (19)
C8—N4—C7—C4179.8 (2)C2—N3—C6—C51.0 (3)
N5—O1—C7—N40.7 (2)C3—C4—C5—C60.7 (3)
N5—O1—C7—C4180.00 (17)C7—C4—C5—C6179.95 (19)
N4—C7—C4—C56.5 (3)N1—C6—C5—C4179.9 (2)
O1—C7—C4—C5172.71 (19)N3—C6—C5—C40.3 (3)
N4—C7—C4—C3172.8 (2)N5—C8—C9—C11154.4 (2)
O1—C7—C4—C38.0 (3)N4—C8—C9—C1126.8 (3)
O1—N5—C8—N40.2 (2)N5—C8—C9—C10137.6 (2)
O1—N5—C8—C9179.14 (19)N4—C8—C9—C1041.2 (3)
C7—N4—C8—N50.1 (2)N1—N2—C1—N30.5 (3)
C7—N4—C8—C9178.7 (2)N1—N2—C1—C12179.7 (2)
C1—N3—C2—C3180.0 (2)C6—N3—C1—N20.5 (3)
C6—N3—C2—C30.6 (3)C2—N3—C1—N2179.0 (2)
N3—C2—C3—C40.4 (3)C6—N3—C1—C12179.6 (2)
C5—C4—C3—C21.1 (3)C2—N3—C1—C120.2 (4)
C7—C4—C3—C2179.6 (2)C8—C9—C11—C10107.3 (3)
N2—N1—C6—N30.1 (3)C8—C9—C10—C11108.8 (3)
N2—N1—C6—C5179.7 (2)
Selected geometric parameters for molecule 1 in monoclinic and orthorhombic polymorphic crystals top
ParameterStructure 1mStructure 1r
Bond length (Å)
C4—C71.454 (4)1.457 (3)
C8—C91.460 (4)1.453 (3)
Torsion angle (°)
C5—C4—C7—O1-4.5 (4)172.7 (2)
N4—C8—C9—H9-31.6173.5
Geometric characteristics (Å, °) of the intermolecular hydrogen bonds, stacking interactions and intermolecular short contacts in different polymorphic crystals of compound 1 top
InteractionSymmetry operationGeometric characteristics
H···AD—H···A
Polymorph 1m
C5—H5···N5-x ,-y+1, -z+12.57172
C2—H2···N2x+1, -y+3/2, z+1/22.45174
C11—H11a···N4-x+2, -y+1, -z+22.71143
Stacking `head-to-head'x-1, y, zDistance between mean planes is 3.38 Å Plane-to-plane shift is 2.820 Å Plane-to-plane twist angle is 0.0°
O1···O1'-x, -y+2, -z+12.82
Polymorph 1r
C3—H3···N5-x+2, -y+1, -z+12.75168
C12—H12a···N1(π)-x+3/2, y-1/2, z2.62142
C12—H12c···N1(lp)x+1/2, y, -z+3/22.67135
Stacking `head-to-tail'-x+3/2, y-1/2, zDistance between mean planes is 3.50 Å Plane-to-plane shift is 2.224 Å Plane-to-plane twist angle is 2.5°
Stacking `head-to-tail'-x+3/2, y+1/2, zDistance between mean planes is 3.52 Å Plane-to-plane shift is 2.196 Å Plane-to-plane twist angle is 2.5°
O1···O1'-x+2, -y+1, -z+12.89
Symmetry codes, interaction energies of the basic molecule with neighbouring ones (Eint, kcal mol-1), with the highest values (more than 5% of total interaction energy) and the contribution of this energy to the total interaction energy (%) in polymorphic crystals 1m (for full list of dimers, see Table S1 in the supporting information) top
DimerSymmetry operationEint (kcal mol-1)Contribution to the total interaction energy (%)Type of interaction
1m_d1x-1, y, z-9.3514.2Stacking `head-to-head'
1m_d2x+1, y, z-9.3514.2Stacking `head-to-head'
1m_d3-x+1, -y+1, -z+1-8.6813.2dispersion
1m_d4-x, -y+1, -z+1-6.7510.3Car—H···N
1m_d5x+1, -y+3/2, z+1/2-6.5910.0Car—H···N
1m_d6x-1, -y+3/2, z-1/2-6.5910.0Car—H···N
1m_d7-x+2, -y+1, -z+2-5.087.7Csp3(propyl)—H···N
1m_d8-x+1, -y+1, -z+2-4.867.4dispersion
Symmetry codes, interaction energies of the basic molecule with neighbouring ones (Eint, kcal mol-1) with the highest values (more than 5% of total interaction energy) and the contribution of this energy to the total interaction energy (%) in polymorphic crystals 1r (for full list of dimers, see Table S2 in the supporting information) top
DimerSymmetry operationEint (kcal mol-1)Contribution to the total interaction energy (%)Type of interaction
1r_d1-x+3/2, y-1/2, z-16.6122.8Stacking `head-to-tail'
1r_d2-x+3/2, y+1/2, z-16.6122.8Stacking `head-to-tail'
1r_d3-x+1, -y+1, -z+1-6.939.5dispersion
1r_d4x-1/2, y, -z+3/2-6.328.7Csp3—H···N
1r_d5x+1/2, y, -z+3/2-6.328.7Csp3—H···N
1r_d6-x+2, -y+1, -z+1-3.925.4Car—H···N
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds