Download citation
Download citation
link to html
Electronic distortions, which are inherent in the oxide fluoride anions [MOF5]2− (M = Nb and Ta), provide an origin of polar mol­ecular arrangements for the development of new polar second-harmonic-generating, piezo-, pyro- and ferroelectric materials. It is still a challenge to expand this approach to the realm of metal–organic polymers, while insufficient control over the environment of the [MOF5]2− units results in their orientational disorder and loss of polarity. The structures of catena-poly[[tris­(3,4,5-trimethyl-1H-pyrazole-κN2)copper(II)]-μ-oxido-[tetra­fluorido­niobium(V)]-μ-fluorido], [CuNbF5O(C6H10N2)3]n, (I), and its isostructural penta­fluorido­oxidotantalate(V) analogue, catena-poly[[tris­(3,4,5-trimethyl-1H-pyrazole-κN2)copper(II)]-μ-oxido-[tetra­fluorido­tantalum(V)]-μ-fluorido], [CuTaF5O(C6H10N2)3]n, (II), are the first examples of the strict orientational order of [MOF5]2− (M = Nb and Ta) in one-dimensional coordination chains. A primary factor for the exact discrimination of one orientation of the anion over the other is strong and shape-selective multiple inter­actions of [MOF5]2− with the inherently acentric CuL32+ platform, with a set of two coordination and three N—H...F hydrogen bonds. In (I) and (II), the Cu2+ ions exhibit distorted square-pyramidal fivefold coordination formed by three pyrazole N atoms and the oxide O atom, defining the equatorial plane, and the anionic bridging F atom (which is trans with respect to the M—O bond) residing in the apical position. The inorganic bridges connect CuL32+ moieties into polar zigzag chains; the bulk polarity of the structure is eliminated by an anti­parallel alignment of the individual chains. These chains are further connected through C—H...F hydrogen bonding and very weak C—H...π inter­actions of the organic ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618009853/qf3015sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618009853/qf3015Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618009853/qf3015IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229618009853/qf3015sup4.pdf
TGA curves, PXRD patterns and IR spectra

CCDC references: 1854768; 1854767

Computing details top

For both structures, data collection: IPDS Software (Stoe & Cie, 2000); cell refinement: IPDS Software (Stoe & Cie, 2000); data reduction: IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

\ catena-Poly[[tris(3,4,5-trimethyl-1H-pyrazole-κN2)\ copper(II)]-µ-oxido-[tetrafluoridoniobium(V)]-µ-fluorido] (I) top
Crystal data top
[CuNbF5O(C6H10N2)3]F(000) = 1212
Mr = 597.93Dx = 1.616 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3311 (4) ÅCell parameters from 8000 reflections
b = 13.2097 (5) Åθ = 2.6–27.9°
c = 19.9741 (9) ŵ = 1.39 mm1
β = 93.275 (5)°T = 213 K
V = 2458.01 (18) Å3Prism, blue-green
Z = 40.18 × 0.14 × 0.12 mm
Data collection top
Stoe image plate diffraction system
diffractometer
3683 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
φ oscillation scansθmax = 27.9°, θmin = 2.6°
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
h = 1112
Tmin = 0.742, Tmax = 0.789k = 1717
20504 measured reflectionsl = 2626
5875 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0156P)2]
where P = (Fo2 + 2Fc2)/3
5875 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nb10.01003 (2)0.55369 (2)0.28466 (2)0.02110 (6)
Cu10.05515 (3)0.29853 (2)0.35415 (2)0.01811 (7)
O10.02317 (16)0.44027 (13)0.32895 (8)0.0287 (4)
F10.01511 (14)0.68153 (10)0.22280 (7)0.0266 (3)
F20.17511 (14)0.59753 (11)0.32193 (7)0.0338 (4)
F30.08481 (15)0.49216 (11)0.21034 (7)0.0360 (4)
F40.18979 (13)0.54624 (11)0.23210 (7)0.0336 (4)
F50.10042 (15)0.64102 (12)0.34505 (7)0.0370 (4)
N10.25274 (19)0.31105 (15)0.31201 (10)0.0214 (4)
N20.2982 (2)0.25001 (16)0.26095 (10)0.0275 (5)
H20.24780.20100.24520.033*
N30.11373 (19)0.19313 (15)0.42090 (10)0.0218 (4)
N40.1383 (2)0.09488 (16)0.40436 (10)0.0262 (5)
H40.13140.07020.36430.031*
N50.15083 (19)0.28444 (15)0.38533 (9)0.0217 (4)
N60.22811 (19)0.20595 (16)0.36390 (10)0.0240 (5)
H60.19770.16390.33270.029*
C10.3614 (2)0.37535 (18)0.32103 (12)0.0234 (5)
C20.4759 (2)0.3550 (2)0.27476 (13)0.0277 (6)
C30.4325 (3)0.2750 (2)0.23748 (13)0.0312 (6)
C40.3505 (3)0.4559 (2)0.37347 (14)0.0366 (6)
H4A0.28060.43590.40880.055*
H4B0.44330.46530.39210.055*
H4C0.32040.51880.35360.055*
C50.6156 (3)0.4094 (2)0.26729 (15)0.0436 (8)
H5A0.60590.46800.23860.065*
H5B0.64370.43130.31100.065*
H5C0.68830.36450.24740.065*
C60.5074 (3)0.2175 (3)0.18131 (16)0.0611 (10)
H6A0.58480.17800.19850.092*
H6B0.43970.17250.16120.092*
H6C0.54630.26460.14770.092*
C70.1364 (2)0.1997 (2)0.48607 (12)0.0248 (5)
C80.1748 (3)0.1048 (2)0.51116 (13)0.0321 (7)
C90.1747 (2)0.0404 (2)0.45774 (14)0.0299 (6)
C100.1186 (3)0.2972 (2)0.52358 (13)0.0389 (7)
H10A0.03340.29370.55370.058*
H10B0.20210.30880.54940.058*
H10C0.10880.35230.49210.058*
C110.2047 (3)0.0810 (3)0.58272 (14)0.0579 (9)
H11A0.30040.10400.59170.087*
H11B0.13480.11520.61260.087*
H11C0.19800.00850.58990.087*
C120.2068 (3)0.0710 (2)0.45176 (16)0.0495 (8)
H12A0.15370.10720.48740.074*
H12B0.17850.09540.40870.074*
H12C0.30880.08200.45530.074*
C130.2344 (3)0.33045 (19)0.43324 (12)0.0259 (6)
C140.3650 (2)0.2783 (2)0.44213 (12)0.0289 (6)
C150.3578 (2)0.2004 (2)0.39649 (13)0.0287 (6)
C160.1900 (3)0.4242 (2)0.46736 (15)0.0448 (8)
H16A0.09770.44650.44790.067*
H16B0.26100.47670.46170.067*
H16C0.18230.41080.51480.067*
C170.4868 (3)0.3000 (3)0.49242 (15)0.0564 (9)
H17A0.50180.24220.52190.085*
H17B0.46380.35900.51870.085*
H17C0.57340.31290.46920.085*
C180.4664 (3)0.1224 (2)0.37989 (15)0.0429 (8)
H18A0.42650.07890.34440.064*
H18B0.49150.08200.41940.064*
H18C0.55170.15570.36510.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.02041 (10)0.01872 (11)0.02379 (12)0.00274 (10)0.00198 (8)0.00594 (12)
Cu10.01638 (14)0.01636 (15)0.02126 (15)0.00006 (12)0.00182 (11)0.00246 (14)
O10.0257 (8)0.0248 (10)0.0349 (10)0.0038 (8)0.0040 (7)0.0109 (9)
F10.0254 (7)0.0227 (7)0.0310 (8)0.0036 (6)0.0032 (6)0.0105 (7)
F20.0261 (7)0.0333 (8)0.0407 (9)0.0091 (6)0.0104 (6)0.0100 (7)
F30.0412 (9)0.0299 (9)0.0376 (9)0.0087 (7)0.0079 (7)0.0043 (7)
F40.0265 (7)0.0347 (9)0.0383 (8)0.0088 (7)0.0102 (6)0.0100 (8)
F50.0409 (9)0.0352 (9)0.0352 (9)0.0020 (7)0.0052 (7)0.0024 (8)
N10.0190 (10)0.0214 (11)0.0234 (11)0.0024 (8)0.0028 (8)0.0006 (9)
N20.0228 (11)0.0275 (12)0.0314 (12)0.0070 (9)0.0043 (9)0.0090 (10)
N30.0230 (10)0.0200 (11)0.0221 (11)0.0000 (9)0.0010 (8)0.0038 (10)
N40.0266 (11)0.0210 (11)0.0314 (12)0.0008 (9)0.0040 (9)0.0015 (10)
N50.0193 (10)0.0209 (11)0.0244 (11)0.0002 (9)0.0027 (8)0.0020 (10)
N60.0205 (10)0.0227 (11)0.0284 (11)0.0009 (9)0.0028 (8)0.0034 (10)
C10.0221 (12)0.0210 (14)0.0275 (14)0.0040 (10)0.0041 (10)0.0027 (12)
C20.0206 (13)0.0313 (15)0.0310 (15)0.0047 (11)0.0001 (11)0.0068 (13)
C30.0234 (13)0.0403 (17)0.0289 (15)0.0031 (12)0.0068 (11)0.0008 (13)
C40.0322 (14)0.0322 (16)0.0459 (17)0.0068 (13)0.0051 (12)0.0055 (15)
C50.0244 (14)0.0499 (19)0.056 (2)0.0113 (13)0.0008 (13)0.0049 (16)
C60.0423 (18)0.079 (3)0.059 (2)0.0125 (18)0.0210 (15)0.025 (2)
C70.0227 (12)0.0289 (14)0.0226 (13)0.0033 (11)0.0011 (10)0.0032 (13)
C80.0276 (14)0.0398 (17)0.0294 (15)0.0020 (12)0.0040 (11)0.0162 (14)
C90.0244 (13)0.0252 (15)0.0404 (16)0.0004 (11)0.0046 (11)0.0135 (14)
C100.0389 (15)0.0475 (18)0.0298 (15)0.0012 (14)0.0008 (12)0.0079 (15)
C110.068 (2)0.071 (3)0.0361 (18)0.0089 (19)0.0100 (16)0.0202 (18)
C120.0498 (18)0.0340 (19)0.065 (2)0.0083 (14)0.0069 (15)0.0133 (16)
C130.0291 (14)0.0266 (15)0.0214 (13)0.0093 (11)0.0021 (11)0.0015 (11)
C140.0206 (13)0.0405 (17)0.0247 (14)0.0080 (11)0.0068 (10)0.0075 (13)
C150.0193 (12)0.0311 (15)0.0354 (15)0.0014 (11)0.0019 (10)0.0125 (14)
C160.0497 (18)0.039 (2)0.0448 (18)0.0082 (14)0.0029 (14)0.0157 (15)
C170.0402 (17)0.079 (2)0.0471 (19)0.0168 (17)0.0203 (14)0.0079 (19)
C180.0251 (14)0.0443 (19)0.059 (2)0.0084 (13)0.0028 (13)0.0090 (16)
Geometric parameters (Å, º) top
Nb1—O11.7479 (17)C5—H5B0.9700
Nb1—F51.9008 (15)C5—H5C0.9700
Nb1—F41.9298 (12)C6—H6A0.9700
Nb1—F21.9306 (13)C6—H6B0.9700
Nb1—F31.9487 (15)C6—H6C0.9700
Nb1—F12.1134 (13)C7—C81.404 (4)
Cu1—O11.9660 (17)C7—C101.494 (4)
Cu1—N11.9895 (18)C8—C91.365 (4)
Cu1—N51.9950 (18)C8—C111.505 (4)
Cu1—N32.0244 (19)C9—C121.505 (4)
Cu1—F1i2.2262 (13)C10—H10A0.9700
F1—Cu1ii2.2262 (13)C10—H10B0.9700
N1—C11.342 (3)C10—H10C0.9700
N1—N21.349 (3)C11—H11A0.9700
N2—C31.353 (3)C11—H11B0.9700
N2—H20.8700C11—H11C0.9700
N3—C71.334 (3)C12—H12A0.9700
N3—N41.356 (3)C12—H12B0.9700
N4—C91.346 (3)C12—H12C0.9700
N4—H40.8700C13—C141.402 (3)
N5—C131.345 (3)C13—C161.484 (4)
N5—N61.347 (3)C14—C151.374 (4)
N6—C151.343 (3)C14—C171.500 (3)
N6—H60.8700C15—C181.495 (4)
C1—C21.398 (3)C16—H16A0.9700
C1—C41.493 (3)C16—H16B0.9700
C2—C31.367 (4)C16—H16C0.9700
C2—C51.489 (3)C17—H17A0.9700
C3—C61.495 (4)C17—H17B0.9700
C4—H4A0.9700C17—H17C0.9700
C4—H4B0.9700C18—H18A0.9700
C4—H4C0.9700C18—H18B0.9700
C5—H5A0.9700C18—H18C0.9700
O1—Nb1—F598.78 (7)C2—C5—H5C109.5
O1—Nb1—F498.49 (7)H5A—C5—H5C109.5
F5—Nb1—F488.44 (6)H5B—C5—H5C109.5
O1—Nb1—F298.57 (6)C3—C6—H6A109.5
F5—Nb1—F289.59 (6)C3—C6—H6B109.5
F4—Nb1—F2162.92 (6)H6A—C6—H6B109.5
O1—Nb1—F394.36 (7)C3—C6—H6C109.5
F5—Nb1—F3166.85 (6)H6A—C6—H6C109.5
F4—Nb1—F389.01 (6)H6B—C6—H6C109.5
F2—Nb1—F389.06 (6)N3—C7—C8110.4 (2)
O1—Nb1—F1173.83 (7)N3—C7—C10121.8 (2)
F5—Nb1—F187.37 (6)C8—C7—C10127.8 (2)
F4—Nb1—F181.07 (5)C9—C8—C7105.4 (2)
F2—Nb1—F181.90 (6)C9—C8—C11128.3 (3)
F3—Nb1—F179.48 (6)C7—C8—C11126.2 (3)
O1—Cu1—N187.89 (7)N4—C9—C8107.3 (2)
O1—Cu1—N590.64 (7)N4—C9—C12121.2 (3)
N1—Cu1—N5173.17 (8)C8—C9—C12131.5 (2)
O1—Cu1—N3150.96 (8)C7—C10—H10A109.5
N1—Cu1—N393.28 (8)C7—C10—H10B109.5
N5—Cu1—N391.25 (8)H10A—C10—H10B109.5
O1—Cu1—F1i116.78 (6)C7—C10—H10C109.5
N1—Cu1—F1i87.34 (7)H10A—C10—H10C109.5
N5—Cu1—F1i87.37 (7)H10B—C10—H10C109.5
N3—Cu1—F1i92.26 (7)C8—C11—H11A109.5
Nb1—O1—Cu1164.16 (10)C8—C11—H11B109.5
Nb1—F1—Cu1ii170.74 (7)H11A—C11—H11B109.5
C1—N1—N2105.81 (18)C8—C11—H11C109.5
C1—N1—Cu1133.19 (17)H11A—C11—H11C109.5
N2—N1—Cu1120.92 (14)H11B—C11—H11C109.5
N1—N2—C3111.2 (2)C9—C12—H12A109.5
N1—N2—H2124.4C9—C12—H12B109.5
C3—N2—H2124.4H12A—C12—H12B109.5
C7—N3—N4105.4 (2)C9—C12—H12C109.5
C7—N3—Cu1131.45 (17)H12A—C12—H12C109.5
N4—N3—Cu1123.11 (15)H12B—C12—H12C109.5
C9—N4—N3111.5 (2)N5—C13—C14109.4 (2)
C9—N4—H4124.3N5—C13—C16122.6 (2)
N3—N4—H4124.3C14—C13—C16128.0 (2)
C13—N5—N6105.96 (18)C15—C14—C13106.0 (2)
C13—N5—Cu1133.56 (17)C15—C14—C17126.4 (3)
N6—N5—Cu1119.77 (14)C13—C14—C17127.6 (3)
C15—N6—N5111.9 (2)N6—C15—C14106.8 (2)
C15—N6—H6124.1N6—C15—C18122.2 (2)
N5—N6—H6124.1C14—C15—C18130.9 (2)
N1—C1—C2110.1 (2)C13—C16—H16A109.5
N1—C1—C4121.6 (2)C13—C16—H16B109.5
C2—C1—C4128.3 (2)H16A—C16—H16B109.5
C3—C2—C1105.7 (2)C13—C16—H16C109.5
C3—C2—C5127.1 (2)H16A—C16—H16C109.5
C1—C2—C5127.2 (2)H16B—C16—H16C109.5
N2—C3—C2107.3 (2)C14—C17—H17A109.5
N2—C3—C6121.4 (2)C14—C17—H17B109.5
C2—C3—C6131.4 (2)H17A—C17—H17B109.5
C1—C4—H4A109.5C14—C17—H17C109.5
C1—C4—H4B109.5H17A—C17—H17C109.5
H4A—C4—H4B109.5H17B—C17—H17C109.5
C1—C4—H4C109.5C15—C18—H18A109.5
H4A—C4—H4C109.5C15—C18—H18B109.5
H4B—C4—H4C109.5H18A—C18—H18B109.5
C2—C5—H5A109.5C15—C18—H18C109.5
C2—C5—H5B109.5H18A—C18—H18C109.5
H5A—C5—H5B109.5H18B—C18—H18C109.5
F5—Nb1—O1—Cu1134.6 (3)N4—N3—C7—C10179.4 (2)
F4—Nb1—O1—Cu144.9 (4)Cu1—N3—C7—C100.5 (3)
F2—Nb1—O1—Cu1134.5 (3)N3—C7—C8—C90.2 (3)
F3—Nb1—O1—Cu144.8 (4)C10—C7—C8—C9179.2 (2)
C1—N1—N2—C30.4 (3)N3—C7—C8—C11178.1 (2)
Cu1—N1—N2—C3176.64 (16)C10—C7—C8—C110.9 (4)
C7—N3—N4—C90.4 (2)N3—N4—C9—C80.3 (3)
Cu1—N3—N4—C9179.55 (15)N3—N4—C9—C12179.9 (2)
C13—N5—N6—C150.0 (3)C7—C8—C9—N40.1 (3)
Cu1—N5—N6—C15171.60 (16)C11—C8—C9—N4178.3 (3)
N2—N1—C1—C20.5 (3)C7—C8—C9—C12179.9 (3)
Cu1—N1—C1—C2176.02 (17)C11—C8—C9—C121.8 (5)
N2—N1—C1—C4179.5 (2)N6—N5—C13—C140.8 (3)
Cu1—N1—C1—C43.0 (4)Cu1—N5—C13—C14169.10 (17)
N1—C1—C2—C30.4 (3)N6—N5—C13—C16177.0 (2)
C4—C1—C2—C3179.3 (3)Cu1—N5—C13—C1613.1 (4)
N1—C1—C2—C5179.2 (2)N5—C13—C14—C151.3 (3)
C4—C1—C2—C50.4 (4)C16—C13—C14—C15176.3 (3)
N1—N2—C3—C20.1 (3)N5—C13—C14—C17176.8 (2)
N1—N2—C3—C6179.2 (3)C16—C13—C14—C175.5 (4)
C1—C2—C3—N20.2 (3)N5—N6—C15—C140.8 (3)
C5—C2—C3—N2179.5 (2)N5—N6—C15—C18177.4 (2)
C1—C2—C3—C6178.8 (3)C13—C14—C15—N61.3 (3)
C5—C2—C3—C61.5 (5)C17—C14—C15—N6176.9 (2)
N4—N3—C7—C80.4 (2)C13—C14—C15—C18176.7 (3)
Cu1—N3—C7—C8179.59 (16)C17—C14—C15—C185.1 (5)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···F2i0.872.062.887 (3)159
N4—H4···F3i0.871.882.733 (3)165
N6—H6···F4i0.872.022.860 (2)161
C4—H4C···F50.972.623.449 (3)143
C10—H10A···F5iii0.972.473.334 (3)148
Symmetry codes: (i) x, y1/2, z+1/2; (iii) x, y+1, z+1.
\ catena-Poly[[tris(3,4,5-trimethyl-1H-pyrazole-κN2)\ copper(II)]-µ-oxido-[tetrafluoridotantalum(V)]-µ-fluorido] (II) top
Crystal data top
[CuTaF5O(C6H10N2)3]F(000) = 1340
Mr = 685.97Dx = 1.858 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3367 (3) ÅCell parameters from 8000 reflections
b = 13.1541 (6) Åθ = 2.6–27.9°
c = 20.0036 (5) ŵ = 5.38 mm1
β = 93.232 (3)°T = 213 K
V = 2452.85 (15) Å3Prism, blue
Z = 40.20 × 0.16 × 0.10 mm
Data collection top
Stoe image plate diffraction system
diffractometer
4236 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
φ oscillation scansθmax = 27.9°, θmin = 2.6°
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
h = 1112
Tmin = 0.361, Tmax = 0.547k = 1717
20527 measured reflectionsl = 2524
5760 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.0237P)2]
where P = (Fo2 + 2Fc2)/3
5760 reflections(Δ/σ)max = 0.003
298 parametersΔρmax = 1.38 e Å3
0 restraintsΔρmin = 0.92 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ta10.01099 (2)0.55499 (2)0.28505 (2)0.02515 (5)
Cu10.05578 (5)0.30148 (3)0.35545 (2)0.02243 (9)
O10.0249 (3)0.44084 (17)0.33123 (13)0.0342 (6)
F10.0140 (2)0.68133 (13)0.22341 (11)0.0327 (5)
F20.1738 (2)0.59924 (15)0.32167 (12)0.0379 (5)
F30.0838 (3)0.49229 (15)0.21171 (12)0.0407 (6)
F40.1896 (2)0.54658 (15)0.23248 (11)0.0380 (5)
F50.1027 (3)0.64379 (16)0.34469 (12)0.0420 (6)
N10.2530 (3)0.31190 (19)0.31305 (15)0.0264 (7)
N20.2979 (4)0.2513 (2)0.26134 (16)0.0329 (7)
H20.24680.20270.24530.040*
N30.1136 (3)0.19329 (19)0.42046 (15)0.0262 (7)
N40.1384 (3)0.0949 (2)0.40310 (16)0.0301 (7)
H40.13210.07070.36290.036*
N50.1501 (3)0.28565 (19)0.38600 (15)0.0260 (6)
N60.2277 (3)0.2068 (2)0.36442 (16)0.0291 (7)
H60.19740.16470.33320.035*
C10.3620 (4)0.3757 (2)0.32148 (19)0.0269 (8)
C20.4755 (4)0.3556 (3)0.2753 (2)0.0322 (8)
C30.4308 (4)0.2753 (3)0.2379 (2)0.0361 (9)
C40.3525 (5)0.4564 (3)0.3736 (2)0.0410 (10)
H4A0.27990.43810.40810.062*
H4B0.44450.46340.39330.062*
H4C0.32680.52040.35330.062*
C50.6164 (5)0.4098 (3)0.2677 (2)0.0491 (11)
H5A0.60520.47160.24200.074*
H5B0.64860.42690.31160.074*
H5C0.68670.36620.24450.074*
C60.5063 (6)0.2184 (4)0.1816 (3)0.0678 (16)
H6A0.58300.17800.19870.102*
H6B0.43870.17410.16080.102*
H6C0.54620.26630.14870.102*
C70.1353 (4)0.1990 (3)0.48491 (19)0.0297 (8)
C80.1734 (5)0.1032 (3)0.5104 (2)0.0375 (9)
C90.1741 (4)0.0398 (3)0.4564 (2)0.0373 (9)
C100.1176 (5)0.2963 (3)0.5228 (2)0.0448 (11)
H10A0.02650.29580.54860.067*
H10B0.19510.30350.55280.067*
H10C0.11970.35280.49160.067*
C110.2041 (6)0.0790 (4)0.5812 (2)0.0633 (15)
H11A0.30290.09620.58880.095*
H11B0.14050.11810.61130.095*
H11C0.18880.00700.58930.095*
C120.2071 (6)0.0716 (3)0.4494 (3)0.0551 (13)
H12A0.17020.10720.48920.083*
H12B0.16240.09840.41050.083*
H12C0.31020.08110.44400.083*
C130.2347 (4)0.3303 (3)0.4336 (2)0.0334 (9)
C140.3635 (4)0.2787 (3)0.4424 (2)0.0348 (9)
C150.3565 (4)0.2011 (3)0.3966 (2)0.0330 (9)
C160.1892 (5)0.4250 (3)0.4686 (2)0.0507 (12)
H16A0.09940.44940.44770.076*
H16B0.26230.47690.46530.076*
H16C0.17660.41000.51540.076*
C170.4866 (5)0.2997 (4)0.4929 (3)0.0622 (14)
H17A0.48490.25080.52910.093*
H17B0.47730.36780.51070.093*
H17C0.57670.29400.47120.093*
C180.4665 (5)0.1228 (3)0.3803 (3)0.0493 (12)
H18A0.42690.07830.34530.074*
H18B0.49240.08310.42000.074*
H18C0.55110.15650.36510.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta10.02802 (8)0.02028 (6)0.02680 (8)0.00233 (7)0.00164 (5)0.00654 (6)
Cu10.0242 (2)0.01817 (16)0.0246 (2)0.00010 (16)0.00177 (17)0.00329 (15)
O10.0369 (15)0.0234 (11)0.0416 (16)0.0039 (11)0.0034 (12)0.0128 (11)
F10.0347 (12)0.0268 (9)0.0359 (14)0.0055 (9)0.0029 (10)0.0131 (8)
F20.0314 (13)0.0362 (11)0.0447 (15)0.0076 (10)0.0101 (10)0.0122 (10)
F30.0517 (16)0.0343 (11)0.0370 (14)0.0087 (11)0.0091 (11)0.0050 (9)
F40.0319 (13)0.0364 (11)0.0445 (14)0.0077 (10)0.0085 (10)0.0107 (10)
F50.0486 (16)0.0369 (11)0.0414 (15)0.0019 (11)0.0106 (11)0.0019 (10)
N10.0257 (17)0.0228 (13)0.0301 (19)0.0029 (12)0.0033 (13)0.0001 (11)
N20.0343 (19)0.0313 (15)0.032 (2)0.0067 (14)0.0064 (14)0.0091 (13)
N30.0305 (18)0.0226 (13)0.0255 (19)0.0018 (12)0.0014 (13)0.0047 (12)
N40.0347 (19)0.0235 (13)0.0323 (19)0.0014 (13)0.0028 (14)0.0022 (12)
N50.0242 (16)0.0236 (13)0.0297 (18)0.0028 (12)0.0032 (13)0.0015 (12)
N60.0281 (17)0.0236 (13)0.035 (2)0.0008 (13)0.0030 (13)0.0026 (12)
C10.028 (2)0.0252 (15)0.027 (2)0.0022 (14)0.0034 (15)0.0035 (13)
C20.027 (2)0.0360 (19)0.034 (2)0.0066 (16)0.0002 (16)0.0056 (16)
C30.027 (2)0.043 (2)0.037 (2)0.0034 (17)0.0063 (17)0.0014 (17)
C40.038 (2)0.036 (2)0.050 (3)0.0072 (18)0.0050 (19)0.0103 (18)
C50.033 (2)0.057 (2)0.057 (3)0.012 (2)0.002 (2)0.001 (2)
C60.055 (3)0.087 (4)0.058 (4)0.013 (3)0.023 (3)0.029 (3)
C70.033 (2)0.0319 (17)0.024 (2)0.0015 (16)0.0021 (16)0.0033 (15)
C80.042 (3)0.040 (2)0.031 (2)0.0030 (18)0.0052 (18)0.0125 (17)
C90.033 (2)0.0306 (19)0.049 (3)0.0025 (16)0.0036 (18)0.0138 (17)
C100.060 (3)0.046 (2)0.028 (3)0.003 (2)0.000 (2)0.0092 (18)
C110.081 (4)0.071 (3)0.039 (3)0.005 (3)0.010 (3)0.022 (2)
C120.064 (3)0.032 (2)0.071 (4)0.008 (2)0.010 (3)0.013 (2)
C130.039 (2)0.0321 (18)0.029 (2)0.0081 (17)0.0010 (17)0.0001 (15)
C140.031 (2)0.040 (2)0.032 (2)0.0097 (17)0.0078 (17)0.0087 (16)
C150.023 (2)0.0341 (18)0.042 (3)0.0005 (16)0.0004 (16)0.0125 (17)
C160.055 (3)0.046 (2)0.051 (3)0.007 (2)0.006 (2)0.020 (2)
C170.050 (3)0.083 (3)0.050 (3)0.017 (3)0.025 (2)0.012 (3)
C180.032 (2)0.048 (2)0.068 (3)0.0096 (19)0.004 (2)0.009 (2)
Geometric parameters (Å, º) top
Ta1—O11.771 (2)C5—H5B0.9700
Ta1—F51.907 (2)C5—H5C0.9700
Ta1—F41.924 (2)C6—H6A0.9700
Ta1—F21.926 (2)C6—H6B0.9700
Ta1—F31.940 (2)C6—H6C0.9700
Ta1—F12.0904 (18)C7—C81.413 (5)
Cu1—O11.922 (2)C7—C101.491 (5)
Cu1—N11.988 (3)C8—C91.364 (6)
Cu1—N51.995 (3)C8—C111.495 (6)
Cu1—N32.022 (3)C9—C121.502 (5)
Cu1—F1i2.2820 (19)C10—H10A0.9700
F1—Cu1ii2.2821 (19)C10—H10B0.9700
N1—C11.337 (4)C10—H10C0.9700
N1—N21.354 (4)C11—H11A0.9700
N2—C31.339 (5)C11—H11B0.9700
N2—H20.8700C11—H11C0.9700
N3—C71.318 (5)C12—H12A0.9700
N3—N41.357 (4)C12—H12B0.9700
N4—C91.346 (5)C12—H12C0.9700
N4—H40.8700C13—C141.383 (6)
N5—C131.338 (5)C13—C161.503 (5)
N5—N61.350 (4)C14—C151.369 (6)
N6—C151.334 (5)C14—C171.513 (5)
N6—H60.8700C15—C181.503 (5)
C1—C21.391 (5)C16—H16A0.9700
C1—C41.486 (5)C16—H16B0.9700
C2—C31.372 (5)C16—H16C0.9700
C2—C51.497 (5)C17—H17A0.9700
C3—C61.496 (6)C17—H17B0.9700
C4—H4A0.9700C17—H17C0.9700
C4—H4B0.9700C18—H18A0.9700
C4—H4C0.9700C18—H18B0.9700
C5—H5A0.9700C18—H18C0.9700
O1—Ta1—F598.30 (11)C2—C5—H5C109.5
O1—Ta1—F498.59 (10)H5A—C5—H5C109.5
F5—Ta1—F488.35 (10)H5B—C5—H5C109.5
O1—Ta1—F298.53 (10)C3—C6—H6A109.5
F5—Ta1—F290.06 (10)C3—C6—H6B109.5
F4—Ta1—F2162.85 (8)H6A—C6—H6B109.5
O1—Ta1—F394.82 (11)C3—C6—H6C109.5
F5—Ta1—F3166.86 (9)H6A—C6—H6C109.5
F4—Ta1—F388.89 (10)H6B—C6—H6C109.5
F2—Ta1—F388.80 (10)N3—C7—C8110.9 (3)
O1—Ta1—F1174.50 (11)N3—C7—C10121.8 (3)
F5—Ta1—F187.19 (9)C8—C7—C10127.3 (4)
F4—Ta1—F181.11 (8)C9—C8—C7104.5 (3)
F2—Ta1—F181.76 (8)C9—C8—C11128.9 (4)
F3—Ta1—F179.69 (9)C7—C8—C11126.7 (4)
O1—Cu1—N188.57 (11)N4—C9—C8107.9 (3)
O1—Cu1—N591.22 (11)N4—C9—C12120.7 (4)
N1—Cu1—N5172.39 (13)C8—C9—C12131.4 (4)
O1—Cu1—N3151.99 (12)C7—C10—H10A109.5
N1—Cu1—N392.78 (12)C7—C10—H10B109.5
N5—Cu1—N390.98 (12)H10A—C10—H10B109.5
O1—Cu1—F1i116.90 (10)C7—C10—H10C109.5
N1—Cu1—F1i86.74 (10)H10A—C10—H10C109.5
N5—Cu1—F1i86.57 (10)H10B—C10—H10C109.5
N3—Cu1—F1i91.11 (10)C8—C11—H11A109.5
Ta1—O1—Cu1163.01 (16)C8—C11—H11B109.5
Ta1—F1—Cu1ii170.94 (12)H11A—C11—H11B109.5
C1—N1—N2105.1 (3)C8—C11—H11C109.5
C1—N1—Cu1133.0 (2)H11A—C11—H11C109.5
N2—N1—Cu1121.7 (2)H11B—C11—H11C109.5
C3—N2—N1111.7 (3)C9—C12—H12A109.5
C3—N2—H2124.2C9—C12—H12B109.5
N1—N2—H2124.2H12A—C12—H12B109.5
C7—N3—N4105.8 (3)C9—C12—H12C109.5
C7—N3—Cu1130.5 (2)H12A—C12—H12C109.5
N4—N3—Cu1123.7 (2)H12B—C12—H12C109.5
C9—N4—N3110.9 (3)N5—C13—C14110.5 (3)
C9—N4—H4124.5N5—C13—C16121.6 (4)
N3—N4—H4124.5C14—C13—C16127.9 (4)
C13—N5—N6105.0 (3)C15—C14—C13105.8 (3)
C13—N5—Cu1133.8 (3)C15—C14—C17126.0 (4)
N6—N5—Cu1120.5 (2)C13—C14—C17128.2 (4)
C15—N6—N5112.0 (3)N6—C15—C14106.8 (3)
C15—N6—H6124.0N6—C15—C18122.8 (4)
N5—N6—H6124.0C14—C15—C18130.4 (4)
N1—C1—C2110.7 (3)C13—C16—H16A109.5
N1—C1—C4121.4 (3)C13—C16—H16B109.5
C2—C1—C4127.9 (3)H16A—C16—H16B109.5
C3—C2—C1105.4 (3)C13—C16—H16C109.5
C3—C2—C5127.1 (4)H16A—C16—H16C109.5
C1—C2—C5127.5 (4)H16B—C16—H16C109.5
N2—C3—C2107.2 (3)C14—C17—H17A109.5
N2—C3—C6122.2 (4)C14—C17—H17B109.5
C2—C3—C6130.6 (4)H17A—C17—H17B109.5
C1—C4—H4A109.5C14—C17—H17C109.5
C1—C4—H4B109.5H17A—C17—H17C109.5
H4A—C4—H4B109.5H17B—C17—H17C109.5
C1—C4—H4C109.5C15—C18—H18A109.5
H4A—C4—H4C109.5C15—C18—H18B109.5
H4B—C4—H4C109.5H18A—C18—H18B109.5
C2—C5—H5A109.5C15—C18—H18C109.5
C2—C5—H5B109.5H18A—C18—H18C109.5
H5A—C5—H5B109.5H18B—C18—H18C109.5
F5—Ta1—O1—Cu1136.5 (6)N4—N3—C7—C10179.7 (4)
F4—Ta1—O1—Cu146.9 (6)Cu1—N3—C7—C100.3 (6)
F2—Ta1—O1—Cu1132.2 (6)N3—C7—C8—C90.5 (5)
F3—Ta1—O1—Cu142.7 (6)C10—C7—C8—C9179.5 (4)
C1—N1—N2—C30.3 (4)N3—C7—C8—C11179.0 (4)
Cu1—N1—N2—C3176.2 (3)C10—C7—C8—C110.1 (7)
C7—N3—N4—C90.5 (4)N3—N4—C9—C80.2 (5)
Cu1—N3—N4—C9179.6 (3)N3—N4—C9—C12179.8 (4)
C13—N5—N6—C150.0 (4)C7—C8—C9—N40.1 (5)
Cu1—N5—N6—C15171.8 (2)C11—C8—C9—N4179.3 (5)
N2—N1—C1—C20.0 (4)C7—C8—C9—C12179.4 (5)
Cu1—N1—C1—C2175.3 (3)C11—C8—C9—C121.2 (9)
N2—N1—C1—C4178.9 (3)N6—N5—C13—C141.0 (4)
Cu1—N1—C1—C43.6 (5)Cu1—N5—C13—C14169.1 (3)
N1—C1—C2—C30.2 (4)N6—N5—C13—C16177.4 (4)
C4—C1—C2—C3179.0 (4)Cu1—N5—C13—C1612.5 (6)
N1—C1—C2—C5179.6 (4)N5—C13—C14—C151.6 (4)
C4—C1—C2—C50.8 (7)C16—C13—C14—C15176.7 (4)
N1—N2—C3—C20.4 (5)N5—C13—C14—C17176.8 (4)
N1—N2—C3—C6178.9 (4)C16—C13—C14—C174.9 (7)
C1—C2—C3—N20.4 (4)N5—N6—C15—C141.0 (4)
C5—C2—C3—N2179.5 (4)N5—N6—C15—C18177.5 (3)
C1—C2—C3—C6178.9 (5)C13—C14—C15—N61.6 (4)
C5—C2—C3—C61.3 (8)C17—C14—C15—N6176.9 (4)
N4—N3—C7—C80.6 (4)C13—C14—C15—C18176.8 (4)
Cu1—N3—C7—C8179.5 (3)C17—C14—C15—C184.7 (7)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···F2i0.872.052.884 (4)160
N4—H4···F3i0.871.892.736 (4)164
N6—H6···F4i0.872.032.872 (4)162
C4—H4C···F50.972.663.464 (5)140
C10—H10A···F5iii0.972.523.356 (5)144
Symmetry codes: (i) x, y1/2, z+1/2; (iii) x, y+1, z+1.
Bond lengths of the [MOF5]2- anions (Å) and the absolute differences of the ADPs (Å2) along the directions of the bonds in (I) and (II) and some of the documented structures top
CompoundAxial M—O/M—F bondsEquatorial M—F bonds
Ordered anions
[Cu(Me3pz)3{NbOF5}]n, (I)1.7479 (17)2.1134 (13)1.9008 (15)1.9298 (12)1.9306 (13)1.9487 (15)
0.0031 (11)0.0008 (9)0.0018 (10)0.0007 (8)0.0001 (8)0.0021 (10)
[Cu(Me3pz)3{TaOF5}]n, (II)1.771 (2)2.0904 (18)1.907 (2)1.924 (2)1.926 (2)1.940 (2)
0.0007 (13)0.0008 (11)0.0004 (15)0.0013 (13)0.0005 (13)0.0005 (14)
Disordered anionsa
[Cu(pz)4{NbOF5}]nb1.923 (3) ×2f1.927 (3) ×21.928 (3) ×2
0.023 (2)0.001 (2)0.0092 (17)
[Cd(py)4{NbOF5}]n, (A)c1.8841 (19)1.9619 (19)1.901 (2)1.909 (2)1.911 (2)1.913 (2)
0.0324 (13)0.0129 (14)0.0035 (16)0.0008 (16)0.0002 (17)0.0007 (17)
[Cd(py)4{NbOF5}]n, (B)c1.925 (2) ×2f1.902 (2) ×21.930 (2) ×2
0.0260 (9)0.0009 (9)0.0007 (8)
[Cd(3-apy)4{NbOF5}]nd1.914 (3)1.937 (3)1.905 (4)1.912 (4)1.913 (3)1.930 (4)
0.0286 (12)0.0172 (13)0.005 (2)0.003 (2)0.001 (2)0.004 (2)
[Cu(py)4{TaOF5}]ne1.924 (3) ×2 f)1.908 (3) ×21.923 (3) ×2
0.0199 (12)0.0054 (19)0.0034 (18)
Notes: (a) pz = pyrazole, py = pyridine and 3-apy = 3-aminopyridine. The differences of the ADPs are calculated with anisotropic displacement parameters taken from the supplementary publications of (b) Mahenthirarajah et al. (2009), (c) Guillory et al. (2006) (A is the P21/c polymorph and B is the C2/c polymorph), (d) Izumi et al. (2005); (e) Norquist et al. (1998) and (f) the Nb (Ta) atoms reside on a crystallographically imposed centre of inversion.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds