Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, C13H18N3+·Br-·H2O, shows that the cation and the bromide anion are linked via the water mol­ecule through weak intermolecular hydrogen bonds. The water was not detected by NMR spectroscopy, but the cell content is in agreement with the elemental analysis. The presence of water plays an important role in further reactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100012026/qd0037sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012026/qd0037Isup2.hkl
Contains datablock I

CCDC reference: 152676

Comment top

It has been reported that mixed-donor carbene complexes of late transition metals, such as Pd, Ru and Rh, are highly active precatalysts for Heck coupling and other important reactions (Tulloch et al., 2000). The title compound, (I), was synthesized in order to prepare N-heterocyclic carbene complexes, to act as novel catalysts. Because of a disagreement within the analytical data, obtained from elemental analysis and NMR spectroscopy, the pure compound was recrystallized from acetone. The cell content, obtained from the stucture determination, agrees with the results of the elemental analysis, in that one molecule of water is associated with each ion pair. Intermolecular hydrogen bonding is observed between proton H321 from one methyl group of the tert-butyl group and the O atom of the water molecule. A proton from each of the other two methyl groups (H112 and H123) also points towards O1. There are also intermolecular hydrogen bonds to a pair of symmetry-equivalent bromide anions from the H atoms of the water molecule (Table 1).

Experimental top

The title compound was prepared by the quarternization of 1-tert-butyl-imidazole with picolyl bromide in methanol. The crude product was recrystallized by cooling a saturated solution of (I) in dried acetone to 238 K. Compound (I) was characterized by 1H NMR, mass spectroscopy and elemental analysis: 1H NMR (300 MHz, DMSO-d6) δ 1.6 (9H, s, tBu), 5.6 (2H, s, CH2), 7.6 and 8.6 (2 × 1H, d, 4,5-imidazolium-CH), 7.5, 7.9, 8.0 and 8.1 (4 × 1H, m, 3,4,5,6-picolyl-CH), 9.5 (H, s, 2-imidazolium-CH). LRMS (ESIPOS) m/z 216 M+. Analysis found: C 49.68, H 6.43, N 13.38%; C13H20BrN3O requires: C 49.69, H 6.42, N 13.37%.

Refinement top

All H atoms were located by difference Fourier sythesis and refined isotropically [C—H = 0.89 (2)–1.05 (4) Å]. No constraints or restraints were applied to the structural models.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: PLATON (Spek, 1990).

3-tert-Butyl-1-pyridin-2-ylmethyl-3H-imidazolium bromide-water (1/1) top
Crystal data top
C13H18N3+·Br·H2ODx = 1.407 Mg m3
Mr = 314.23Melting point: 338 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7083 (19) ÅCell parameters from 12783 reflections
b = 13.214 (3) Åθ = 1.0–26.4°
c = 11.574 (2) ŵ = 2.76 mm1
β = 92.11 (3)°T = 150 K
V = 1483.8 (5) Å3Prism, colorless
Z = 40.20 × 0.20 × 0.13 mm
F(000) = 648
Data collection top
Enraf-Nonius KappaCCD area-detector
diffractometer
3021 independent reflections
Radiation source: Nonius FR591 rotating anode2608 reflections with I > 2σ(I)
Detector resolution: 9.091 pixels mm-1 pixels mm-1Rint = 0.048
ϕ and ω scans to fill Ewald sphereθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
SORTAV (Blessing, 1995)
h = 1212
Tmin = 0.608, Tmax = 0.724k = 1616
30583 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.7258P]
where P = (Fo2 + 2Fc2)/3
3021 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C13H18N3+·Br·H2OV = 1483.8 (5) Å3
Mr = 314.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7083 (19) ŵ = 2.76 mm1
b = 13.214 (3) ÅT = 150 K
c = 11.574 (2) Å0.20 × 0.20 × 0.13 mm
β = 92.11 (3)°
Data collection top
Enraf-Nonius KappaCCD area-detector
diffractometer
3021 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1995)
2608 reflections with I > 2σ(I)
Tmin = 0.608, Tmax = 0.724Rint = 0.048
30583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.071All H-atom parameters refined
S = 1.07Δρmax = 0.41 e Å3
3021 reflectionsΔρmin = 0.64 e Å3
243 parameters
Special details top

Experimental. The crystall was mounted on a glass fibre with silicon grease. The crystal-to-detector distance was 40 mm. No decay correction was applied to the obtaind data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18513 (2)0.450742 (16)0.167066 (18)0.03382 (9)
O10.1243 (2)0.60311 (16)0.05503 (19)0.0586 (5)
H1O0.133 (4)0.554 (3)0.008 (4)0.096 (13)*
H2O0.036 (4)0.586 (3)0.093 (3)0.098 (12)*
N30.50407 (16)0.70403 (12)0.21611 (14)0.0257 (4)
C90.6239 (2)0.75062 (16)0.20567 (18)0.0295 (4)
N10.72228 (18)0.85982 (14)0.00486 (16)0.0354 (4)
N20.70269 (17)0.69535 (13)0.13871 (14)0.0280 (4)
C80.5068 (2)0.61527 (16)0.15283 (17)0.0300 (5)
C70.6306 (2)0.61038 (16)0.10490 (18)0.0322 (5)
C50.8379 (2)0.80788 (15)0.01385 (17)0.0281 (4)
C60.8410 (2)0.72510 (19)0.1046 (2)0.0337 (5)
C20.8407 (3)0.96158 (17)0.1413 (2)0.0394 (5)
C30.9593 (3)0.90656 (19)0.1212 (2)0.0428 (6)
C40.9586 (2)0.82838 (18)0.0428 (2)0.0385 (5)
C10.7261 (3)0.93589 (18)0.0822 (2)0.0402 (5)
C100.3859 (2)0.74071 (15)0.28505 (17)0.0292 (4)
C110.2587 (2)0.74743 (19)0.2046 (2)0.0357 (5)
C120.3641 (3)0.6647 (2)0.3811 (2)0.0432 (6)
C130.4228 (3)0.8456 (2)0.3321 (3)0.0528 (7)
H610.887 (3)0.6669 (19)0.073 (2)0.044 (7)*
H810.431 (3)0.5736 (17)0.146 (2)0.034 (6)*
H620.889 (2)0.7519 (17)0.173 (2)0.038 (6)*
H311.040 (3)0.922 (2)0.163 (3)0.059 (8)*
H710.668 (3)0.5585 (18)0.057 (2)0.043 (7)*
H110.640 (3)0.9733 (18)0.089 (2)0.042 (7)*
H90.652 (2)0.8064 (17)0.2420 (18)0.025 (5)*
H1210.343 (3)0.599 (2)0.354 (2)0.045 (7)*
H1310.504 (3)0.8375 (18)0.388 (2)0.045 (7)*
H1220.444 (3)0.663 (2)0.432 (2)0.058 (8)*
H1110.227 (3)0.679 (2)0.172 (2)0.040 (6)*
H1120.187 (3)0.7733 (19)0.248 (2)0.045 (7)*
H1320.345 (3)0.866 (2)0.378 (3)0.064 (8)*
H210.841 (3)1.014 (2)0.198 (2)0.053 (7)*
H1230.290 (3)0.684 (2)0.426 (2)0.055 (8)*
H411.037 (3)0.7895 (19)0.026 (2)0.044 (7)*
H1130.275 (3)0.793 (2)0.141 (2)0.048 (7)*
H1330.442 (4)0.897 (3)0.266 (3)0.091 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03197 (15)0.03281 (14)0.03663 (14)0.00503 (8)0.00065 (9)0.00401 (8)
O10.0383 (11)0.0695 (13)0.0678 (13)0.0124 (9)0.0008 (9)0.0240 (11)
N30.0250 (9)0.0288 (9)0.0238 (8)0.0019 (7)0.0071 (7)0.0019 (7)
C90.0295 (12)0.0282 (11)0.0312 (10)0.0027 (9)0.0070 (9)0.0027 (9)
N10.0291 (10)0.0397 (10)0.0376 (10)0.0004 (8)0.0054 (8)0.0073 (8)
N20.0268 (9)0.0314 (9)0.0263 (8)0.0001 (7)0.0082 (7)0.0035 (7)
C80.0315 (12)0.0291 (11)0.0299 (10)0.0047 (9)0.0059 (9)0.0062 (8)
C70.0337 (12)0.0324 (11)0.0311 (10)0.0007 (9)0.0077 (9)0.0038 (9)
C50.0277 (11)0.0306 (10)0.0262 (10)0.0032 (8)0.0044 (8)0.0020 (8)
C60.0225 (11)0.0434 (13)0.0357 (12)0.0010 (9)0.0086 (9)0.0069 (10)
C20.0494 (15)0.0321 (12)0.0369 (12)0.0082 (10)0.0067 (11)0.0050 (10)
C30.0404 (14)0.0410 (13)0.0480 (14)0.0096 (11)0.0163 (11)0.0051 (11)
C40.0288 (12)0.0419 (13)0.0456 (13)0.0001 (10)0.0122 (10)0.0066 (10)
C10.0365 (14)0.0405 (13)0.0438 (13)0.0016 (10)0.0029 (11)0.0082 (10)
C100.0236 (11)0.0360 (11)0.0285 (10)0.0006 (8)0.0066 (8)0.0086 (9)
C110.0326 (13)0.0392 (13)0.0353 (12)0.0052 (10)0.0028 (10)0.0020 (10)
C120.0294 (13)0.072 (2)0.0287 (11)0.0062 (12)0.0099 (11)0.0051 (12)
C130.0350 (14)0.0547 (17)0.0696 (18)0.0056 (12)0.0145 (14)0.0373 (15)
Geometric parameters (Å, º) top
O1—H1O0.98 (4)C2—C31.374 (4)
O1—H2O0.98 (4)C2—H210.96 (3)
N3—C91.326 (3)C3—C41.376 (3)
N3—C81.383 (3)C3—H310.96 (3)
N3—C101.502 (2)C4—H410.93 (3)
C9—N21.327 (3)C1—H110.97 (3)
C9—H90.89 (2)C10—C121.519 (3)
N1—C51.327 (3)C10—C111.521 (3)
N1—C11.348 (3)C10—C131.527 (3)
N2—C71.373 (3)C11—H1111.03 (3)
N2—C61.467 (3)C11—H1120.94 (3)
C8—C71.344 (3)C11—H1130.97 (3)
C8—H810.92 (2)C12—H1210.95 (3)
C7—H710.96 (3)C12—H1220.96 (3)
C5—C41.390 (3)C12—H1230.94 (3)
C5—C61.516 (3)C13—H1311.00 (3)
C6—H610.97 (3)C13—H1320.97 (3)
C6—H620.97 (2)C13—H1331.05 (4)
C2—C11.370 (4)
H1O—O1—H2O104 (3)C4—C3—H31121.0 (17)
C9—N3—C8108.15 (17)C3—C4—C5118.8 (2)
C9—N3—C10126.07 (17)C3—C4—H41122.0 (16)
C8—N3—C10125.78 (16)C5—C4—H41119.2 (16)
N3—C9—N2108.90 (19)N1—C1—C2124.0 (2)
N3—C9—H9126.9 (14)N1—C1—H11113.1 (15)
N2—C9—H9123.9 (14)C2—C1—H11122.8 (15)
C5—N1—C1116.77 (19)N3—C10—C12107.76 (17)
C9—N2—C7108.54 (18)N3—C10—C11108.21 (17)
C9—N2—C6124.20 (19)C12—C10—C11110.79 (19)
C7—N2—C6127.21 (18)N3—C10—C13107.99 (18)
C7—C8—N3107.10 (19)C12—C10—C13112.1 (2)
C7—C8—H81131.4 (15)C11—C10—C13109.9 (2)
N3—C8—H81121.4 (15)C10—C11—H111113.5 (14)
C8—C7—N2107.31 (19)C10—C11—H112106.9 (15)
C8—C7—H71129.2 (15)H111—C11—H112108 (2)
N2—C7—H71123.5 (15)C10—C11—H113110.3 (15)
N1—C5—C4123.0 (2)H111—C11—H113109 (2)
N1—C5—C6118.77 (18)H112—C11—H113109 (2)
C4—C5—C6118.15 (19)C10—C12—H121113.8 (16)
N2—C6—C5112.65 (18)C10—C12—H122109.4 (17)
N2—C6—H61109.4 (15)H121—C12—H122110 (2)
C5—C6—H61107.7 (15)C10—C12—H123110.9 (17)
N2—C6—H62107.2 (14)H121—C12—H123106 (2)
C5—C6—H62107.3 (14)H122—C12—H123106 (2)
H61—C6—H62113 (2)C10—C13—H131107.5 (15)
C1—C2—C3118.4 (2)C10—C13—H132105.5 (17)
C1—C2—H21123.2 (17)H131—C13—H132107 (2)
C3—C2—H21118.4 (17)C10—C13—H133112 (2)
C2—C3—C4119.0 (2)H131—C13—H133112 (2)
C2—C3—H31120.0 (17)H132—C13—H133112 (3)
C8—N3—C9—N20.1 (2)C4—C5—C6—N2167.1 (2)
C10—N3—C9—N2179.64 (17)C1—C2—C3—C40.2 (4)
N3—C9—N2—C70.1 (2)C2—C3—C4—C50.2 (4)
N3—C9—N2—C6177.71 (18)N1—C5—C4—C30.6 (4)
C9—N3—C8—C70.0 (2)C6—C5—C4—C3176.9 (2)
C10—N3—C8—C7179.70 (18)C5—N1—C1—C20.1 (4)
N3—C8—C7—N20.0 (2)C3—C2—C1—N10.2 (4)
C9—N2—C7—C80.1 (2)C9—N3—C10—C12116.2 (2)
C6—N2—C7—C8177.60 (19)C8—N3—C10—C1263.4 (3)
C1—N1—C5—C40.5 (3)C9—N3—C10—C11123.9 (2)
C1—N1—C5—C6176.9 (2)C8—N3—C10—C1156.4 (3)
C9—N2—C6—C574.3 (3)C9—N3—C10—C135.0 (3)
C7—N2—C6—C5102.8 (2)C8—N3—C10—C13175.3 (2)
N1—C5—C6—N215.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H132···O1i0.97 (3)2.34 (3)3.292 (3)165 (2)
O1—H2O···Br1ii0.98 (4)2.33 (4)3.305 (2)175 (3)
O1—H1O···Br10.98 (4)2.33 (4)3.301 (2)171 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H18N3+·Br·H2O
Mr314.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)9.7083 (19), 13.214 (3), 11.574 (2)
β (°) 92.11 (3)
V3)1483.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.76
Crystal size (mm)0.20 × 0.20 × 0.13
Data collection
DiffractometerEnraf-Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
SORTAV (Blessing, 1995)
Tmin, Tmax0.608, 0.724
No. of measured, independent and
observed [I > 2σ(I)] reflections
30583, 3021, 2608
Rint0.048
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.071, 1.07
No. of reflections3021
No. of parameters243
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.41, 0.64

Computer programs: COLLECT (Hooft, 1998), SCALEPACK (Otwinowski & Minor 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H132···O1i0.97 (3)2.34 (3)3.292 (3)165 (2)
O1—H2O···Br1ii0.98 (4)2.33 (4)3.305 (2)175 (3)
O1—H1O···Br10.98 (4)2.33 (4)3.301 (2)171 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds