Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The relative configuration was determined for the title compound, C16H28O7, which was obtained as a mixture of epimers. There are both intra- and intermolecular hydrogen bonds, the latter forming dimers around the crystallographic centres of inversion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100012257/qd0032sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012257/qd0032Isup2.hkl
Contains datablock I

CCDC reference: 152680

Comment top

The title molecule, (I), is involved in both intra- and intermolecular hydrogen bonding. The intramolecular hydrogen bonds are O3—H03···O6 and O7—H07···O5. Both have donor–acceptor distances of less than 2.73 Å, but the O3–H03···O6 angle of 166 (2)° suggests it is the stronger of the two.

The intermolecular hydrogen bonds are bifurcated at H06, i.e. O6—H06···O2 and O6–H06···O3. These link pairs of molecules to from dimers situated around the crystallographic centres of inversion, and the action of these centres on the chiral molecule means they are enantiomerically related.

Experimental top

Oxidation of (E,E)-methyl farnesoate by potassium permanganate afforded a mixture of epimeric lactols in a ratio of 6:1. Crystallization from an ether–hexane mixture afforded X-ray quality crystals of the racemate (m.p. 353–356 K), confirming the proposed stereochemical outcome of the oxidative cyclization reaction. We cannot tell if (I) is the major epimer as the two epimers may interconvert via the ring-open form in solution. Crystallization from an ether–hexane mixture afforded X-ray quality crystals of the racemate, confirming the proposed stereochemical outcome of the oxidative cyclization reaction (Brown et al., 2000).

Refinement top

The completeness for θmax = 25.03° was 93.6%, which was slightly lower than the requirement (>95%). The H-atom positions were located from the difference map and fully refined. The bond-length ranges were 0.94 (3)–1.04 (3) Å for C—H and 0.87 (3)–0.88 (2) Å for O—H.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO, COLLECT (Hooft, 1998) and maXus (Mackay et al., 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: WinGX (Farrugia, 1998).

(I) top
Crystal data top
C16H28O7F(000) = 720
Mr = 332.38Dx = 1.264 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.5615 (2) ÅCell parameters from 11814 reflections
b = 11.1023 (4) Åθ = 3.2–25.0°
c = 20.9017 (5) ŵ = 0.10 mm1
β = 95.302 (2)°T = 150 K
V = 1747.19 (9) Å3Block, colourless
Z = 40.4 × 0.4 × 0.3 mm
Data collection top
Nonius Kappa CCD area detector
diffractometer
2392 reflections with I > 2σ(I)
Radiation source: Nonius FR591 rotating anodeRint = 0.026
Φ and ω scans to fill Ewald sphereθmax = 25.0°, θmin = 3.0°
Absorption correction: empirical (using intensity measurements)
(SORTAV; Blessing, 1997)
h = 98
Tmin = 0.962, Tmax = 0.971k = 1313
5490 measured reflectionsl = 2324
2876 independent reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0459P)2 + 0.5111P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.038(Δ/σ)max = 0.002
wR(F2) = 0.100Δρmax = 0.22 e Å3
S = 1.04Δρmin = 0.21 e Å3
2876 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
321 parametersExtinction coefficient: 0.016 (3)
0 restraints
Crystal data top
C16H28O7V = 1747.19 (9) Å3
Mr = 332.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5615 (2) ŵ = 0.10 mm1
b = 11.1023 (4) ÅT = 150 K
c = 20.9017 (5) Å0.4 × 0.4 × 0.3 mm
β = 95.302 (2)°
Data collection top
Nonius Kappa CCD area detector
diffractometer
2876 independent reflections
Absorption correction: empirical (using intensity measurements)
(SORTAV; Blessing, 1997)
2392 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.971Rint = 0.026
5490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.100All H-atom parameters refined
S = 1.04Δρmax = 0.22 e Å3
2876 reflectionsΔρmin = 0.21 e Å3
321 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1978 (2)1.1799 (2)0.06154 (9)0.0327 (4)
C20.09649 (19)1.11322 (15)0.05546 (7)0.0230 (4)
C30.25453 (19)1.05047 (15)0.09094 (7)0.0220 (4)
C40.33612 (18)1.12402 (14)0.14986 (7)0.0215 (4)
C50.3581 (2)1.25525 (16)0.13215 (9)0.0300 (4)
C60.2377 (2)1.10448 (15)0.20985 (7)0.0238 (4)
C70.3249 (2)0.99189 (16)0.23995 (7)0.0246 (4)
C80.51785 (19)1.00672 (14)0.22536 (7)0.0216 (4)
C90.62172 (19)0.89076 (14)0.21957 (7)0.0203 (4)
C100.6403 (2)0.82591 (16)0.28399 (8)0.0247 (4)
C110.8022 (2)0.90886 (15)0.19298 (8)0.0253 (4)
C120.8227 (2)0.79475 (16)0.15384 (8)0.0283 (4)
C130.6329 (2)0.77072 (15)0.12543 (7)0.0260 (4)
C140.5803 (2)0.63832 (17)0.11301 (8)0.0328 (4)
C150.3874 (3)0.6287 (2)0.08487 (11)0.0465 (5)
C160.7058 (4)0.5775 (2)0.07054 (11)0.0526 (6)
O10.04044 (13)1.11962 (11)0.09095 (5)0.0269 (3)
O20.09376 (14)1.15358 (13)0.00188 (5)0.0354 (3)
O30.37779 (15)1.03625 (12)0.04555 (5)0.0308 (3)
O40.51060 (13)1.07433 (10)0.16670 (5)0.0241 (3)
O50.52321 (13)0.81350 (9)0.17252 (5)0.0212 (3)
O60.58844 (16)0.83906 (12)0.06898 (5)0.0332 (3)
O70.60026 (17)0.57556 (12)0.17325 (6)0.0341 (3)
H1A0.283 (3)1.176 (2)0.0941 (11)0.051 (6)*
H1B0.165 (3)1.263 (3)0.0505 (11)0.057 (7)*
H1C0.239 (2)1.1406 (19)0.0226 (10)0.035 (5)*
H30.214 (2)0.9713 (17)0.1056 (8)0.020 (4)*
H030.452 (3)0.978 (2)0.0590 (11)0.051 (6)*
H5A0.429 (3)1.2987 (19)0.1652 (10)0.039 (5)*
H5B0.416 (2)1.2615 (19)0.0918 (9)0.036 (5)*
H5C0.242 (2)1.2966 (18)0.1249 (8)0.031 (5)*
H060.675 (3)0.845 (3)0.0445 (13)0.072 (8)*
H6A0.257 (2)1.1747 (19)0.2377 (9)0.035 (5)*
H6B0.107 (2)1.0966 (17)0.1985 (8)0.029 (4)*
H070.546 (3)0.619 (3)0.2007 (13)0.075 (9)*
H7A0.314 (2)0.9827 (18)0.2867 (10)0.035 (5)*
H7B0.271 (2)0.9178 (17)0.2186 (8)0.022 (4)*
H80.582 (2)1.0556 (16)0.2591 (8)0.023 (4)*
H10A0.521 (3)0.8057 (18)0.2971 (9)0.033 (5)*
H10B0.702 (2)0.8791 (18)0.3163 (9)0.033 (5)*
H10C0.706 (2)0.753 (2)0.2808 (8)0.031 (5)*
H11A0.898 (2)0.9192 (17)0.2288 (9)0.029 (5)*
H11B0.802 (2)0.9805 (17)0.1662 (8)0.025 (4)*
H12A0.907 (3)0.8041 (19)0.1198 (10)0.045 (6)*
H12B0.860 (2)0.7246 (19)0.1809 (9)0.034 (5)*
H15A0.305 (3)0.671 (2)0.1134 (12)0.062 (7)*
H15B0.381 (3)0.666 (2)0.0440 (13)0.066 (7)*
H15C0.358 (3)0.544 (2)0.0811 (10)0.052 (6)*
H16A0.833 (4)0.576 (3)0.0943 (13)0.076 (8)*
H16B0.700 (3)0.620 (2)0.0297 (13)0.066 (7)*
H16C0.670 (3)0.497 (3)0.0640 (12)0.066 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0186 (8)0.0517 (13)0.0273 (9)0.0074 (8)0.0011 (7)0.0007 (8)
C20.0219 (8)0.0278 (9)0.0199 (8)0.0004 (6)0.0049 (6)0.0009 (6)
C30.0221 (8)0.0260 (9)0.0187 (8)0.0037 (6)0.0067 (6)0.0028 (6)
C40.0147 (7)0.0242 (9)0.0256 (8)0.0034 (6)0.0023 (6)0.0028 (6)
C50.0230 (9)0.0251 (9)0.0416 (11)0.0028 (7)0.0011 (7)0.0046 (8)
C60.0221 (8)0.0277 (9)0.0217 (8)0.0038 (7)0.0029 (6)0.0025 (7)
C70.0233 (8)0.0321 (10)0.0189 (8)0.0017 (7)0.0054 (6)0.0012 (7)
C80.0238 (8)0.0226 (9)0.0176 (7)0.0012 (6)0.0019 (6)0.0000 (6)
C90.0195 (7)0.0219 (9)0.0189 (8)0.0023 (6)0.0015 (5)0.0002 (6)
C100.0254 (9)0.0245 (9)0.0236 (8)0.0016 (7)0.0010 (6)0.0030 (7)
C110.0195 (8)0.0266 (9)0.0297 (9)0.0003 (7)0.0020 (6)0.0069 (7)
C120.0253 (8)0.0316 (10)0.0286 (9)0.0075 (7)0.0067 (7)0.0067 (7)
C130.0314 (9)0.0282 (9)0.0190 (8)0.0092 (7)0.0048 (6)0.0029 (6)
C140.0485 (10)0.0285 (10)0.0202 (8)0.0084 (8)0.0026 (7)0.0008 (7)
C150.0622 (14)0.0306 (11)0.0420 (12)0.0005 (10)0.0209 (10)0.0035 (9)
C160.0878 (18)0.0364 (13)0.0347 (12)0.0210 (12)0.0121 (11)0.0054 (9)
O10.0170 (5)0.0413 (7)0.0228 (6)0.0040 (5)0.0032 (4)0.0042 (5)
O20.0281 (6)0.0553 (9)0.0235 (6)0.0124 (6)0.0064 (4)0.0117 (6)
O30.0296 (6)0.0431 (8)0.0211 (6)0.0167 (6)0.0095 (4)0.0068 (5)
O40.0163 (5)0.0279 (6)0.0285 (6)0.0033 (4)0.0031 (4)0.0094 (5)
O50.0216 (5)0.0229 (6)0.0194 (6)0.0002 (4)0.0024 (4)0.0038 (4)
O60.0369 (7)0.0386 (7)0.0251 (6)0.0139 (6)0.0090 (5)0.0127 (5)
O70.0471 (8)0.0264 (7)0.0277 (7)0.0048 (6)0.0034 (5)0.0047 (5)
Geometric parameters (Å, º) top
C1—O11.4512 (19)C8—C91.519 (2)
C2—O21.2047 (19)C9—O51.4570 (17)
C2—O11.3301 (18)C9—C101.522 (2)
C2—C31.516 (2)C9—C111.534 (2)
C3—O31.3990 (18)C11—C121.524 (2)
C3—C41.557 (2)C12—C131.525 (2)
C4—O41.4433 (17)C13—O61.4170 (19)
C4—C51.516 (2)C13—O51.4258 (18)
C4—C61.532 (2)C13—C141.539 (2)
C6—C71.522 (2)C14—O71.435 (2)
C7—C81.527 (2)C14—C161.516 (3)
C8—O41.4344 (18)C14—C151.525 (3)
O2—C2—O1123.45 (14)O5—C9—C11104.42 (12)
O2—C2—C3124.79 (13)C8—C9—C11113.70 (13)
O1—C2—C3111.76 (12)C10—C9—C11111.73 (12)
O3—C3—C2105.33 (12)C12—C11—C9102.93 (13)
O3—C3—C4110.83 (12)C11—C12—C13102.46 (13)
C2—C3—C4112.50 (13)O6—C13—O5106.74 (12)
O4—C4—C5107.97 (12)O6—C13—C12111.89 (14)
O4—C4—C6104.40 (11)O5—C13—C12105.05 (12)
C5—C4—C6114.12 (13)O6—C13—C14109.47 (13)
O4—C4—C3106.19 (12)O5—C13—C14106.08 (13)
C5—C4—C3110.81 (13)C12—C13—C14116.88 (13)
C6—C4—C3112.72 (12)O7—C14—C16106.07 (15)
C7—C6—C4103.29 (12)O7—C14—C15108.88 (16)
C6—C7—C8102.38 (13)C16—C14—C15111.79 (18)
O4—C8—C9110.77 (12)O7—C14—C13108.13 (13)
O4—C8—C7105.39 (11)C16—C14—C13110.97 (17)
C9—C8—C7115.81 (13)C15—C14—C13110.80 (15)
O5—C9—C8108.48 (11)C2—O1—C1116.01 (12)
O5—C9—C10108.56 (12)C8—O4—C4111.73 (10)
C8—C9—C10109.67 (13)C13—O5—C9111.61 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H03···O60.88 (2)1.86 (3)2.7250 (16)166 (2)
O6—H06···O2i0.87 (3)2.08 (3)2.9381 (16)171 (2)
O6—H06···O3i0.87 (3)2.30 (3)2.7973 (16)116 (2)
O7—H07···O50.88 (3)2.24 (3)2.7048 (17)113 (2)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC16H28O7
Mr332.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)7.5615 (2), 11.1023 (4), 20.9017 (5)
β (°) 95.302 (2)
V3)1747.19 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.4 × 0.4 × 0.3
Data collection
DiffractometerNonius Kappa CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SORTAV; Blessing, 1997)
Tmin, Tmax0.962, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
5490, 2876, 2392
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.04
No. of reflections2876
No. of parameters321
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, DENZO, COLLECT (Hooft, 1998) and maXus (Mackay et al., 1998), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), WinGX (Farrugia, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H03···O60.88 (2)1.86 (3)2.7250 (16)166 (2)
O6—H06···O2i0.87 (3)2.08 (3)2.9381 (16)171 (2)
O6—H06···O3i0.87 (3)2.30 (3)2.7973 (16)116 (2)
O7—H07···O50.88 (3)2.24 (3)2.7048 (17)113 (2)
Symmetry code: (i) x+1, y+2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds