Download citation
Download citation
link to html
Caesium vanadium(V) selenite contains infinite sheets of distorted vertex-sharing VO6 octahedra, capped by selenite groups [dav(V-O) = 1.927 (4) Å and dav(Se-O) = 1.709 (3) Å]. Interlayer caesium cations complete the structure [dav(Cs-O) = 3.365 (4) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100011719/qd0027sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100011719/qd0027Isup2.hkl
Contains datablock I

Comment top

The title compound is another member of the family of layered phases (Harrison et al., 1996) structurally related to hexagonal tungsten oxide, hex-WO3 (Gérand et al., 1979). It is built up from vertex sharing VO6 octahedra and SeO3 pyramids, fused together via V—O—V (θav = 141.5°) and V—O—Se (θav = 129.5°) bonds. Interlayer Cs+ cations complete the packing in Cs(VO2)3(SeO3)2 which is isostructural with NH4(VO2)3(SeO3)2 (Vaughey et al., 1994), K(VO2)3(SeO3)2 (Harrison et al., 1995), and Cs(VO2)3(TeO3)2 (Harrison & Buttery, 2000).

The VO6 grouping shows a distinctive distortion mode with the vanadium atom displaced by 0.36 Å from the geometric best centre (Balic Zunic & Makovicky, 1996) of its octahedron, essentially towards an octahedral edge (Harrison et al., 1996). This situation results in two short (d < 1.67 Å) V–O vertices, each of which is trans to a long (d > 2.16 Å) V—O bond. The two remaining V—O bonds are of intermediate length. The short and long bonds are involved in V—O—V links and the intermediate length bonds participate in V—O—Se connections. A bond valence sum (BVS; Brown, 1996) of 5.05 results for vanadium (expected value = 5.00 for VV). The two Se atoms have threefold symmetry and their expected pyramidal geometry [BVS(Se1) = 3.95, BVS(Se2) = 3.96, expected = 4.00]. The 12-coordinate [dav = 3.365 (4) Å] caesium cation, with site symmetry 3, serves to link adjacent anionic sheets by way of O—Cs—O bonds.

Experimental top

Initially, `H2SeO3' (dissolved SeO2; 8 ml 0.5 M), water (4 ml), VOSO4·H2O (0.532 g) and CsCl (0.673 g)(starting ratio of Cs:V:Se = 1:1:1) were heated to 423 K in a 23-ml-capacity teflon-lined hydrothermal bomb for two days, resulting in a green plug, which was discarded, and a blue solution. –The solution was evaporated to dryness to result in a blue-green glass (amorphous by X-rays) which was returned to the bomb with H2O (5 ml) and heated to 423 K for a further four days. Product recovery by vacuum filtration and washing with water and acetone led to a mass of well faceted, pleochroic (dark orange–brown along the hexagonal axis; yellow–green normal to the hexagonal axis) hexagonal prisms of the title compound. These prisms varied in shape from plate-like to rod-like.

Refinement top

The largest difference peak is 0.82 Å from Cs1. Friedel pairs were not merged during data reduction to enable determination of the absolute structure by refinement of the Flack parameter. The structure has pseudosymmetry comparable with space group P63mc. However, the systematic absences are not consistent with P63mc, and the merging R factor of 0.131 for Laue group 6/mmm is significantly larger than that for 6/m (0.048). Structurally, P63mc appears to involve the vanadium atom being placed at the centre of its octahedron, which is a very unlikely situation for a vanadium(V) system.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SMART; program(s) used to solve structure: starting coordinates from isostructural material; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

(I) top
Crystal data top
Cs·(VO2)3·(SeO3)2Dx = 4.091 Mg m3
Mr = 635.65Melting point: decomposes before melting K
Hexagonal, P63Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 6cCell parameters from 1888 reflections
a = 7.1613 (5) Åθ = 3.3–29.4°
c = 11.6184 (8) ŵ = 13.25 mm1
V = 516.01 (6) Å3T = 298 K
Z = 2Hexagonal column, yellow–green
F(000) = 5760.27 × 0.08 × 0.08 mm
Data collection top
Bruker SMART 1000
diffractometer
966 independent reflections
Radiation source: fine-focus sealed tube895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 30°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 97
Tmin = 0.172, Tmax = 0.346k = 69
3428 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: none
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0336P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max < 0.001
wR(F2) = 0.063Δρmax = 2.23 e Å3
S = 1.01Δρmin = 0.80 e Å3
966 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
57 parametersExtinction coefficient: 0.0030 (6)
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: from isostructural materialAbsolute structure parameter: 0.00 (2)
Crystal data top
Cs·(VO2)3·(SeO3)2Z = 2
Mr = 635.65Mo Kα radiation
Hexagonal, P63µ = 13.25 mm1
a = 7.1613 (5) ÅT = 298 K
c = 11.6184 (8) Å0.27 × 0.08 × 0.08 mm
V = 516.01 (6) Å3
Data collection top
Bruker SMART 1000
diffractometer
966 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
895 reflections with I > 2σ(I)
Tmin = 0.172, Tmax = 0.346Rint = 0.048
3428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.063Δρmax = 2.23 e Å3
S = 1.01Δρmin = 0.80 e Å3
966 reflectionsAbsolute structure: Flack (1983)
57 parametersAbsolute structure parameter: 0.00 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.33330.66670.98245 (5)0.02018 (18)
V10.78873 (16)0.12114 (15)0.79392 (8)0.00958 (19)
Se10.66670.33331.01597 (7)0.0105 (2)
Se21.00000.00000.57510 (9)0.00937 (19)
O10.8021 (6)0.2192 (6)0.9539 (3)0.0129 (8)
O20.8868 (6)0.1348 (6)0.6387 (3)0.0124 (8)
O30.5441 (6)0.0792 (7)0.7650 (4)0.0152 (8)
O40.7461 (6)0.1225 (7)0.8265 (4)0.0130 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0165 (2)0.0165 (2)0.0275 (3)0.00825 (12)0.0000.000
V10.0071 (5)0.0071 (5)0.0138 (4)0.0030 (4)0.0003 (3)0.0003 (3)
Se10.0108 (3)0.0108 (3)0.0099 (4)0.00541 (16)0.0000.000
Se20.0094 (3)0.0094 (3)0.0093 (3)0.00471 (13)0.0000.000
O10.014 (2)0.016 (2)0.0121 (19)0.0107 (17)0.0007 (13)0.0006 (13)
O20.012 (2)0.0105 (19)0.0156 (19)0.0061 (16)0.0016 (14)0.0001 (13)
O30.0084 (18)0.0146 (19)0.024 (2)0.0067 (15)0.0013 (16)0.0013 (18)
O40.0124 (19)0.0124 (19)0.0164 (17)0.0079 (16)0.0032 (17)0.0031 (15)
Geometric parameters (Å, º) top
Cs1—O4i3.137 (4)V1—O31.657 (4)
Cs1—O4ii3.137 (4)V1—O41.658 (4)
Cs1—O4iii3.137 (4)V1—O21.920 (4)
Cs1—O2iv3.169 (4)V1—O11.972 (4)
Cs1—O2v3.169 (4)V1—O4x2.176 (4)
Cs1—O2vi3.169 (4)V1—O3ix2.178 (4)
Cs1—O1vii3.558 (4)Se1—O11.709 (4)
Cs1—O1viii3.558 (4)Se1—O1ii1.709 (4)
Cs1—O1ix3.558 (4)Se1—O1ix1.709 (4)
Cs1—O3i3.596 (4)Se2—O2x1.708 (4)
Cs1—O3iii3.596 (4)Se2—O2xi1.708 (4)
Cs1—O3ii3.596 (4)Se2—O21.708 (4)
O4i—Cs1—O4ii89.96 (11)O1ix—Cs1—O3iii91.69 (9)
O4i—Cs1—O4iii89.96 (11)O3i—Cs1—O3iii76.07 (12)
O4ii—Cs1—O4iii89.96 (11)O4i—Cs1—O3ii100.05 (12)
O4i—Cs1—O2iv70.25 (10)O4ii—Cs1—O3ii44.85 (9)
O4ii—Cs1—O2iv130.95 (11)O4iii—Cs1—O3ii46.88 (9)
O4iii—Cs1—O2iv132.49 (11)O2iv—Cs1—O3ii170.13 (10)
O4i—Cs1—O2v130.95 (11)O2v—Cs1—O3ii97.63 (10)
O4ii—Cs1—O2v132.49 (11)O2vi—Cs1—O3ii95.15 (10)
O4iii—Cs1—O2v70.25 (10)O1vii—Cs1—O3ii91.69 (9)
O2iv—Cs1—O2v90.44 (10)O1viii—Cs1—O3ii119.67 (9)
O4i—Cs1—O2vi132.49 (11)O1ix—Cs1—O3ii43.87 (9)
O4ii—Cs1—O2vi70.25 (10)O3i—Cs1—O3ii76.07 (12)
O4iii—Cs1—O2vi130.95 (11)O3iii—Cs1—O3ii76.07 (12)
O2iv—Cs1—O2vi90.44 (10)O1—Se1—O1ii103.47 (15)
O2v—Cs1—O2vi90.44 (10)O1—Se1—O1ix103.47 (15)
O4i—Cs1—O1vii79.45 (10)O1ii—Se1—O1ix103.47 (14)
O4ii—Cs1—O1vii46.83 (9)O2x—Se2—O2xi102.67 (16)
O4iii—Cs1—O1vii134.87 (10)O2x—Se2—O2102.67 (16)
O2iv—Cs1—O1vii84.82 (10)O2xi—Se2—O2102.67 (16)
O2v—Cs1—O1vii145.18 (10)O3—V1—O4103.5 (2)
O2vi—Cs1—O1vii55.22 (9)O3—V1—O298.3 (2)
O4i—Cs1—O1viii46.83 (9)O4—V1—O297.95 (19)
O4ii—Cs1—O1viii134.87 (10)O3—V1—O196.6 (2)
O4iii—Cs1—O1viii79.45 (9)O4—V1—O196.3 (2)
O2iv—Cs1—O1viii55.22 (9)O2—V1—O1156.29 (17)
O2v—Cs1—O1viii84.82 (9)O3—V1—O4x166.77 (19)
O2vi—Cs1—O1viii145.18 (10)O4—V1—O4x89.7 (2)
O1vii—Cs1—O1viii119.141 (19)O2—V1—O4x80.63 (17)
O4i—Cs1—O1ix134.87 (10)O1—V1—O4x80.63 (16)
O4ii—Cs1—O1ix79.45 (9)O3—V1—O3ix89.8 (3)
O4iii—Cs1—O1ix46.83 (9)O4—V1—O3ix166.6 (2)
O2iv—Cs1—O1ix145.18 (10)O2—V1—O3ix81.73 (17)
O2v—Cs1—O1ix55.22 (9)O1—V1—O3ix80.02 (17)
O2vi—Cs1—O1ix84.82 (9)O4x—V1—O3ix77.02 (16)
O1vii—Cs1—O1ix119.141 (19)Se1—O1—V1129.0 (2)
O1viii—Cs1—O1ix119.14 (2)Se1—O1—Cs1xii97.87 (16)
O4i—Cs1—O3i44.85 (9)V1—O1—Cs1xii104.38 (14)
O4ii—Cs1—O3i46.88 (9)Se1—O1—Cs1xiii92.58 (14)
O4iii—Cs1—O3i100.05 (12)V1—O1—Cs1xiii81.22 (12)
O2iv—Cs1—O3i95.15 (10)Cs1xii—O1—Cs1xiii160.46 (12)
O2v—Cs1—O3i170.13 (10)V1—O3—V1ii142.4 (3)
O2vi—Cs1—O3i97.63 (10)V1—O3—Cs1xiii88.73 (16)
O1vii—Cs1—O3i43.87 (9)V1ii—O3—Cs1xiii98.67 (15)
O1viii—Cs1—O3i91.69 (8)V1—O3—Cs1xiv97.11 (18)
O1ix—Cs1—O3i119.67 (9)V1ii—O3—Cs1xiv88.18 (13)
O4i—Cs1—O3iii46.88 (9)Cs1xiii—O3—Cs1xiv160.27 (14)
O4ii—Cs1—O3iii100.05 (12)V1—O4—V1xi140.6 (2)
O4iii—Cs1—O3iii44.85 (9)V1—O4—Cs1xiii105.77 (17)
O2iv—Cs1—O3iii97.63 (10)V1xi—O4—Cs1xiii113.58 (16)
O2v—Cs1—O3iii95.15 (10)Se2—O2—V1130.0 (2)
O2vi—Cs1—O3iii170.13 (10)Se2—O2—Cs1xiv119.26 (18)
O1vii—Cs1—O3iii119.67 (9)V1—O2—Cs1xiv108.04 (16)
O1viii—Cs1—O3iii43.87 (9)
Symmetry codes: (i) y, xy, z; (ii) x+y+1, x+1, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1/2; (v) xy, x, z+1/2; (vi) y, x+y+1, z+1/2; (vii) x1, y, z; (viii) x+y+1, x+2, z; (ix) y+1, xy, z; (x) x+y+2, x+1, z; (xi) y+1, xy1, z; (xii) x+1, y, z; (xiii) x, y1, z; (xiv) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaCs·(VO2)3·(SeO3)2
Mr635.65
Crystal system, space groupHexagonal, P63
Temperature (K)298
a, c (Å)7.1613 (5), 11.6184 (8)
V3)516.01 (6)
Z2
Radiation typeMo Kα
µ (mm1)13.25
Crystal size (mm)0.27 × 0.08 × 0.08
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.172, 0.346
No. of measured, independent and
observed [I > 2σ(I)] reflections
3428, 966, 895
Rint0.048
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.063, 1.01
No. of reflections966
No. of parameters57
No. of restraints1
Δρmax, Δρmin (e Å3)2.23, 0.80
Absolute structureFlack (1983)
Absolute structure parameter0.00 (2)

Computer programs: SMART (Bruker, 1999), SMART, starting coordinates from isostructural material, SHELXL97 (Sheldrick, 1997).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds