Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Bridging by the two thio­cyanato groups in centrosymmetric six-coordinate bis­(thio­cyanato)­bis­(di­phenyl­thio­urea)­cad­mium(II) dihydrate leads tothe formation of eight-membered [Cd-SCN[rightwards arrow]Cd-SCN[rightwards arrow]] rings that are linked at the metal atom to furnish chains running parallel to the a axis, i.e {[Cd(NCS)2(C13H12N2S)2]·2H2O}n.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100011902/qd0024sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100011902/qd0024Isup2.hkl
Contains datablock I

CCDC reference: 152647

Comment top

In cadmium thiocyanate, briding by both pseudohalide groups leads to the formation of eight-membered rings that are connected through the Cd atoms, which show trans-N2S4 octahedral coordination (Cannas et al., 1976). In the 1/2 complexes with sulfur-donor ligands, the Cd atoms retain such a coordination characteristic, as noted in the bis(ethylene)thiourea complex (Cavalca et al., 1960). The phenylthiourea complex of cadmium thiocyanate displays a one-dimensional chain structure, whereas the cadmium chloride complex exists as a monomeric entity (Yang et al., 2000). Replacing the phenylthiourea ligand by the somewhat bulkier diphenylthiourea (DPTU) donor ligand leads to the formation of a similar chain motif; however, the title compound, (I), crystallizes with lattice water that only weakly holds the chains together. There is only one hydrogen bond from the water molecule to an N atom of the DPTU ligand.

The Cd atom is octahedrally coordinated by two S atoms of two monodentate DPTU ligands, two S atoms of two thiocyanato anions, and two N ends of other thiocyanate anions. The bridging behavior of the thiocyanate group in the formation of eight-membered rings has been documented in other systems (Chen et al., 1999; Ram et al., 1981; Taniguchi et al., 1987). The Cd—S and Cd—N bond distances fall within the range reported for other octahedral cadmium–thiocyanate complexes (Bigoli et al., 1972; Cavalca et al., 1960; Chen et al., 1999; Ram et al., 1981; Taniguchi et al., 1987; Tian et al., 1997; Yang et al., 2000).

Experimental top

Cd(NO3)2·4H2O (0.31 g, 1 mmol), KSCN (O.17 g, 2 mmol) and diphenylthiourea (0.46 g, 2 mmol) were dissolved in a small volume of ethanol. The mixture was heated until the white material which formed was completely dissolved. After filtration, the solution was allowed to evaporate slowly; crystals deposited after several days.

Refinement top

Although the β angle is almost 90°, the cell is not orthorhombic. The checking program PLATON (Spek, 1990) did not find a symmetry higher than orthorhombic; indeed, if the data were averaged in an orthorhombic setting, the Rint exceeded 0.2. As a TWIN (a, −b, −c) instruction did not lower the R index much, its use was discarded. H atoms were placed in calculated idealized positions and allowed to ride on their attached non-H atoms (N—H = 0.86 Å and C—H = 0.93 Å). The water H atoms were placed at calculated positions using the HYDROGEN (Nardelli, 1999) option in the WinGX suite (Farrugia, 2000). The slightly low completeness of the reflection data, 91.7%, is due to the incompleteness of the region of 25 < θ < 28.91°.

Computing details top

Data collection: R3m Software (Siemens, 1990); cell refinement: R3m Software; data reduction: R3m Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

catena-Bis(thiocyanato)bis(diphenylthiourea)cadmium(II) dihydrate top
Crystal data top
[Cd(NCS)2(C13H12N2S)2]·2H2OF(000) = 732
Mr = 721.20Dx = 1.540 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.643 (2) ÅCell parameters from 25 reflections
b = 15.625 (8) Åθ = 7.0–15.0°
c = 17.641 (8) ŵ = 1.01 mm1
β = 89.98 (4)°T = 298 K
V = 1555 (1) Å3Parallelepiped, colorless
Z = 20.40 × 0.22 × 0.20 mm
Data collection top
Siemens R3m four-circle
diffractometer
2848 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 28.9°, θmin = 2.6°
ω scansh = 07
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
k = 020
Tmin = 0.609, Tmax = 0.676l = 2423
4131 measured reflections2 standard reflections every 120 reflections
3765 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.3895P]
where P = (Fo2 + 2Fc2)/3
3765 reflections(Δ/σ)max < 0.001
188 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cd(NCS)2(C13H12N2S)2]·2H2OV = 1555 (1) Å3
Mr = 721.20Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.643 (2) ŵ = 1.01 mm1
b = 15.625 (8) ÅT = 298 K
c = 17.641 (8) Å0.40 × 0.22 × 0.20 mm
β = 89.98 (4)°
Data collection top
Siemens R3m four-circle
diffractometer
2848 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
Rint = 0.028
Tmin = 0.609, Tmax = 0.6762 standard reflections every 120 reflections
4131 measured reflections intensity decay: none
3765 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
3765 reflectionsΔρmin = 0.40 e Å3
188 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.50000.0346 (1)
S10.2242 (1)0.50856 (6)0.37042 (4)0.0477 (2)
S20.6907 (1)0.36619 (5)0.43860 (4)0.0377 (2)
O1w0.7507 (9)0.0194 (3)0.5304 (2)0.119 (2)
N10.2007 (5)0.5787 (2)0.4231 (2)0.047 (1)
N20.8030 (5)0.2088 (2)0.4829 (1)0.039 (1)
N30.5688 (5)0.2840 (2)0.5653 (1)0.042 (1)
C10.0230 (5)0.5505 (2)0.4020 (2)0.035 (1)
C20.6876 (5)0.2820 (2)0.4998 (2)0.033 (1)
C30.9456 (5)0.1941 (2)0.4166 (2)0.036 (1)
C40.8850 (6)0.1275 (2)0.3691 (2)0.047 (1)
C51.0279 (7)0.1082 (2)0.3075 (2)0.056 (1)
C61.2267 (7)0.1555 (2)0.2932 (2)0.054 (1)
C71.2846 (6)0.2228 (2)0.3403 (2)0.053 (1)
C81.1446 (6)0.2427 (2)0.4026 (2)0.044 (1)
C90.5827 (6)0.2187 (2)0.6225 (2)0.038 (1)
C100.4059 (7)0.1590 (2)0.6303 (2)0.055 (1)
C110.4251 (8)0.0973 (3)0.6862 (2)0.071 (1)
C120.6209 (8)0.0949 (3)0.7332 (2)0.062 (1)
C130.7919 (8)0.1546 (3)0.7260 (2)0.064 (1)
C140.7754 (7)0.2169 (2)0.6705 (2)0.052 (1)
H1w10.69740.02350.55520.050*
H1w20.86430.04010.56040.050*
H20.79010.16730.51470.058*
H30.47800.32720.57370.063*
H40.74890.09560.37840.070*
H50.98820.06290.27570.084*
H61.32270.14230.25200.081*
H71.41900.25530.33020.079*
H81.18440.28810.43430.065*
H100.27480.16000.59830.083*
H110.30520.05700.69230.106*
H120.63470.05230.76970.093*
H130.92170.15390.75850.096*
H140.89460.25760.66560.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0336 (2)0.0313 (2)0.0388 (2)0.0068 (1)0.0024 (1)0.0004 (1)
S10.0369 (4)0.0695 (6)0.0366 (4)0.0169 (4)0.0002 (3)0.0088 (4)
S20.0477 (4)0.0314 (4)0.0340 (4)0.0075 (3)0.0058 (3)0.0013 (3)
O1w0.162 (4)0.099 (3)0.097 (3)0.036 (3)0.035 (3)0.036 (2)
N10.035 (1)0.047 (2)0.058 (2)0.007 (1)0.006 (1)0.003 (1)
N20.049 (2)0.029 (1)0.039 (1)0.006 (1)0.012 (1)0.002 (1)
N30.047 (2)0.037 (1)0.042 (1)0.012 (1)0.012 (1)0.004 (1)
C10.034 (2)0.037 (2)0.034 (2)0.002 (1)0.000 (1)0.001 (1)
C20.033 (1)0.030 (1)0.037 (2)0.002 (1)0.002 (1)0.003 (1)
C30.037 (2)0.033 (2)0.037 (2)0.004 (1)0.004 (1)0.001 (1)
C40.049 (2)0.041 (2)0.051 (2)0.004 (2)0.006 (2)0.006 (2)
C50.065 (2)0.053 (2)0.050 (2)0.002 (2)0.005 (2)0.017 (2)
C60.057 (2)0.062 (2)0.043 (2)0.006 (2)0.013 (2)0.008 (2)
C70.041 (2)0.059 (2)0.059 (2)0.005 (2)0.013 (2)0.004 (2)
C80.039 (2)0.045 (2)0.047 (2)0.001 (1)0.003 (1)0.009 (1)
C90.043 (2)0.032 (1)0.038 (2)0.004 (1)0.012 (1)0.000 (1)
C100.048 (2)0.060 (2)0.058 (2)0.011 (2)0.005 (2)0.007 (2)
C110.080 (3)0.057 (2)0.074 (3)0.023 (2)0.031 (2)0.006 (2)
C120.086 (3)0.051 (2)0.049 (2)0.013 (2)0.020 (2)0.011 (2)
C130.068 (3)0.075 (3)0.048 (2)0.014 (2)0.003 (2)0.014 (2)
C140.053 (2)0.055 (2)0.047 (2)0.006 (2)0.005 (2)0.006 (2)
Geometric parameters (Å, º) top
Cd1—N1i2.491 (3)C9—C141.379 (5)
Cd1—N1ii2.491 (3)C10—C111.385 (5)
Cd1—S12.769 (2)C11—C121.382 (6)
Cd1—S1iii2.769 (2)C12—C131.348 (6)
Cd1—S22.589 (1)C13—C141.383 (5)
Cd1—S2iii2.589 (1)O1w—H1w10.8600
S1—C11.639 (3)O1w—H1w20.8900
S2—C21.701 (3)N2—H20.8600
N1—C11.157 (4)N3—H30.8600
N2—C21.349 (4)C4—H40.9300
N2—C31.438 (4)C5—H50.9300
N3—C21.336 (4)C6—H60.9300
N3—C91.438 (4)C7—H70.9300
C3—C81.379 (4)C8—H80.9300
C3—C41.378 (4)C10—H100.9300
C4—C51.387 (4)C11—H110.9300
C5—C61.367 (5)C12—H120.9300
C6—C71.380 (5)C13—H130.9300
C7—C81.388 (4)C14—H140.9300
C9—C101.373 (5)
N1i—Cd1—N1ii180.0C10—C9—N3120.8 (3)
N1i—Cd1—S2iii96.4 (1)C14—C9—N3119.3 (3)
N1ii—Cd1—S2iii83.7 (1)C9—C10—C11119.1 (4)
N1i—Cd1—S283.7 (1)C12—C11—C10120.6 (4)
N1ii—Cd1—S296.4 (1)C13—C12—C11119.9 (4)
S2iii—Cd1—S2180.0C12—C13—C14120.3 (4)
N1i—Cd1—S184.7 (1)C9—C14—C13120.2 (4)
N1ii—Cd1—S195.3 (1)H1w1—O1w—H1w2103.6
S2iii—Cd1—S194.2 (1)C2—N2—H2117.1
S2—Cd1—S185.8 (1)C3—N2—H2117.1
N1i—Cd1—S1iii95.3 (1)C2—N3—H3117.9
N1ii—Cd1—S1iii84.7 (1)C9—N3—H3117.9
S2iii—Cd1—S1iii85.8 (1)C3—C4—H4120.1
S2—Cd1—S1iii94.2 (1)C5—C4—H4120.1
S1—Cd1—S1iii180.0C6—C5—H5119.9
C1—S1—Cd1102.6 (1)C4—C5—H5119.9
C2—S2—Cd1110.8 (1)C5—C6—H6120.1
C1—N1—Cd1iv125.1 (2)C7—C6—H6120.1
C2—N2—C3125.8 (2)C6—C7—H7119.6
C2—N3—C9124.3 (2)C8—C7—H7119.6
N1—C1—S1178.3 (3)C3—C8—H8120.6
N3—C2—N2116.9 (3)C7—C8—H8120.6
N3—C2—S2122.4 (2)C9—C10—H10120.4
N2—C2—S2120.7 (2)C11—C10—H10120.4
C8—C3—C4120.6 (3)C12—C11—H11119.7
C8—C3—N2120.9 (3)C10—C11—H11119.7
C4—C3—N2118.4 (3)C13—C12—H12120.1
C3—C4—C5119.7 (3)C11—C12—H12120.1
C6—C5—C4120.3 (3)C12—C13—H13119.8
C5—C6—C7119.7 (3)C14—C13—H13119.8
C6—C7—C8120.8 (3)C9—C14—H14119.9
C3—C8—C7118.8 (3)C13—C14—H14119.9
C10—C9—C14119.9 (3)
N1i—Cd1—S1—C1127.0 (1)C2—N2—C3—C4121.8 (3)
N1ii—Cd1—S1—C153.0 (1)C8—C3—C4—C51.2 (5)
S2iii—Cd1—S1—C131.0 (1)N2—C3—C4—C5175.8 (3)
S2—Cd1—S1—C1149.1 (1)C3—C4—C5—C60.7 (6)
S1iii—Cd1—S1—C1136 (100)C4—C5—C6—C70.3 (6)
N1i—Cd1—S2—C2146.3 (1)C5—C6—C7—C80.7 (6)
N1ii—Cd1—S2—C233.7 (1)C4—C3—C8—C70.7 (5)
S2iii—Cd1—S2—C277.3 (2)N2—C3—C8—C7176.2 (3)
S1—Cd1—S2—C2128.5 (1)C6—C7—C8—C30.2 (6)
S1iii—Cd1—S2—C251.5 (1)C2—N3—C9—C10101.9 (4)
Cd1iv—N1—C1—S165 (11)C2—N3—C9—C1478.7 (4)
Cd1—S1—C1—N1138 (11)C14—C9—C10—C110.4 (5)
C9—N3—C2—N28.8 (5)N3—C9—C10—C11179.8 (3)
C9—N3—C2—S2172.5 (2)C9—C10—C11—C120.8 (6)
C3—N2—C2—N3178.3 (3)C10—C11—C12—C131.8 (6)
C3—N2—C2—S23.0 (4)C11—C12—C13—C141.7 (6)
Cd1—S2—C2—N39.3 (3)C10—C9—C14—C130.6 (5)
Cd1—S2—C2—N2172.1 (2)N3—C9—C14—C13180.0 (3)
C2—N2—C3—C861.3 (4)C12—C13—C14—C90.5 (6)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1w0.862.343.090 (5)146

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C13H12N2S)2]·2H2O
Mr721.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)5.643 (2), 15.625 (8), 17.641 (8)
β (°) 89.98 (4)
V3)1555 (1)
Z2
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.40 × 0.22 × 0.20
Data collection
DiffractometerSiemens R3m four-circle
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scan (North et al., 1968)
Tmin, Tmax0.609, 0.676
No. of measured, independent and
observed [I > 2σ(I)] reflections
4131, 3765, 2848
Rint0.028
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.04
No. of reflections3765
No. of parameters188
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.40

Computer programs: R3m Software (Siemens, 1990), R3m Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cd1—N1i2.491 (3)Cd1—S1iii2.769 (2)
Cd1—N1ii2.491 (3)Cd1—S22.589 (1)
Cd1—S12.769 (2)Cd1—S2iii2.589 (1)
N1i—Cd1—N1ii180.0S2iii—Cd1—S194.2 (1)
N1i—Cd1—S2iii96.4 (1)S2—Cd1—S185.8 (1)
N1ii—Cd1—S2iii83.7 (1)N1i—Cd1—S1iii95.3 (1)
N1i—Cd1—S283.7 (1)N1ii—Cd1—S1iii84.7 (1)
N1ii—Cd1—S296.4 (1)S2iii—Cd1—S1iii85.8 (1)
S2iii—Cd1—S2180.0S2—Cd1—S1iii94.2 (1)
N1i—Cd1—S184.7 (1)S1—Cd1—S1iii180.0
N1ii—Cd1—S195.3 (1)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds