Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new aza­anthracene alkaloid, namely 9,10-di­methoxy-4-methyl-1,2-di­hydro-1-aza­anthracen-2-one (kalasin­amide), C16H15NO3, has been isolated from the stems of Polyal­thia suberosa collected in the northeastern part of Thailand. Each of the aromatic rings in the mol­ecule is planar within \pm0.021 (2) Å. Molecules are linked to form centrosymmetric dimers by N-H...O hydrogen bonds [N...O 2.941 (4) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100008064/qb0205sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100008064/qb0205Isup2.hkl
Contains datablock I

CCDC reference: 147701

Comment top

Polyalthia suberosa (Roxb.), a shrubby tree native to southeast Asia and South China, has been under wide investigation since 1985. Various parts of the tree, leaves, stems and barks have been investigated. The compounds identified are coumarin, sterols (Dan et al., 1985; Goyal et al., 1986), alkaloids (Ferdous et al., 1992; Sahai et al., 1996), triterpenes (Goyal et al., 1986; Li et al., 1993) and nitrogen heterocyclic compounds (Sahai et al., 1996, Tuchinda et al., 2000). Studies of suberosa has shown an anti-HIV principle (Li et al.,1993).

The title compound, (I), extracted from the stem of the tree from Kalasin Province in the northeastern part of Thailand was found to be a new azaanthracene alkaloid (Tuchinda et al., 2000). We therefore report the structure of the title compound as this might lead to a new anti-HIV active compound.

Bond lengths and angles within the anthracene rings system of (I) are in good agreement with literature values (Brown et al., 1964). However, the C2O2 bond length of 1.237 (6) Å is slightly longer than that normally found in ketones. Also, the N1—C2 and N1—C91 mean distance of 1.373 (6) Å is slightly shorter than C—N bond length in heteroaromatic systems (Allen et al., 1987). Appreciable electron delocalizations therefore occur here. Noticable electron delocalizations also occur at O1 and O3; the C9—O1 and O1—C12 bond lengths are 1.373 (6) and 1.435 (1) Å, and C10—O3 and O3—C13 are 1.369 (5) and 1.430 (2) Å, respectively. Mean planes through each of the three fused six-membered rings show that they are planar within ±0.02 Å. The dihedral angles A/B 3.00, B/C 2.2 and A/C 5.15° [A = C5—C6—C7—C8—C81—C101, B = C81—C9—C91—C41—C10—C101 and C = C91—N1—C2—C3—C4—C41] indicate that the planes are not quite coplanar. Mean-plane calculation through the 14-membered fused A/B/C ring shows a total puckering amplitude of 0.166 (3) Å. The torsion angles C13—O3—C10—C41 and C12—O1—C9—C91 of 102.5 (3) and 94.8 (3)°, respectively, are as expected. The methyl group at C4 has a steric effect on the methoxy group at C10. Molecules are linked by N—H···O hydrogen bonds about inversion centres to form centrosymmetric dimers with an N···O distance of 2.941 (4) Å.

Experimental top

The orange title compound was crystallized from EtOH–CH2Cl2.

Refinement top

Based on a statistical analysis of intensity distribution, the space group was determined to be P21/a and has been transformed to the conventional space group of P21/c. Friedel opposites were collected and merged. The H atoms were allowed in the refinement at geometrically idealized positions.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: maXus (Mackay et al., 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

(I) top
Crystal data top
C16H15NO3Dx = 1.380 Mg m3
Mr = 269.30Mo Kα radiation, λ = 0.70930 Å
Monoclinic, P21/cCell parameters from 9 reflections
a = 10.005 (5) Åθ = 8.8–11.7°
b = 16.449 (5) ŵ = 0.10 mm1
c = 8.186 (5) ÅT = 298 K
β = 105.8 (2)°Needle, orange
V = 1297.0 (10) Å30.25 × 0.04 × 0.03 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
θmax = 24.9°
Radiation source: rotating anode generatorh = 1111
ω–2θ scansk = 1919
9602 measured reflectionsl = 99
2272 independent reflections3 standard reflections every 2608 min
1785 reflections with I > 2σ(I) intensity decay: 0.8%
Rint = 0.066
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.07Calculated w = 1/[σ2(Fo2) + (0.0824P)2 + 0.7373P]
where P = (Fo2 + 2Fc2)/3
2272 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H15NO3V = 1297.0 (10) Å3
Mr = 269.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.005 (5) ŵ = 0.10 mm1
b = 16.449 (5) ÅT = 298 K
c = 8.186 (5) Å0.25 × 0.04 × 0.03 mm
β = 105.8 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.066
9602 measured reflections3 standard reflections every 2608 min
2272 independent reflections intensity decay: 0.8%
1785 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.07Δρmax = 0.24 e Å3
2272 reflectionsΔρmin = 0.29 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19412 (15)0.53442 (9)0.14924 (18)0.0430 (4)
O20.66117 (17)0.52286 (12)0.4852 (2)0.0579 (5)
O30.48398 (17)0.70615 (9)0.22291 (19)0.0487 (4)
N10.47139 (18)0.55055 (11)0.2710 (2)0.0407 (5)
H10.42060.52600.32500.049*
C20.6097 (2)0.55317 (14)0.3438 (3)0.0450 (5)
C30.6901 (2)0.59236 (15)0.2461 (3)0.0496 (6)
H30.78600.59360.29080.060*
C40.6361 (2)0.62745 (14)0.0946 (3)0.0445 (5)
C50.1947 (3)0.69683 (14)0.3442 (3)0.0494 (6)
H50.24250.72850.40380.059*
C60.0547 (3)0.68918 (16)0.4028 (3)0.0576 (7)
H60.00770.71570.50200.069*
C70.0195 (3)0.64184 (18)0.3157 (3)0.0589 (7)
H70.11490.63570.35960.071*
C80.0469 (2)0.60464 (15)0.1668 (3)0.0489 (6)
H80.00360.57420.10860.059*
C90.2642 (2)0.57739 (12)0.0551 (3)0.0374 (5)
C100.4140 (2)0.66153 (12)0.1314 (3)0.0393 (5)
C110.7350 (3)0.6661 (2)0.0077 (4)0.0697 (8)
H11A0.82640.66770.08470.104*
H11B0.70470.72040.02630.104*
H11C0.73680.63470.09050.104*
C120.1369 (3)0.58426 (17)0.2573 (3)0.0548 (6)
H12A0.20720.62050.32090.082*
H12B0.10460.55030.33400.082*
H12C0.06070.61530.18930.082*
C130.5062 (4)0.66468 (17)0.3667 (4)0.0671 (8)
H13A0.57410.62270.32890.101*
H13B0.53880.70260.43620.101*
H13C0.42050.64100.43140.101*
C410.4869 (2)0.62533 (12)0.0213 (3)0.0377 (5)
C810.1926 (2)0.61220 (13)0.1007 (3)0.0396 (5)
C910.4058 (2)0.58486 (12)0.1147 (2)0.0360 (5)
C1010.2686 (2)0.65706 (12)0.1931 (3)0.0404 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0419 (8)0.0495 (8)0.0414 (8)0.0065 (6)0.0178 (7)0.0028 (6)
O20.0444 (9)0.0837 (13)0.0440 (9)0.0057 (8)0.0092 (7)0.0177 (9)
O30.0615 (10)0.0490 (9)0.0432 (9)0.0067 (7)0.0274 (8)0.0038 (7)
N10.0371 (10)0.0512 (10)0.0361 (9)0.0001 (8)0.0136 (8)0.0078 (8)
C20.0392 (12)0.0562 (13)0.0405 (12)0.0033 (10)0.0121 (10)0.0025 (10)
C30.0339 (11)0.0658 (15)0.0498 (13)0.0012 (10)0.0125 (10)0.0021 (11)
C40.0405 (12)0.0513 (12)0.0465 (13)0.0001 (10)0.0202 (10)0.0024 (10)
C50.0629 (15)0.0504 (13)0.0355 (11)0.0038 (11)0.0146 (11)0.0018 (10)
C60.0631 (16)0.0673 (16)0.0375 (12)0.0133 (13)0.0052 (11)0.0063 (11)
C70.0458 (13)0.0809 (17)0.0437 (13)0.0043 (12)0.0013 (11)0.0008 (12)
C80.0435 (12)0.0611 (14)0.0417 (12)0.0025 (11)0.0105 (10)0.0038 (10)
C90.0390 (11)0.0413 (10)0.0345 (10)0.0031 (9)0.0145 (9)0.0001 (8)
C100.0484 (12)0.0397 (11)0.0347 (11)0.0018 (9)0.0198 (9)0.0005 (8)
C110.0439 (14)0.096 (2)0.0766 (19)0.0019 (14)0.0284 (13)0.0244 (16)
C120.0500 (14)0.0719 (16)0.0491 (14)0.0083 (12)0.0249 (11)0.0060 (12)
C130.095 (2)0.0667 (16)0.0551 (16)0.0054 (15)0.0461 (15)0.0016 (13)
C410.0406 (11)0.0396 (11)0.0370 (11)0.0009 (9)0.0173 (9)0.0032 (8)
C810.0417 (11)0.0445 (11)0.0331 (11)0.0014 (9)0.0110 (9)0.0052 (9)
C910.0405 (11)0.0387 (10)0.0301 (10)0.0012 (9)0.0120 (8)0.0015 (8)
C1010.0501 (13)0.0405 (11)0.0319 (11)0.0007 (9)0.0130 (9)0.0021 (8)
Geometric parameters (Å, º) top
O1—C91.371 (3)C7—H70.9300
O1—C121.435 (3)C8—C811.416 (4)
O2—C21.237 (3)C8—H80.9300
O3—C101.371 (3)C9—C911.374 (3)
O3—C131.429 (3)C9—C811.404 (4)
N1—C21.351 (4)C10—C411.398 (4)
N1—C911.389 (3)C10—C1011.406 (4)
N1—H10.8600C11—H11A0.9600
C2—C31.433 (4)C11—H11B0.9600
C3—C41.342 (4)C11—H11C0.9600
C3—H30.9300C12—H12A0.9600
C4—C411.451 (4)C12—H12B0.9600
C4—C111.508 (4)C12—H12C0.9600
C5—C61.357 (4)C13—H13A0.9600
C5—C1011.417 (4)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—C71.398 (4)C41—C911.423 (3)
C6—H60.9300C81—C1011.417 (3)
C7—C81.365 (4)
C9—O1—C12113.78 (18)C41—C10—C101122.4 (2)
C10—O3—C13114.35 (19)C4—C11—H11A109.5
C2—N1—C91124.3 (2)C4—C11—H11B109.5
C2—N1—H1117.8H11A—C11—H11B109.5
C91—N1—H1117.8C4—C11—H11C109.5
O2—C2—N1121.1 (3)H11A—C11—H11C109.5
O2—C2—C3123.4 (2)H11B—C11—H11C109.5
N1—C2—C3115.6 (2)O1—C12—H12A109.5
C4—C3—C2124.3 (2)O1—C12—H12B109.5
C4—C3—H3117.8H12A—C12—H12B109.5
C2—C3—H3117.8O1—C12—H12C109.5
C3—C4—C41118.8 (3)H12A—C12—H12C109.5
C3—C4—C11117.8 (2)H12B—C12—H12C109.5
C41—C4—C11123.3 (2)O3—C13—H13A109.5
C6—C5—C101120.6 (3)O3—C13—H13B109.5
C6—C5—H5119.7H13A—C13—H13B109.5
C101—C5—H5119.7O3—C13—H13C109.5
C5—C6—C7120.8 (2)H13A—C13—H13C109.5
C5—C6—H6119.6H13B—C13—H13C109.5
C7—C6—H6119.6C10—C41—C91116.4 (2)
C8—C7—C6120.6 (2)C10—C41—C4126.0 (2)
C8—C7—H7119.7C91—C41—C4117.5 (2)
C6—C7—H7119.7C9—C81—C8122.0 (3)
C7—C8—C81120.2 (3)C9—C81—C101118.8 (2)
C7—C8—H8119.9C8—C81—C101119.2 (2)
C81—C8—H8119.9C9—C91—N1118.3 (2)
O1—C9—C91118.9 (2)C9—C91—C41122.3 (2)
O1—C9—C81120.6 (2)N1—C91—C41119.3 (2)
C91—C9—C81120.6 (2)C10—C101—C5122.2 (3)
O3—C10—C41119.8 (2)C10—C101—C81119.2 (2)
O3—C10—C101117.7 (2)C5—C101—C81118.6 (2)
C91—N1—C2—O2178.4 (2)C91—C9—C81—C1011.7 (3)
C91—N1—C2—C32.0 (3)C7—C8—C81—C9177.6 (2)
O2—C2—C3—C4178.2 (2)C7—C8—C81—C1011.6 (3)
N1—C2—C3—C42.2 (4)O1—C9—C91—N12.0 (3)
C2—C3—C4—C410.9 (4)C81—C9—C91—N1178.85 (18)
C2—C3—C4—C11179.9 (2)O1—C9—C91—C41177.16 (17)
C101—C5—C6—C70.1 (4)C81—C9—C91—C412.0 (3)
C5—C6—C7—C82.2 (4)C2—N1—C91—C9179.7 (2)
C6—C7—C8—C811.4 (4)C2—N1—C91—C410.5 (3)
C12—O1—C9—C9195.8 (2)C10—C41—C91—C93.5 (3)
C12—O1—C9—C8185.0 (2)C4—C41—C91—C9178.24 (19)
C13—O3—C10—C41102.3 (3)C10—C41—C91—N1177.30 (17)
C13—O3—C10—C10180.4 (3)C4—C41—C91—N10.9 (3)
O3—C10—C41—C91175.73 (17)O3—C10—C101—C50.1 (3)
C101—C10—C41—C911.5 (3)C41—C10—C101—C5177.21 (19)
O3—C10—C41—C42.3 (3)O3—C10—C101—C81179.29 (17)
C101—C10—C41—C4179.5 (2)C41—C10—C101—C812.0 (3)
C3—C4—C41—C10177.3 (2)C6—C5—C101—C10178.0 (2)
C11—C4—C41—C103.7 (4)C6—C5—C101—C812.8 (3)
C3—C4—C41—C910.7 (3)C9—C81—C101—C103.6 (3)
C11—C4—C41—C91178.2 (2)C8—C81—C101—C10177.1 (2)
O1—C9—C81—C80.0 (3)C9—C81—C101—C5175.63 (19)
C91—C9—C81—C8179.1 (2)C8—C81—C101—C53.6 (3)
O1—C9—C81—C101179.19 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.102.941 (4)164
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H15NO3
Mr269.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.005 (5), 16.449 (5), 8.186 (5)
β (°) 105.8 (2)
V3)1297.0 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.04 × 0.03
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9602, 2272, 1785
Rint0.066
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.163, 1.07
No. of reflections2272
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.29

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, maXus (Mackay et al., 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.102.941 (4)164.3
Symmetry code: (i) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds