Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystals of two title salts of chloranilic acid (2,5-di­chloro-3,6-di­hydroxy-p-benzo­quinone), namely ethyl­ammonium chloranilate, C2H8N+·C6HCl2O4-, (I), and diethyl­ammonium chloranilate, C4H12N+·C6HCl2O4-, (II), the chloranilate ions are present as a hydrogen-bonded dimer which has an inversion center. The ethyl­ammonium and diethyl­ammonium ions link the dimers through N-H...O hydrogen bonds, forming a three-dimensional hydrogen-bond network in (I) and a one-dimensional chain in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004480/qb0198sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004480/qb0198Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004480/qb0198IIsup3.hkl
Contains datablock II

CCDC references: 145646; 145647

Comment top

Several hydrogen-bonded complexes of chloranilic acid–amine (1/1) in the solid state were studied by IR (Issa et al., 1991; Habeeb et al., 1995). Habeeb et al. analyzed the IR data on the assumption that the complex consists of a pair of chloranilic acid and amine molecules, and reported that the hydrogen bond formed in the pair varies from an N—H···O to an N···H—O type with decreasing pKa values of the amines. Recently, we determined the structures of the chloranilic acid–pyrazine (1/1) complex and morpholinium chloranilate (Ishida & Kashino, 1999) and showed that these complexes are not present as a pair of chloranilic acid and amine. In the pyrazine complex, pyrazine and chloranilic acid are alternately arranged to form an O—H···N hydrogen-bond chain. On the other hand, in the morpholinium salt, a chain of chloranilate ions is formed through O—H···O hydrogen bonds and morpholinium ions link the two chains through N—H···O hydrogen bonds, forming the two-dimensional hydrogen-bond network. The complexes of chloranilic acid–amine are, therefore, expected to be a noticeable system in view of our interest in hydrogen-bond patterns and their nature in the solid state. As part of an investigation on this system, we prepared the 1/1 complexes of chloranilic acid with strong bases, ethylamine (pKa = 10.64) and diethylamine (pKa = 10.94) and determined their crystal structures.

In (I) and (II), an acid–base interaction involving a proton transfer is observed as expected from high basicity of the present amines. The molecules of chloranilate ion form a dimer connected by O2—H1···O3i hydrogen bonds [symmetry code: (i) 2 − x, 1 − y, 2 − z; Tables 2 and 4]. The H1 atom is also involved in an intramolecular hydrogen bond with O3.

In (I), the ethylammonium ion links the three dimers of chloranilic acid through N—H3···O3ii and N—H4···O4iii hydrogen bonds [symmetry codes: (ii) 1 − x, 1 − y, 1 − z; (iii) 1 − x, 1 − y, −z], and a bifurcated hydrogen bond of N—H2···O1 and N—H2···O4, forming a three-dimensional hydrogen-bond network. A weak C—H···O interaction between the methyl group of the cation and the anion is observed [C8—H7 1.01 (3), H7···O1 2.56 (3), C8···O1 3.340 (4) Å, and C8—H7···O1 134 (2)°], which may stabilize the orientation of C8—C7 bond. In (II), the diethylammonium ions related by an inversion center link the two dimers of chloranilic acid through a bifurcated hydrogen bond of N—H2···O1 and N—H2···O4, and an N—H3···O4i hydrogen bond, forming an infinite chain along [211]. The shortest contact between the chains is O2···H4i 2.63 (3) Å [C7—H4 0.97 (3), O2···C7iv 3.483 (4) Å, O2···H4iv—C7iv 146 (2)°; symmetry code: (iv) 1 − x, −y, 2 − z].

The anions form dimers in both salts, but the O2···O3 contact distance between the anions in the dimer in (I), 2.797 (2) Å, is rather longer than in (II), 2.677 (2) Å. The O3 atom in (I) is linked to the cation through a hydrogen bond, while the O3 atom in (II) does not participate in such an additional hydrogen bond. This may cause the difference in the O2···O3 distance between (I) and (II).

Experimental top

Crystals of the title complexes were prepared by slow evaporation from acetonitrile solutions of chloranilic acid with ethylamine or diethylamine (molar ratio 1:1) at room temperature.

Refinement top

H atoms were found in a difference Fourier map and refined isotropically; C—H = 0.94–1.14, N—H = 0.89–1.06 and O—H = 0.92 Å for (I), and C—H = 0.94–1.05, N—H = 0.93–0.97 and O—H = 0.82 Å for (II).

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation,1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1997). Program(s) used to solve structure: SAPI91 (Fan, 1991) for (I); SIR92 (Altomare, et al. 1993) for (II). For both compounds, program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

(I) top
Crystal data top
C2H8N+·C6HO4Cl2Z = 2
Mr = 254.07F(000) = 260
Triclinic, P1Dx = 1.603 Mg m3
a = 7.201 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.348 (2) ÅCell parameters from 25 reflections
c = 7.190 (2) Åθ = 10.6–11.5°
α = 95.59 (2)°µ = 0.61 mm1
β = 92.95 (2)°T = 303 K
γ = 98.47 (2)°Plate, brown
V = 526.3 (2) Å30.30 × 0.20 × 0.10 mm
Data collection top
Rigaku AFC-5R
diffractometer
1402 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.019
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ω–2θ scansh = 09
Absorption correction: ψ
(North et al., 1968)
k = 1313
Tmin = 0.898, Tmax = 0.941l = 99
2620 measured reflections3 standard reflections every 97 reflections
2425 independent reflections intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.042All H-atom parameters refined
wR(F2) = 0.050Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + 0.00002|Fo|2]
S = 1.29(Δ/σ)max = 0.01
2424 reflectionsΔρmax = 0.50 e Å3
172 parametersΔρmin = 0.56 e Å3
Crystal data top
C2H8N+·C6HO4Cl2γ = 98.47 (2)°
Mr = 254.07V = 526.3 (2) Å3
Triclinic, P1Z = 2
a = 7.201 (2) ÅMo Kα radiation
b = 10.348 (2) ŵ = 0.61 mm1
c = 7.190 (2) ÅT = 303 K
α = 95.59 (2)°0.30 × 0.20 × 0.10 mm
β = 92.95 (2)°
Data collection top
Rigaku AFC-5R
diffractometer
1402 reflections with I > 2σ(I)
Absorption correction: ψ
(North et al., 1968)
Rint = 0.019
Tmin = 0.898, Tmax = 0.9413 standard reflections every 97 reflections
2620 measured reflections intensity decay: none
2425 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.050All H-atom parameters refined
S = 1.29Δρmax = 0.50 e Å3
2424 reflectionsΔρmin = 0.56 e Å3
172 parameters
Special details top

Experimental. The scan width was (1.31 + 0.30tanθ)° with an ω scan speed of 6° per minute (up to 2 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.8078 (1)0.09592 (6)0.53082 (9)0.0628 (2)
Cl20.72839 (8)0.69762 (5)0.52971 (8)0.0429 (2)
O10.6727 (2)0.2313 (1)0.2162 (2)0.0485 (5)
O20.9132 (3)0.3098 (2)0.8409 (2)0.0563 (6)
O30.8862 (2)0.5590 (1)0.8350 (2)0.0443 (5)
O40.6260 (2)0.4824 (1)0.2123 (2)0.0439 (5)
N0.3609 (4)0.2878 (2)0.0309 (3)0.0410 (7)
C10.7179 (3)0.3043 (2)0.3592 (3)0.0329 (7)
C20.7896 (3)0.2603 (2)0.5310 (3)0.0356 (7)
C30.8432 (3)0.3460 (2)0.6817 (3)0.0360 (7)
C40.8293 (3)0.4896 (2)0.6849 (3)0.0322 (7)
C50.7533 (3)0.5328 (2)0.5239 (3)0.0316 (7)
C60.6953 (3)0.4500 (2)0.3600 (3)0.0320 (7)
C70.3071 (5)0.1481 (2)0.1103 (4)0.0542 (9)
C80.2599 (5)0.0613 (3)0.0410 (5)0.065 (1)
H10.931 (4)0.385 (2)0.923 (3)0.10 (1)*
H20.473 (4)0.303 (2)0.033 (3)0.08 (1)*
H30.259 (4)0.322 (3)0.056 (4)0.12 (1)*
H40.380 (4)0.347 (3)0.124 (3)0.09 (1)*
H50.429 (3)0.117 (2)0.190 (3)0.070 (8)*
H60.203 (3)0.147 (2)0.195 (3)0.09 (1)*
H70.377 (4)0.063 (2)0.124 (3)0.09 (1)*
H80.150 (4)0.088 (2)0.106 (3)0.09 (1)*
H90.223 (4)0.032 (3)0.017 (4)0.11 (1)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0949 (6)0.0344 (4)0.0577 (5)0.0151 (4)0.0187 (4)0.0022 (3)
Cl20.0513 (4)0.0357 (4)0.0425 (4)0.0121 (3)0.0018 (3)0.0022 (3)
O10.061 (1)0.046 (1)0.0364 (9)0.0159 (9)0.0127 (8)0.0103 (8)
O20.089 (1)0.046 (1)0.035 (1)0.023 (1)0.021 (1)0.0025 (9)
O30.054 (1)0.045 (1)0.0329 (9)0.0166 (8)0.0126 (8)0.0067 (7)
O40.059 (1)0.041 (1)0.0303 (9)0.0066 (9)0.0115 (8)0.0067 (7)
N0.050 (1)0.037 (1)0.035 (1)0.008 (1)0.011 (1)0.003 (1)
C10.030 (1)0.037 (1)0.031 (1)0.006 (1)0.000 (1)0.000 (1)
C20.041 (2)0.029 (1)0.038 (1)0.007 (1)0.004 (1)0.003 (1)
C30.038 (2)0.040 (1)0.031 (1)0.011 (1)0.005 (1)0.004 (1)
C40.028 (1)0.036 (1)0.031 (1)0.006 (1)0.003 (1)0.001 (1)
C50.031 (1)0.031 (1)0.033 (1)0.009 (1)0.002 (1)0.002 (1)
C60.030 (1)0.036 (1)0.030 (1)0.005 (1)0.000 (1)0.005 (1)
C70.082 (2)0.036 (1)0.042 (2)0.014 (1)0.013 (2)0.006 (1)
C80.078 (3)0.041 (2)0.072 (2)0.003 (2)0.007 (2)0.004 (2)
Geometric parameters (Å, º) top
CL1—C21.725 (2)C5—C61.394 (3)
CL2—C51.737 (2)N—C71.490 (3)
O1—C11.215 (2)C7—C81.497 (4)
O2—C31.336 (3)C7—H51.14 (2)
O2—H10.92 (3)C7—H60.94 (3)
O3—C41.251 (2)C8—H71.01 (3)
O4—C61.246 (2)C8—H81.00 (3)
C1—C21.453 (3)C8—H91.01 (3)
C1—C61.540 (3)N—H20.89 (3)
C2—C31.334 (3)N—H31.06 (3)
C3—C41.502 (3)N—H40.96 (3)
C4—C51.396 (3)
O1···N2.953 (3)O4···Niii2.813 (3)
O2···O3i2.797 (2)O4···N2.932 (3)
O3···Nii2.883 (3)
C3—O2—H1105 (2)CL2—C5—C4118.1 (2)
C7—N—H2113 (2)CL2—C5—C6118.7 (2)
C7—N—H3113 (2)C4—C5—C6123.1 (2)
C7—N—H4113 (2)O4—C6—C1116.2 (2)
H2—N—H3109 (2)O4—C6—C5126.2 (2)
H2—N—H4101 (2)C1—C6—C5117.6 (2)
H3—N—H4106 (2)N—C7—C8111.0 (2)
O1—C1—C2123.2 (2)N—C7—H5109 (1)
O1—C1—C6118.6 (2)N—C7—H6105 (2)
C2—C1—C6118.3 (2)C8—C7—H5111 (1)
CL1—C2—C1117.9 (2)C8—C7—H6112 (2)
CL1—C2—C3121.6 (2)H5—C7—H6109 (2)
C1—C2—C3120.4 (2)C7—C8—H7108 (2)
O2—C3—C2122.2 (2)C7—C8—H8110 (2)
O2—C3—C4115.3 (2)C7—C8—H9109 (2)
C2—C3—C4122.6 (2)H7—C8—H8115 (2)
O3—C4—C3115.9 (2)H7—C8—H9106 (2)
O3—C4—C5126.2 (2)H8—C8—H9108 (2)
C3—C4—C5117.9 (2)
CL1—C2—C1—O10.9 (3)O2—C3—C4—O30.7 (4)
CL1—C2—C1—C6178.1 (2)O2—C3—C4—C5178.6 (2)
CL1—C2—C3—O20.2 (4)O3—C4—C3—C2179.4 (2)
CL1—C2—C3—C4179.8 (2)O3—C4—C5—C6178.9 (2)
CL2—C5—C4—O31.6 (3)O4—C6—C1—C2177.1 (2)
CL2—C5—C4—C3177.6 (2)O4—C6—C5—C4179.7 (2)
CL2—C5—C6—O40.3 (4)C1—C2—C3—C41.3 (4)
CL2—C5—C6—C1179.6 (2)C1—C6—C5—C40.2 (3)
O1—C1—C2—C3177.6 (3)C2—C1—C6—C52.8 (3)
O1—C1—C6—O41.9 (4)C2—C3—C4—C51.4 (4)
O1—C1—C6—C5178.1 (2)C3—C2—C1—C63.4 (3)
O2—C3—C2—C1178.7 (2)C3—C4—C5—C61.9 (4)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O3i0.92 (3)2.10 (3)2.797 (2)131 (3)
O2—H1···O30.92 (3)2.04 (3)2.797 (2)120 (2)
N—H2···O10.89 (3)2.16 (3)2.953 (3)147 (2)
N—H2···O40.89 (3)2.26 (3)2.932 (3)132 (2)
N—H3···O3ii1.06 (3)1.87 (3)2.883 (3)158 (2)
N—H4···O4iii0.96 (3)1.94 (3)2.813 (3)152 (3)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.
(II) top
Crystal data top
C4H12N+·C6HO4Cl2Z = 2
Mr = 282.12F(000) = 292.00
Triclinic, P1Dx = 1.458 Mg m3
a = 9.159 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.617 (2) ÅCell parameters from 25 reflections
c = 8.979 (3) Åθ = 10.7–12.4°
α = 108.17 (2)°µ = 0.51 mm1
β = 111.27 (3)°T = 302 K
γ = 103.78 (2)°Prismatic, dark purple
V = 642.8 (5) Å30.40 × 0.30 × 0.30 mm
Data collection top
Rigaku AFC-5R
diffractometer
1793 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.016
Graphite monochromatorθmax = 27.5°, θmin = 2.4°
ω–2θ scansh = 011
Absorption correction: ψ
(North et al., 1968)
k = 1212
Tmin = 0.839, Tmax = 0.859l = 1110
3144 measured reflections3 standard reflections every 97 reflections
2958 independent reflections intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.053All H-atom parameters refined
wR(F2) = 0.091Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + 0.00012|Fo|2]
S = 1.64(Δ/σ)max = 0.01
2956 reflectionsΔρmax = 0.55 e Å3
206 parametersΔρmin = 0.61 e Å3
Crystal data top
C4H12N+·C6HO4Cl2γ = 103.78 (2)°
Mr = 282.12V = 642.8 (5) Å3
Triclinic, P1Z = 2
a = 9.159 (3) ÅMo Kα radiation
b = 9.617 (2) ŵ = 0.51 mm1
c = 8.979 (3) ÅT = 302 K
α = 108.17 (2)°0.40 × 0.30 × 0.30 mm
β = 111.27 (3)°
Data collection top
Rigaku AFC-5R
diffractometer
1793 reflections with I > 2σ(I)
Absorption correction: ψ
(North et al., 1968)
Rint = 0.016
Tmin = 0.839, Tmax = 0.8593 standard reflections every 97 reflections
3144 measured reflections intensity decay: none
2958 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.091All H-atom parameters refined
S = 1.64Δρmax = 0.55 e Å3
2956 reflectionsΔρmin = 0.61 e Å3
206 parameters
Special details top

Experimental. The scan width was (1.21 + 0.30tanθ)° with an ω scan speed of 6° per minute (up to 3 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43126 (7)0.21089 (7)0.7574 (1)0.0984 (2)
Cl20.47197 (6)0.40876 (7)0.63997 (9)0.0813 (2)
O10.7413 (2)0.0652 (2)0.8661 (2)0.0771 (5)
O20.1471 (2)0.1291 (2)0.5868 (2)0.0597 (4)
O30.1659 (1)0.1276 (2)0.5307 (2)0.0632 (4)
O40.7657 (1)0.3296 (1)0.8233 (2)0.0520 (4)
N1.0613 (2)0.3561 (2)1.1187 (2)0.0437 (5)
C10.6087 (2)0.0761 (2)0.7867 (3)0.0487 (6)
C20.4415 (2)0.0449 (2)0.7209 (3)0.0508 (6)
C30.3001 (2)0.0229 (2)0.6412 (3)0.0436 (5)
C40.3048 (2)0.1216 (2)0.6086 (3)0.0439 (5)
C50.4661 (2)0.2397 (2)0.6710 (3)0.0452 (5)
C60.6183 (2)0.2272 (2)0.7595 (2)0.0403 (5)
C71.0199 (3)0.3931 (3)1.2683 (3)0.0658 (9)
C80.9265 (4)0.5006 (3)1.2643 (4)0.0731 (9)
C91.1389 (3)0.2358 (2)1.1026 (3)0.0549 (7)
C101.1648 (4)0.1956 (4)0.9427 (4)0.078 (1)
H10.069 (3)0.104 (3)0.540 (3)0.094 (8)*
H20.961 (3)0.316 (2)1.006 (3)0.070 (6)*
H31.133 (2)0.448 (2)1.128 (3)0.064 (6)*
H40.957 (3)0.289 (3)1.256 (3)0.078 (7)*
H51.132 (3)0.448 (3)1.380 (3)0.101 (9)*
H60.811 (4)0.459 (3)1.148 (4)0.12 (1)*
H70.987 (3)0.608 (3)1.272 (3)0.112 (9)*
H80.905 (3)0.528 (3)1.362 (4)0.106 (9)*
H91.061 (2)0.143 (2)1.104 (2)0.058 (6)*
H101.245 (2)0.276 (2)1.209 (3)0.054 (5)*
H111.059 (3)0.164 (3)0.826 (4)0.113 (9)*
H121.234 (3)0.292 (3)0.935 (3)0.097 (9)*
H131.205 (3)0.111 (3)0.927 (3)0.100 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0413 (3)0.0561 (3)0.1895 (8)0.0179 (3)0.0306 (4)0.0740 (5)
Cl20.0412 (3)0.0720 (4)0.1236 (6)0.0104 (3)0.0145 (3)0.0727 (4)
O10.0278 (7)0.0560 (9)0.129 (1)0.0125 (6)0.0137 (8)0.050 (1)
O20.0241 (6)0.0460 (8)0.096 (1)0.0067 (6)0.0162 (7)0.0366 (8)
O30.0250 (6)0.0680 (9)0.092 (1)0.0130 (6)0.0137 (7)0.0511 (9)
O40.0244 (6)0.0482 (8)0.068 (1)0.0020 (5)0.0102 (6)0.0313 (7)
N0.0318 (8)0.0410 (9)0.050 (1)0.0079 (7)0.0129 (8)0.0231 (9)
C10.0268 (9)0.038 (1)0.072 (1)0.0105 (8)0.017 (1)0.023 (1)
C20.0305 (9)0.033 (1)0.079 (2)0.0088 (8)0.018 (1)0.026 (1)
C30.0256 (9)0.0354 (9)0.059 (1)0.0070 (7)0.0157 (9)0.017 (1)
C40.0279 (9)0.047 (1)0.051 (1)0.0093 (8)0.0139 (9)0.025 (1)
C50.0284 (9)0.045 (1)0.056 (1)0.0072 (8)0.0115 (9)0.031 (1)
C60.0260 (8)0.040 (1)0.045 (1)0.0052 (7)0.0118 (8)0.0190 (9)
C70.063 (2)0.081 (2)0.063 (2)0.024 (1)0.034 (1)0.042 (2)
C80.082 (2)0.068 (2)0.076 (2)0.026 (1)0.050 (2)0.026 (2)
C90.039 (1)0.047 (1)0.070 (2)0.0155 (9)0.013 (1)0.031 (1)
C100.075 (2)0.083 (2)0.087 (2)0.048 (2)0.037 (2)0.038 (2)
Geometric parameters (Å, º) top
CL1—C21.715 (2)C7—C81.492 (5)
CL2—C51.725 (2)C9—C101.487 (5)
O1—C11.215 (2)N—H20.97 (3)
O2—C31.325 (2)N—H30.93 (2)
O2—H10.82 (3)C7—H40.97 (3)
O3—C41.235 (2)C7—H51.00 (3)
O4—C61.255 (2)C8—H61.05 (4)
C1—C21.454 (3)C8—H71.01 (3)
C1—C61.534 (3)C8—H80.94 (4)
C2—C31.336 (3)C9—H91.01 (2)
C3—C41.501 (3)C9—H100.96 (2)
C4—C51.411 (3)C10—H111.03 (3)
C5—C61.387 (3)C10—H121.03 (3)
N—C71.488 (4)C10—H130.97 (3)
N—C91.492 (3)
O1···N2.979 (3)O4···Nii2.838 (3)
O2···O3i2.677 (2)O4···N2.910 (3)
C3—O2—H1113 (2)N—C7—C8110.9 (3)
C7—N—C9114.1 (2)N—C7—H4105 (2)
C7—N—H2111 (2)N—C7—H5106 (2)
C7—N—H3111 (2)C8—C7—H4115 (2)
C9—N—H2107 (2)C8—C7—H5110 (2)
C9—N—H3109 (2)H4—C7—H5110 (2)
H2—N—H3104 (2)C7—C8—H6117 (2)
O1—C1—C2123.1 (2)C7—C8—H7117 (2)
O1—C1—C6118.3 (2)C7—C8—H8111 (2)
C2—C1—C6118.5 (2)H6—C8—H7100 (3)
CL1—C2—C1118.4 (2)H6—C8—H8108 (3)
CL1—C2—C3121.2 (2)H7—C8—H8104 (3)
C1—C2—C3120.3 (2)N—C9—C10111.2 (2)
O2—C3—C2121.1 (2)N—C9—H9105 (1)
O2—C3—C4116.4 (2)N—C9—H10110 (1)
C2—C3—C4122.5 (2)C10—C9—H9115 (1)
O3—C4—C3116.8 (2)C10—C9—H10111 (1)
O3—C4—C5125.4 (2)H9—C9—H10105 (2)
C3—C4—C5117.8 (2)C9—C10—H11115 (2)
CL2—C5—C4117.9 (2)C9—C10—H12115 (2)
CL2—C5—C6119.3 (2)C9—C10—H13111 (2)
C4—C5—C6122.9 (2)H11—C10—H1293 (2)
O4—C6—C1115.8 (2)H11—C10—H13109 (3)
O4—C6—C5126.2 (2)H12—C10—H13114 (3)
C1—C6—C5118.0 (2)
CL1—C2—C1—O10.1 (4)O2—C3—C4—C5177.7 (2)
CL1—C2—C1—C6178.1 (2)O3—C4—C3—C2178.6 (3)
CL1—C2—C3—O20.4 (4)O3—C4—C5—C6179.3 (3)
CL1—C2—C3—C4179.6 (2)O4—C6—C1—C2178.1 (2)
CL2—C5—C4—O31.1 (4)O4—C6—C5—C4177.6 (2)
CL2—C5—C4—C3177.9 (2)C1—C2—C3—C42.6 (4)
CL2—C5—C6—O40.6 (4)C1—C6—C5—C41.2 (4)
CL2—C5—C6—C1179.3 (2)C2—C1—C6—C50.8 (4)
O1—C1—C2—C3177.1 (3)C2—C3—C4—C52.2 (4)
O1—C1—C6—O40.2 (4)C3—C2—C1—C61.1 (4)
O1—C1—C6—C5179.1 (3)C3—C4—C5—C60.2 (4)
O2—C3—C2—C1177.3 (2)C7—N—C9—C10175.7 (3)
O2—C3—C4—O31.4 (4)C8—C7—N—C9174.0 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O3i0.82 (3)1.94 (3)2.677 (2)148 (3)
O2—H1···O30.82 (3)2.23 (3)2.649 (2)112 (3)
N—H2···O40.97 (3)2.00 (3)2.910 (3)155 (2)
N—H2···O10.97 (3)2.33 (3)2.979 (3)124 (2)
N—H3···O4ii0.93 (2)1.95 (3)2.838 (3)160 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC2H8N+·C6HO4Cl2C4H12N+·C6HO4Cl2
Mr254.07282.12
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)303302
a, b, c (Å)7.201 (2), 10.348 (2), 7.190 (2)9.159 (3), 9.617 (2), 8.979 (3)
α, β, γ (°)95.59 (2), 92.95 (2), 98.47 (2)108.17 (2), 111.27 (3), 103.78 (2)
V3)526.3 (2)642.8 (5)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.610.51
Crystal size (mm)0.30 × 0.20 × 0.100.40 × 0.30 × 0.30
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Absorption correctionψ
(North et al., 1968)
ψ
(North et al., 1968)
Tmin, Tmax0.898, 0.9410.839, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
2620, 2425, 1402 3144, 2958, 1793
Rint0.0190.016
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.050, 1.29 0.053, 0.091, 1.64
No. of reflections24242956
No. of parameters172206
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.50, 0.560.55, 0.61

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation,1990), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1997), SAPI91 (Fan, 1991), SIR92 (Altomare, et al. 1993), TEXSAN.

Selected geometric parameters (Å, º) for (I) top
CL1—C21.725 (2)C1—C61.540 (3)
CL2—C51.737 (2)C2—C31.334 (3)
O1—C11.215 (2)C3—C41.502 (3)
O2—C31.336 (3)C4—C51.396 (3)
O3—C41.251 (2)C5—C61.394 (3)
O4—C61.246 (2)N—C71.490 (3)
C1—C21.453 (3)C7—C81.497 (4)
N—C7—C8111.0 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O3i0.92 (3)2.10 (3)2.797 (2)131 (3)
O2—H1···O30.92 (3)2.04 (3)2.797 (2)120 (2)
N—H2···O10.89 (3)2.16 (3)2.953 (3)147 (2)
N—H2···O40.89 (3)2.26 (3)2.932 (3)132 (2)
N—H3···O3ii1.06 (3)1.87 (3)2.883 (3)158 (2)
N—H4···O4iii0.96 (3)1.94 (3)2.813 (3)152 (3)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.
Selected geometric parameters (Å, º) for (II) top
CL1—C21.715 (2)C2—C31.336 (3)
CL2—C51.725 (2)C3—C41.501 (3)
O1—C11.215 (2)C4—C51.411 (3)
O2—C31.325 (2)C5—C61.387 (3)
O3—C41.235 (2)N—C71.488 (4)
O4—C61.255 (2)N—C91.492 (3)
C1—C21.454 (3)C7—C81.492 (5)
C1—C61.534 (3)C9—C101.487 (5)
N—C7—C8110.9 (3)N—C9—C10111.2 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O3i0.82 (3)1.94 (3)2.677 (2)148 (3)
O2—H1···O30.82 (3)2.23 (3)2.649 (2)112 (3)
N—H2···O40.97 (3)2.00 (3)2.910 (3)155 (2)
N—H2···O10.97 (3)2.33 (3)2.979 (3)124 (2)
N—H3···O4ii0.93 (2)1.95 (3)2.838 (3)160 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds