Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Reaction of pyridoin with nickel nitrate in methanol in air gives crystals of two forms of the title compound, [Ni(C12H9N2O3)2]; a triclinic form with the Ni atom on an inversion centre and a monoclinic form with one mol­ecule in a general position in the asymmetric unit. Both forms show an octahedral nickel centre coordinated by two facial tridentate ligands with their O-atom donors trans.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100003401/qb0193sup1.cif
Contains datablocks global, tri, mono

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100003401/qb0193trisup2.hkl
Contains datablock tri

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100003401/qb0193monosup3.hkl
Contains datablock mono

CCDC references: 144690; 144691

Comment top

As part of a broad study to examine relatively simple chelating ligands which have the potential to bridge metal centres, the reaction between 2,2'-pyridoin, (I), and nickel nitrate in the presence of base was investigated. From the initial reaction mixture pale-mauve triclinic centrosymmetric crystals of bis(pyridilate)nickel(II), (II), were obtained. This complex, which has been reported previously (Black, 1967; Black & Srivastare, 1969) but was not crystallographically characterized, can be obtained by the metal-promoted rearrangement of 2,2'-pyridil, (III), in basic solution. The reaction is analogous to the benzilic acid rearrangement which applies broadly to aromatic α-diketones (Selman & Eastham, 1960). We propose that oxidation of (I) to (III) occurs in our mixture and this is followed by the rearrangement reported by Black.

Analysis of the geometry of the bonds in the complex suggests very little strain. From a consideration of bond angles at donor atoms, it appears that non-bonded electron pairs are oriented directly towards the octahedral nickel centre. The complementary relationship between the geometry of the tridentate ligand and the octahedral metal centre suggests that this monoanion and substituted derivatives have potential as blocking ligands when three vacant facial sites on an octahedral metal centre are required.

Further attempts at the above reaction yielded monoclinic crystals with systematic absences consistent with the space groups P21 and P21/m. Despite a thorough investigation, a solution could only be obtained in the space group P21. The monoclinic form shows the absence of crystallographic symmetry within the complex leading to an asymmetric unit twice the size of the triclinic form.

Experimental top

Both types of crystals were obtained by the following procedure: 50 mg of pyridoin was dissolved in 15 ml of methanol by gentle heating followed by the addition of an excess of tetramethylammonium hydroxide. A 5 ml me thanolic solution of Ni(NO3)2.6H2O (45 mg) was then added. Crystals were grown directly from this solution.

Refinement top

Given that the Ni atom in the triclinic crystal is situated on a centre of symmetry the decision to opt for the non-centrosymmetric space group P21 over P21/m for the monoclinic form was made after careful examination of the data, the Patterson map and the refined structure. Furthermore the absence of a mirror plane normal to the b axis as required for the space group P21/m is apparent. The Flack test result is ambiguous indicating that the absolute configuration could not be reliably determined. It was not possible to unambiguously identify H atoms of the hydroxyl group in either structure, presumably because of disorder and as a consequence they were not included in the models.

Computing details top

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: PROCESS_DATA (Gable et al., 1993); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

(tri) bis[2-hydroxy-2,2-bis(2-pyridyl)ethanoate-O1,N,N']nickel(II) top
Crystal data top
[Ni(C12H9N2O3)2]Z = 1
Mr = 517.13F(000) = 266
Triclinic, P1Dx = 1.625 Mg m3
a = 7.6800 (11) ÅCu Kα radiation, λ = 1.54180 Å
b = 8.576 (2) ÅCell parameters from 24 reflections
c = 8.889 (2) Åθ = 10.6–34.6°
α = 88.29 (2)°µ = 1.79 mm1
β = 78.46 (2)°T = 293 K
γ = 67.29 (2)°Parallelepiped, pale purple
V = 528.40 (18) Å30.17 × 0.11 × 0.08 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1844 reflections with I > 2α(I)
Radiation source: fine-focus sealed tubeRint = 0.015
None monochromatorθmax = 74.7°, θmin = 5.1°
ω–2θ scansh = 99
Absorption correction: numerical
(SHELX76; Sheldrick, 1976)
k = 1010
Tmin = 0.755, Tmax = 0.875l = 111
2619 measured reflections3 standard reflections every 120 min
2168 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131Only H-atom displacement parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0796P)2 + 0.164P]
where P = (Fo2 + 2Fc2)/3
2168 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Ni(C12H9N2O3)2]γ = 67.29 (2)°
Mr = 517.13V = 528.40 (18) Å3
Triclinic, P1Z = 1
a = 7.6800 (11) ÅCu Kα radiation
b = 8.576 (2) ŵ = 1.79 mm1
c = 8.889 (2) ÅT = 293 K
α = 88.29 (2)°0.17 × 0.11 × 0.08 mm
β = 78.46 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1844 reflections with I > 2α(I)
Absorption correction: numerical
(SHELX76; Sheldrick, 1976)
Rint = 0.015
Tmin = 0.755, Tmax = 0.8753 standard reflections every 120 min
2619 measured reflections intensity decay: none
2168 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.131Only H-atom displacement parameters refined
S = 1.07Δρmax = 0.55 e Å3
2168 reflectionsΔρmin = 0.67 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.0314 (2)
O10.0221 (3)0.2040 (2)0.0952 (2)0.0400 (4)
O20.1073 (3)0.4212 (3)0.2695 (2)0.0498 (5)
O30.4065 (3)0.3631 (2)0.3861 (2)0.0469 (5)
N10.0930 (3)0.0573 (3)0.2229 (2)0.0348 (5)
N20.2883 (3)0.1512 (3)0.0110 (2)0.0365 (5)
C10.2133 (4)0.0690 (3)0.3247 (3)0.0340 (5)
C20.2731 (5)0.0396 (4)0.4765 (3)0.0471 (7)
H20.35550.12890.54580.062 (5)*
C30.2083 (5)0.1244 (4)0.5234 (4)0.0559 (8)
H30.24580.14680.62510.062 (5)*
C40.0875 (6)0.2547 (4)0.4180 (4)0.0559 (8)
H40.04330.36620.44680.062 (5)*
C50.0343 (5)0.2161 (3)0.2697 (3)0.0459 (7)
H50.04620.30400.19830.062 (5)*
C60.2825 (4)0.2471 (3)0.2653 (3)0.0352 (5)
C70.3888 (4)0.2537 (3)0.1356 (3)0.0338 (5)
C80.5820 (4)0.3594 (3)0.1480 (3)0.0422 (6)
H80.65020.42910.23600.063 (5)*
C90.6704 (4)0.3588 (4)0.0271 (4)0.0486 (7)
H90.79910.42900.03250.063 (5)*
C100.5663 (5)0.2534 (4)0.1015 (4)0.0521 (7)
H100.62330.25120.18400.063 (5)*
C110.3776 (4)0.1522 (4)0.1050 (3)0.0465 (7)
H110.30760.08070.19160.063 (5)*
C120.1057 (4)0.2956 (3)0.2042 (3)0.0357 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0354 (3)0.0288 (3)0.0270 (3)0.0083 (2)0.0072 (2)0.0048 (2)
O10.0441 (10)0.0377 (9)0.0385 (10)0.0179 (8)0.0035 (8)0.0086 (8)
O20.0652 (13)0.0377 (10)0.0497 (12)0.0220 (9)0.0127 (10)0.0120 (9)
O30.0550 (11)0.0384 (10)0.0337 (10)0.0069 (9)0.0005 (8)0.0133 (8)
N10.0428 (11)0.0283 (10)0.0305 (10)0.0098 (9)0.0088 (9)0.0028 (8)
N20.0365 (11)0.0364 (11)0.0323 (11)0.0080 (9)0.0091 (8)0.0051 (8)
C10.0402 (12)0.0325 (12)0.0289 (12)0.0128 (10)0.0085 (10)0.0034 (9)
C20.0629 (18)0.0461 (15)0.0305 (13)0.0210 (14)0.0052 (12)0.0024 (11)
C30.085 (2)0.0531 (17)0.0346 (15)0.0333 (17)0.0120 (15)0.0090 (13)
C40.091 (2)0.0361 (15)0.0474 (17)0.0274 (16)0.0261 (17)0.0090 (13)
C50.0654 (18)0.0303 (12)0.0399 (15)0.0137 (12)0.0159 (13)0.0001 (11)
C60.0411 (13)0.0296 (11)0.0286 (12)0.0077 (10)0.0039 (10)0.0075 (9)
C70.0376 (12)0.0299 (11)0.0311 (12)0.0107 (9)0.0054 (10)0.0003 (9)
C80.0392 (13)0.0343 (13)0.0462 (15)0.0091 (11)0.0037 (11)0.0001 (11)
C90.0345 (13)0.0475 (16)0.0636 (19)0.0135 (12)0.0157 (13)0.0067 (14)
C100.0484 (16)0.0564 (18)0.0567 (18)0.0188 (14)0.0259 (14)0.0031 (14)
C110.0460 (15)0.0518 (16)0.0385 (15)0.0114 (13)0.0155 (12)0.0079 (12)
C120.0454 (13)0.0280 (11)0.0329 (12)0.0109 (10)0.0121 (10)0.0039 (9)
Geometric parameters (Å, º) top
Ni1—O12.0445 (18)N2—C111.346 (3)
Ni1—O1i2.0445 (18)C1—C21.384 (4)
Ni1—N22.073 (2)C1—C61.527 (3)
Ni1—N2i2.073 (2)C2—C31.381 (4)
Ni1—N12.079 (2)C3—C41.379 (5)
Ni1—N1i2.079 (2)C4—C51.370 (4)
O1—C121.261 (3)C6—C71.529 (4)
O2—C121.233 (3)C6—C121.561 (4)
O3—C61.404 (3)C7—C81.392 (4)
N1—C11.340 (3)C8—C91.383 (4)
N1—C51.341 (3)C9—C101.379 (5)
N2—C71.337 (3)C10—C111.367 (4)
O1—Ni1—O1i180.0N1—C1—C6116.9 (2)
O1—Ni1—N286.87 (8)C2—C1—C6121.4 (2)
O1i—Ni1—N293.13 (8)C3—C2—C1119.0 (3)
O1—Ni1—N2i93.13 (8)C4—C3—C2119.4 (3)
O1i—Ni1—N2i86.87 (8)C5—C4—C3118.4 (3)
N2—Ni1—N2i180.0N1—C5—C4123.0 (3)
O1—Ni1—N187.04 (8)O3—C6—C1109.4 (2)
O1i—Ni1—N192.96 (8)O3—C6—C7109.8 (2)
N2—Ni1—N184.90 (9)C1—C6—C7109.8 (2)
N2i—Ni1—N195.10 (9)O3—C6—C12108.7 (2)
O1—Ni1—N1i92.96 (8)C1—C6—C12109.6 (2)
O1i—Ni1—N1i87.04 (8)C7—C6—C12109.6 (2)
N2—Ni1—N1i95.10 (9)N2—C7—C8121.7 (2)
N2i—Ni1—N1i84.90 (9)N2—C7—C6116.8 (2)
N1—Ni1—N1i180.00 (11)C8—C7—C6121.4 (2)
C12—O1—Ni1121.67 (17)C9—C8—C7118.7 (3)
C1—N1—C5118.6 (2)C10—C9—C8119.5 (3)
C1—N1—Ni1119.03 (17)C11—C10—C9118.5 (3)
C5—N1—Ni1122.39 (19)N2—C11—C10123.0 (3)
C7—N2—C11118.6 (2)O2—C12—O1127.1 (3)
C7—N2—Ni1119.36 (17)O2—C12—C6115.4 (2)
C11—N2—Ni1122.06 (18)O1—C12—C6117.5 (2)
N1—C1—C2121.7 (2)
Symmetry code: (i) x, y, z.
(mono) bis[2-hydroxy-2,2-bis(2-pyridyl)ethanoate-O1,N,N']nickel(II) top
Crystal data top
[Ni(C12H9N2O3)2]F(000) = 532
Mr = 517.13Dx = 1.598 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54180 Å
a = 7.7763 (8) ÅCell parameters from 25 reflections
b = 15.736 (2) Åθ = 11.7–37.6°
c = 8.8390 (14) ŵ = 1.76 mm1
β = 96.560 (11)°T = 293 K
V = 1074.5 (2) Å3Parallelepiped, pale purple
Z = 20.11 × 0.10 × 0.07 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2102 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
None monochromatorθmax = 74.6°, θmin = 5.0°
ω–2θ scansh = 99
Absorption correction: numerical
(SHELX76; Sheldrick, 1976)
k = 191
Tmin = 0.776, Tmax = 0.905l = 111
2922 measured reflections3 standard reflections every 120 min
2445 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044Only H-atom displacement parameters refined
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.3968P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2445 reflectionsΔρmax = 0.43 e Å3
321 parametersΔρmin = 0.56 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: heavy-atom methodAbsolute structure parameter: 0.48 (10)
Crystal data top
[Ni(C12H9N2O3)2]V = 1074.5 (2) Å3
Mr = 517.13Z = 2
Monoclinic, P21Cu Kα radiation
a = 7.7763 (8) ŵ = 1.76 mm1
b = 15.736 (2) ÅT = 293 K
c = 8.8390 (14) Å0.11 × 0.10 × 0.07 mm
β = 96.560 (11)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2102 reflections with I > 2σ(I)
Absorption correction: numerical
(SHELX76; Sheldrick, 1976)
Rint = 0.034
Tmin = 0.776, Tmax = 0.9053 standard reflections every 120 min
2922 measured reflections intensity decay: none
2445 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044Only H-atom displacement parameters refined
wR(F2) = 0.116Δρmax = 0.43 e Å3
S = 1.05Δρmin = 0.56 e Å3
2445 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
321 parametersAbsolute structure parameter: 0.48 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.06566 (10)0.00000 (11)0.19905 (9)0.0315 (2)
O10.0175 (5)0.1067 (3)0.3003 (4)0.0398 (9)
O20.0463 (6)0.2131 (3)0.4645 (6)0.0601 (13)
O30.3513 (6)0.1652 (3)0.5556 (4)0.0474 (10)
O40.1582 (5)0.1062 (3)0.1043 (4)0.0414 (9)
O50.1193 (7)0.2071 (3)0.0720 (5)0.0579 (12)
O60.1919 (6)0.1676 (4)0.1711 (5)0.0587 (12)
N10.1676 (5)0.0359 (3)0.4172 (5)0.0332 (10)
N20.2985 (5)0.0616 (3)0.1862 (5)0.0346 (10)
N30.0344 (6)0.0363 (3)0.0190 (5)0.0348 (10)
N40.1660 (6)0.0663 (3)0.1997 (5)0.0383 (10)
C10.2567 (6)0.0216 (3)0.5067 (6)0.0319 (12)
C20.3369 (7)0.0010 (6)0.6494 (6)0.0459 (12)
H20.39950.04160.70910.042 (9)*
C30.3222 (8)0.0816 (5)0.7017 (7)0.0512 (16)
H30.37510.09670.79760.042 (9)*
C40.2300 (8)0.1407 (4)0.6127 (7)0.0465 (15)
H40.21740.19590.64720.042 (9)*
C50.1556 (8)0.1157 (4)0.4685 (6)0.0382 (12)
H50.09550.15570.40570.042 (9)*
C60.2673 (7)0.1113 (4)0.4439 (6)0.0362 (12)
C70.3641 (7)0.1107 (4)0.3028 (6)0.0356 (11)
C80.5144 (8)0.1577 (4)0.2978 (8)0.0458 (14)
H80.55760.19130.37990.054 (10)*
C90.5993 (9)0.1535 (5)0.1675 (8)0.0479 (15)
H90.69980.18450.16020.054 (10)*
C100.5305 (8)0.1023 (5)0.0503 (7)0.0516 (16)
H100.58510.09770.03760.054 (10)*
C110.3820 (7)0.0579 (4)0.0630 (6)0.0423 (13)
H110.33730.02370.01790.054 (10)*
C120.0788 (8)0.1475 (4)0.3971 (6)0.0389 (13)
C130.1087 (7)0.0226 (4)0.1154 (6)0.0385 (14)
C140.1757 (8)0.0009 (6)0.2625 (6)0.0513 (14)
H140.22600.04230.32840.082 (14)*
C150.1679 (10)0.0814 (5)0.3103 (8)0.0614 (19)
H150.21220.09640.40890.082 (14)*
C160.0947 (9)0.1410 (5)0.2124 (7)0.0549 (17)
H160.08990.19750.24230.082 (14)*
C170.0267 (9)0.1162 (4)0.0659 (7)0.0439 (14)
H170.02540.15680.00070.082 (14)*
C180.1147 (7)0.1134 (4)0.0546 (6)0.0386 (13)
C190.2224 (7)0.1158 (4)0.0824 (6)0.0377 (12)
C200.3670 (8)0.1676 (5)0.0800 (8)0.0511 (15)
H200.40170.20230.00300.064 (11)*
C210.4569 (8)0.1656 (6)0.2047 (9)0.057 (2)
H210.55540.19890.20660.064 (11)*
C220.4018 (8)0.1147 (5)0.3267 (8)0.0572 (18)
H220.46090.11420.41250.064 (11)*
C230.2584 (8)0.0646 (5)0.3206 (7)0.0461 (14)
H230.22380.02840.40170.064 (11)*
C240.0711 (8)0.1459 (4)0.0035 (6)0.0388 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0312 (3)0.0352 (4)0.0281 (3)0.0017 (4)0.0039 (3)0.0009 (4)
O10.039 (2)0.041 (2)0.039 (2)0.0071 (17)0.0049 (16)0.0006 (19)
O20.071 (3)0.042 (3)0.067 (3)0.014 (2)0.005 (2)0.018 (2)
O30.062 (3)0.044 (2)0.034 (2)0.013 (2)0.0027 (18)0.0121 (18)
O40.0359 (18)0.042 (2)0.046 (2)0.0019 (17)0.0041 (16)0.006 (2)
O50.079 (3)0.041 (2)0.056 (3)0.004 (2)0.020 (2)0.008 (2)
O60.071 (3)0.061 (3)0.043 (2)0.021 (3)0.001 (2)0.017 (2)
N10.038 (2)0.031 (2)0.030 (2)0.0031 (19)0.0026 (18)0.0011 (19)
N20.036 (2)0.036 (2)0.033 (2)0.007 (2)0.0080 (17)0.001 (2)
N30.036 (2)0.041 (2)0.028 (2)0.004 (2)0.0053 (18)0.001 (2)
N40.036 (2)0.042 (3)0.038 (2)0.003 (2)0.0078 (18)0.001 (2)
C10.033 (2)0.035 (3)0.028 (2)0.0012 (19)0.0028 (19)0.001 (2)
C20.049 (3)0.054 (3)0.034 (2)0.004 (4)0.001 (2)0.001 (4)
C30.056 (3)0.062 (4)0.034 (3)0.002 (3)0.001 (3)0.010 (3)
C40.051 (3)0.043 (3)0.048 (3)0.015 (3)0.015 (3)0.018 (3)
C50.046 (3)0.030 (3)0.039 (3)0.001 (3)0.005 (2)0.004 (2)
C60.043 (3)0.035 (3)0.031 (3)0.006 (2)0.002 (2)0.007 (2)
C70.036 (2)0.038 (3)0.033 (3)0.004 (2)0.004 (2)0.001 (2)
C80.042 (3)0.043 (3)0.051 (3)0.008 (3)0.000 (3)0.001 (3)
C90.037 (3)0.047 (4)0.060 (4)0.008 (3)0.008 (3)0.008 (3)
C100.047 (3)0.062 (4)0.048 (3)0.002 (3)0.016 (3)0.009 (3)
C110.038 (3)0.051 (4)0.040 (3)0.009 (3)0.011 (2)0.008 (3)
C120.047 (3)0.036 (3)0.035 (3)0.002 (3)0.006 (2)0.003 (2)
C130.043 (3)0.046 (4)0.026 (2)0.000 (2)0.005 (2)0.000 (2)
C140.062 (3)0.061 (4)0.030 (2)0.009 (5)0.002 (2)0.003 (4)
C150.076 (4)0.069 (5)0.037 (3)0.004 (4)0.005 (3)0.014 (3)
C160.071 (5)0.051 (4)0.043 (3)0.002 (4)0.004 (3)0.010 (3)
C170.050 (3)0.041 (3)0.041 (3)0.001 (3)0.008 (3)0.005 (3)
C180.044 (3)0.042 (3)0.030 (3)0.009 (3)0.001 (2)0.007 (2)
C190.037 (3)0.032 (3)0.044 (3)0.006 (2)0.001 (2)0.002 (2)
C200.045 (3)0.050 (4)0.056 (4)0.014 (3)0.000 (3)0.007 (3)
C210.029 (3)0.065 (5)0.078 (5)0.007 (3)0.007 (3)0.019 (4)
C220.040 (3)0.073 (5)0.063 (4)0.000 (3)0.025 (3)0.010 (4)
C230.044 (3)0.056 (4)0.040 (3)0.000 (3)0.014 (2)0.004 (3)
C240.052 (3)0.026 (3)0.039 (3)0.002 (2)0.013 (3)0.001 (2)
Geometric parameters (Å, º) top
Ni1—O42.037 (4)C1—C61.523 (8)
Ni1—O12.042 (4)C2—C31.389 (11)
Ni1—N22.069 (4)C3—C41.367 (9)
Ni1—N32.075 (4)C4—C51.395 (8)
Ni1—N12.077 (4)C6—C71.529 (7)
Ni1—N42.082 (5)C6—C121.583 (8)
O1—C121.249 (7)C7—C81.388 (8)
O2—C121.232 (7)C8—C91.392 (9)
O3—C61.405 (6)C9—C101.372 (10)
O4—C241.269 (7)C10—C111.365 (8)
O5—C241.218 (7)C13—C141.387 (7)
O6—C181.416 (7)C13—C181.530 (8)
N1—C11.341 (6)C14—C151.366 (12)
N1—C51.342 (7)C15—C161.356 (10)
N2—C111.331 (7)C16—C171.398 (8)
N2—C71.341 (7)C18—C191.549 (8)
N3—C171.327 (8)C18—C241.551 (8)
N3—C131.343 (7)C19—C201.388 (8)
N4—C191.331 (7)C20—C211.371 (9)
N4—C231.355 (7)C21—C221.372 (11)
C1—C21.380 (7)C22—C231.372 (9)
O4—Ni1—O1177.53 (17)C1—C6—C7110.1 (5)
O4—Ni1—N290.52 (17)O3—C6—C12108.0 (5)
O1—Ni1—N287.83 (19)C1—C6—C12110.0 (5)
O4—Ni1—N387.50 (18)C7—C6—C12108.4 (4)
O1—Ni1—N394.42 (18)N2—C7—C8122.0 (5)
N2—Ni1—N393.30 (18)N2—C7—C6116.9 (5)
O4—Ni1—N192.50 (18)C8—C7—C6121.2 (5)
O1—Ni1—N185.56 (17)C7—C8—C9118.8 (6)
N2—Ni1—N186.27 (18)C10—C9—C8118.1 (6)
N3—Ni1—N1179.6 (2)C11—C10—C9119.9 (6)
O4—Ni1—N486.37 (19)N2—C11—C10122.8 (6)
O1—Ni1—N495.33 (18)O2—C12—O1128.5 (6)
N2—Ni1—N4176.4 (2)O2—C12—C6114.2 (5)
N3—Ni1—N484.70 (18)O1—C12—C6117.3 (5)
N1—Ni1—N495.73 (19)N3—C13—C14120.9 (6)
C12—O1—Ni1121.9 (4)N3—C13—C18116.7 (4)
C24—O4—Ni1122.0 (4)C14—C13—C18122.4 (6)
C1—N1—C5118.8 (5)C15—C14—C13119.9 (7)
C1—N1—Ni1118.8 (4)C16—C15—C14119.2 (6)
C5—N1—Ni1122.3 (4)C15—C16—C17119.0 (7)
C11—N2—C7118.4 (5)N3—C17—C16121.9 (6)
C11—N2—Ni1122.4 (4)O6—C18—C13109.5 (5)
C7—N2—Ni1119.1 (3)O6—C18—C19109.4 (5)
C17—N3—C13119.1 (5)C13—C18—C19109.7 (5)
C17—N3—Ni1121.7 (4)O6—C18—C24108.4 (5)
C13—N3—Ni1119.2 (4)C13—C18—C24110.2 (5)
C19—N4—C23118.0 (5)C19—C18—C24109.5 (4)
C19—N4—Ni1119.9 (4)N4—C19—C20123.4 (6)
C23—N4—Ni1122.0 (4)N4—C19—C18115.8 (5)
N1—C1—C2122.1 (6)C20—C19—C18120.8 (5)
N1—C1—C6117.1 (4)C21—C20—C19117.5 (7)
C2—C1—C6120.8 (5)C20—C21—C22120.2 (6)
C1—C2—C3118.5 (6)C23—C22—C21119.1 (6)
C4—C3—C2120.2 (5)N4—C23—C22121.8 (6)
C3—C4—C5118.0 (6)O5—C24—O4126.5 (6)
N1—C5—C4122.4 (6)O5—C24—C18116.4 (5)
O3—C6—C1110.1 (4)O4—C24—C18117.1 (5)
O3—C6—C7110.2 (5)

Experimental details

(tri)(mono)
Crystal data
Chemical formula[Ni(C12H9N2O3)2][Ni(C12H9N2O3)2]
Mr517.13517.13
Crystal system, space groupTriclinic, P1Monoclinic, P21
Temperature (K)293293
a, b, c (Å)7.6800 (11), 8.576 (2), 8.889 (2)7.7763 (8), 15.736 (2), 8.8390 (14)
α, β, γ (°)88.29 (2), 78.46 (2), 67.29 (2)90, 96.560 (11), 90
V3)528.40 (18)1074.5 (2)
Z12
Radiation typeCu KαCu Kα
µ (mm1)1.791.76
Crystal size (mm)0.17 × 0.11 × 0.080.11 × 0.10 × 0.07
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionNumerical
(SHELX76; Sheldrick, 1976)
Numerical
(SHELX76; Sheldrick, 1976)
Tmin, Tmax0.755, 0.8750.776, 0.905
No. of measured, independent and
observed reflections
2619, 2168, 1844 [I > 2α(I)]2922, 2445, 2102 [I > 2σ(I)]
Rint0.0150.034
(sin θ/λ)max1)0.6260.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.131, 1.07 0.044, 0.116, 1.05
No. of reflections21682445
No. of parameters162321
No. of restraints01
H-atom treatmentOnly H-atom displacement parameters refinedOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.55, 0.670.43, 0.56
Absolute structure?Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter?0.48 (10)

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, PROCESS_DATA (Gable et al., 1993), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

Selected geometric parameters (Å, º) for (tri) top
Ni1—O12.0445 (18)O1—C121.261 (3)
Ni1—N22.073 (2)O2—C121.233 (3)
Ni1—N12.079 (2)O3—C61.404 (3)
O1—Ni1—N286.87 (8)C12—O1—Ni1121.67 (17)
O1—Ni1—N2i93.13 (8)C1—N1—Ni1119.03 (17)
O1—Ni1—N187.04 (8)C5—N1—Ni1122.39 (19)
N2—Ni1—N184.90 (9)C7—N2—Ni1119.36 (17)
O1—Ni1—N1i92.96 (8)C11—N2—Ni1122.06 (18)
N2—Ni1—N1i95.10 (9)O2—C12—O1127.1 (3)
Symmetry code: (i) x, y, z.
Selected geometric parameters (Å, º) for (mono) top
Ni1—O42.037 (4)O1—C121.249 (7)
Ni1—O12.042 (4)O2—C121.232 (7)
Ni1—N22.069 (4)O3—C61.405 (6)
Ni1—N32.075 (4)O4—C241.269 (7)
Ni1—N12.077 (4)O5—C241.218 (7)
Ni1—N42.082 (5)O6—C181.416 (7)
O4—Ni1—O1177.53 (17)N1—Ni1—N495.73 (19)
O4—Ni1—N290.52 (17)C12—O1—Ni1121.9 (4)
O1—Ni1—N287.83 (19)C24—O4—Ni1122.0 (4)
O4—Ni1—N387.50 (18)C1—N1—Ni1118.8 (4)
O1—Ni1—N394.42 (18)C5—N1—Ni1122.3 (4)
N2—Ni1—N393.30 (18)C11—N2—Ni1122.4 (4)
O4—Ni1—N192.50 (18)C7—N2—Ni1119.1 (3)
O1—Ni1—N185.56 (17)C17—N3—Ni1121.7 (4)
N2—Ni1—N186.27 (18)C13—N3—Ni1119.2 (4)
N3—Ni1—N1179.6 (2)C19—N4—Ni1119.9 (4)
O4—Ni1—N486.37 (19)C23—N4—Ni1122.0 (4)
O1—Ni1—N495.33 (18)O2—C12—O1128.5 (6)
N2—Ni1—N4176.4 (2)O5—C24—O4126.5 (6)
N3—Ni1—N484.70 (18)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds