Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C16H26O2, (I), prepared by oxidation of (1R*,11R*)-12-hydroxy­bi­cyclo­[9.4.1]­hexa­decan-16-one using pyridinium dichromate, has a trans configuration of the two fused rings and represents an interesting precursor for the synthesis of macrocyclic structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010000528X/qb0191sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010000528X/qb0191Isup2.hkl
Contains datablock I

CCDC reference: 145653

Experimental top

Following the procedure of Fu & Cook (1992), a suspension of (1R*,11R*)-12-hydroxybicyclo[9.4.1]hexadecan-16-one (1.89 g, 7.5 mmol) and pyridiniumdichromate (5.64 g, 15.0 mmol) in dry dichloromethane (20 ml) was stirred at room temperature for 16 h. After filtration of the salts, the solution was evaporated und filtered through a short column with silica gel using n-hexane/MTBE (1:1) as eluent. The crude product (1.71 g) was recrystallized from 10 ml n-hexane to give 1.41 g (5.6 mmol, 75%) (1R*,11R*)-bicyclo[9.4.1]hexadecane-12,16-dione as colourless crystals. Analysis calculated for C16H26O2 (250.37 g mol−1): C 76.8, H 10.5%; found: C 76.8, H 10.6%. MS (EI, 70 eV): m/z (%) = 250 (M+, 39), 232 (10), 222 (36), 179 (7), 134 (6), 123 (19), 110 (30), 95 (32), 83 (29), 67 (34), 55 (100). IR (KBr): ñ (cm−1) = 2932 (s), 2893 (s), 2859 (s), 1722 (s), 1692 (s), 1444 (s), 1336 (s), 1260 (s), 1139 (s). 1H NMR (400 MHz, CDCl3): δ (p.p.m.) = 1.00–1.43 (14H), 1.67 (m, 5H), 1.97 (m, 3H), 2.39 (m, 1H), 2.48 (m, 1H), 2.82 (tt*, 3J = 11.6 Hz, 3J = 2.6 Hz, 1H), 3.13 (dd, 3J = 11.9 Hz, 3J = 3.1 Hz, 1H). 13C NMR (100 MHz, CDCl3): δ (p.p.m.) = 21.5 (CH2), 21.6 (CH2), 22.2 (CH2), 23.6 (CH2), 23.6 (CH2), 23.9 (CH2), 24.1 (CH2), 26.7 (CH2), 27.2 (CH2), 31.8 (CH2), 37.4 (CH2), 43.2 (CH2), 46.9 (CH), 69.3 (CH), 209.2 (Cq), 214.5 (Cq). M.p: 380 K.

Computing details top

Data collection: Nonius KappaCCD; cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997), PARST95 (Nardelli, 1995).

(I) top
Crystal data top
C16H26O2Z = 2
Mr = 250.37F(000) = 276
Triclinic, P1Dx = 1.137 Mg m3
a = 8.0114 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8149 (7) ÅCell parameters from 8200 reflections
c = 10.2505 (8) Åθ = 2.7–25.0°
α = 107.919 (2)°µ = 0.07 mm1
β = 106.039 (4)°T = 291 K
γ = 91.831 (4)°Parallelepiped, colourless
V = 731.00 (9) Å30.50 × 0.25 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
1284 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.0°, θmin = 2.7°
Detector resolution: 10 vertical, 18 horizontal pixels mm-1h = 88
360 frames via ω–rotation (Δω=1°) and two times 10 s per frame scansk = 1111
8200 measured reflectionsl = 1211
2389 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 0.92Calculated w = 1/[σ2(Fo2) + (0.049P)2]
where P = (Fo2 + 2Fc2)/3
2389 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C16H26O2γ = 91.831 (4)°
Mr = 250.37V = 731.00 (9) Å3
Triclinic, P1Z = 2
a = 8.0114 (4) ÅMo Kα radiation
b = 9.8149 (7) ŵ = 0.07 mm1
c = 10.2505 (8) ÅT = 291 K
α = 107.919 (2)°0.50 × 0.25 × 0.20 mm
β = 106.039 (4)°
Data collection top
Nonius KappaCCD
diffractometer
1284 reflections with I > 2σ(I)
8200 measured reflectionsRint = 0.023
2389 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 0.92Δρmax = 0.13 e Å3
2389 reflectionsΔρmin = 0.12 e Å3
163 parameters
Special details top

Experimental. The data collection covered almost the whole spere of reciprocal space. The crystal to detector distance was 2.8 cm. Crystal decay was monitored by repeating the initial frames at the end of data collection. Analysing the duplicate reflections there was no indication for any decay.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1952 (2)0.75960 (19)0.51699 (18)0.0575 (5)
H10.22610.84970.50170.069*
C20.0026 (2)0.7141 (2)0.4492 (2)0.0756 (6)
H2A0.03250.62550.46560.091*
H2B0.06250.78780.49850.091*
C30.0720 (2)0.6898 (2)0.2884 (2)0.0722 (6)
H3A0.00390.62360.23980.087*
H3B0.19210.64380.25330.087*
C40.0669 (2)0.8249 (2)0.2476 (2)0.0724 (6)
H4A0.05170.87460.28850.087*
H4B0.14180.88820.29050.087*
C50.1244 (2)0.7993 (2)0.0862 (2)0.0883 (7)
H5A0.13010.89200.07090.106*
H5B0.24140.74660.04450.106*
C60.0049 (2)0.7162 (2)0.0074 (2)0.0818 (6)
H6A0.00800.62670.02870.098*
H6B0.06070.69130.09520.098*
C70.1762 (3)0.7969 (2)0.0451 (2)0.0759 (6)
H7A0.20370.86750.14070.091*
H7B0.17380.84910.02170.091*
C80.3213 (3)0.7007 (2)0.0415 (2)0.0744 (6)
H8A0.42630.75670.04660.089*
H8B0.28690.62260.04980.089*
C90.3647 (2)0.6356 (2)0.16358 (18)0.0608 (5)
H9A0.25830.58560.16360.073*
H9B0.44520.56520.14620.073*
C100.4460 (2)0.74927 (19)0.30971 (18)0.0557 (5)
H10A0.55850.79110.31200.067*
H10B0.37180.82570.32060.067*
C110.47294 (19)0.69576 (18)0.43765 (18)0.0522 (5)
H110.53650.61170.41930.063*
C120.5847 (2)0.8075 (2)0.5766 (2)0.0607 (5)
O10.67578 (16)0.90795 (17)0.57420 (14)0.0854 (5)
C130.5790 (3)0.7919 (2)0.7161 (2)0.0853 (7)
H13A0.68980.83480.78920.102*
H13B0.56280.69020.70520.102*
C140.4303 (3)0.8649 (2)0.7644 (2)0.0863 (7)
H14A0.43530.96120.75720.104*
H14B0.45000.87530.86490.104*
C150.2466 (3)0.7855 (2)0.6793 (2)0.0813 (6)
H15A0.16270.84060.71780.098*
H15B0.23810.69290.69400.098*
C160.2998 (2)0.6455 (2)0.45123 (18)0.0512 (4)
O20.24747 (15)0.51790 (15)0.41355 (14)0.0704 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0692 (12)0.0523 (12)0.0671 (13)0.0193 (9)0.0352 (9)0.0280 (10)
C20.0684 (13)0.0682 (14)0.1131 (18)0.0172 (10)0.0537 (12)0.0376 (13)
C30.0464 (10)0.0636 (14)0.1058 (18)0.0102 (9)0.0211 (10)0.0282 (12)
C40.0581 (11)0.0659 (15)0.0960 (17)0.0205 (10)0.0234 (11)0.0291 (12)
C50.0697 (13)0.0795 (16)0.1002 (18)0.0194 (11)0.0035 (12)0.0328 (14)
C60.0806 (14)0.0792 (16)0.0629 (13)0.0119 (12)0.0064 (11)0.0167 (12)
C70.1004 (15)0.0739 (15)0.0573 (12)0.0112 (12)0.0188 (11)0.0316 (11)
C80.0917 (14)0.0757 (15)0.0601 (13)0.0138 (12)0.0318 (11)0.0202 (11)
C90.0614 (11)0.0607 (13)0.0611 (13)0.0155 (9)0.0234 (9)0.0158 (11)
C100.0489 (9)0.0558 (12)0.0641 (12)0.0075 (8)0.0195 (8)0.0199 (10)
C110.0483 (10)0.0463 (11)0.0603 (12)0.0143 (8)0.0122 (8)0.0181 (10)
C120.0515 (11)0.0499 (13)0.0712 (15)0.0151 (10)0.0096 (10)0.0138 (11)
O10.0634 (8)0.0798 (11)0.0937 (11)0.0017 (8)0.0214 (7)0.0049 (9)
C130.1036 (16)0.0723 (16)0.0636 (14)0.0215 (13)0.0038 (12)0.0243 (12)
C140.138 (2)0.0744 (16)0.0508 (13)0.0207 (15)0.0317 (13)0.0232 (12)
C150.1211 (18)0.0738 (16)0.0694 (15)0.0214 (13)0.0485 (13)0.0333 (13)
C160.0598 (10)0.0470 (12)0.0523 (11)0.0130 (9)0.0147 (8)0.0253 (10)
O20.0724 (8)0.0490 (9)0.0957 (10)0.0109 (7)0.0281 (7)0.0294 (8)
Geometric parameters (Å, º) top
C1—C161.523 (2)C8—H8A0.9700
C1—C151.535 (2)C8—H8B0.9700
C1—C21.532 (2)C9—C101.516 (2)
C1—H10.9800C9—H9A0.9700
C2—C31.525 (2)C9—H9B0.9700
C2—H2A0.9700C10—C111.522 (2)
C2—H2B0.9700C10—H10A0.9700
C3—C41.510 (2)C10—H10B0.9700
C3—H3A0.9700C11—C161.514 (2)
C3—H3B0.9700C11—C121.518 (2)
C4—C51.526 (3)C11—H110.9800
C4—H4A0.9700C12—O11.218 (2)
C4—H4B0.9700C12—C131.497 (3)
C5—C61.518 (3)C13—C141.530 (3)
C5—H5A0.9700C13—H13A0.9700
C5—H5B0.9700C13—H13B0.9700
C6—C71.520 (3)C14—C151.528 (3)
C6—H6A0.9700C14—H14A0.9700
C6—H6B0.9700C14—H14B0.9700
C7—C81.523 (2)C15—H15A0.9700
C7—H7A0.9700C15—H15B0.9700
C7—H7B0.9700C16—O21.2136 (19)
C8—C91.537 (2)
C16—C1—C15108.33 (13)C7—C8—H8B108.7
C16—C1—C2111.89 (15)C9—C8—H8B108.7
C15—C1—C2110.25 (14)H8A—C8—H8B107.6
C16—C1—H1108.8C10—C9—C8112.33 (15)
C15—C1—H1108.8C10—C9—H9A109.1
C2—C1—H1108.8C8—C9—H9A109.1
C3—C2—C1115.53 (14)C10—C9—H9B109.1
C3—C2—H2A108.4C8—C9—H9B109.1
C1—C2—H2A108.4H9A—C9—H9B107.9
C3—C2—H2B108.4C11—C10—C9115.38 (14)
C1—C2—H2B108.4C11—C10—H10A108.4
H2A—C2—H2B107.5C9—C10—H10A108.4
C4—C3—C2114.94 (16)C11—C10—H10B108.4
C4—C3—H3A108.5C9—C10—H10B108.4
C2—C3—H3A108.5H10A—C10—H10B107.5
C4—C3—H3B108.5C16—C11—C12111.48 (14)
C2—C3—H3B108.5C16—C11—C10111.32 (12)
H3A—C3—H3B107.5C12—C11—C10112.14 (15)
C3—C4—C5114.84 (17)C16—C11—H11107.2
C3—C4—H4A108.6C12—C11—H11107.2
C5—C4—H4A108.6C10—C11—H11107.2
C3—C4—H4B108.6O1—C12—C13120.95 (19)
C5—C4—H4B108.6O1—C12—C11120.59 (18)
H4A—C4—H4B107.5C13—C12—C11118.46 (18)
C4—C5—C6114.29 (14)C12—C13—C14111.32 (14)
C4—C5—H5A108.7C12—C13—H13A109.4
C6—C5—H5A108.7C14—C13—H13A109.4
C4—C5—H5B108.7C12—C13—H13B109.4
C6—C5—H5B108.7C14—C13—H13B109.4
H5A—C5—H5B107.6H13A—C13—H13B108.0
C7—C6—C5114.55 (18)C13—C14—C15115.11 (17)
C7—C6—H6A108.6C13—C14—H14A108.5
C5—C6—H6A108.6C15—C14—H14A108.5
C7—C6—H6B108.6C13—C14—H14B108.5
C5—C6—H6B108.6C15—C14—H14B108.5
H6A—C6—H6B107.6H14A—C14—H14B107.5
C6—C7—C8114.25 (17)C14—C15—C1115.01 (15)
C6—C7—H7A108.7C14—C15—H15A108.5
C8—C7—H7A108.7C1—C15—H15A108.5
C6—C7—H7B108.7C14—C15—H15B108.5
C8—C7—H7B108.7C1—C15—H15B108.5
H7A—C7—H7B107.6H15A—C15—H15B107.5
C7—C8—C9114.03 (14)O2—C16—C11121.02 (15)
C7—C8—H8A108.7O2—C16—C1120.88 (15)
C9—C8—H8A108.7C11—C16—C1118.08 (16)
C16—C1—C2—C361.4 (2)C10—C11—C12—C13161.64 (13)
C15—C1—C2—C3178.01 (15)O1—C12—C13—C1492.3 (2)
C1—C2—C3—C469.34 (19)C11—C12—C13—C1487.2 (2)
C2—C3—C4—C5175.92 (14)C12—C13—C14—C1573.4 (2)
C3—C4—C5—C665.2 (2)C13—C14—C15—C158.0 (2)
C4—C5—C6—C767.5 (2)C16—C1—C15—C1471.1 (2)
C5—C6—C7—C8146.78 (16)C2—C1—C15—C14166.14 (16)
C6—C7—C8—C970.3 (2)C12—C11—C16—O2130.88 (17)
C7—C8—C9—C1067.1 (2)C10—C11—C16—O2103.08 (18)
C8—C9—C10—C11173.13 (12)C12—C11—C16—C147.65 (19)
C9—C10—C11—C1665.09 (17)C10—C11—C16—C178.39 (17)
C9—C10—C11—C12169.24 (13)C15—C1—C16—O286.43 (19)
C16—C11—C12—O1143.44 (16)C2—C1—C16—O235.3 (2)
C10—C11—C12—O117.9 (2)C15—C1—C16—C1192.10 (17)
C16—C11—C12—C1336.1 (2)C2—C1—C16—C11146.16 (14)

Experimental details

Crystal data
Chemical formulaC16H26O2
Mr250.37
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.0114 (4), 9.8149 (7), 10.2505 (8)
α, β, γ (°)107.919 (2), 106.039 (4), 91.831 (4)
V3)731.00 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.25 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8200, 2389, 1284
Rint0.023
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 0.92
No. of reflections2389
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.12

Computer programs: Nonius KappaCCD, DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PARST95 (Nardelli, 1995).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds