Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, hexakis(1,2-di­hydro-1,5-di­methyl-2-phenyl-3H-pyrazol-3-one-O)­terbium(III) triperchlorate, [Tb(C11H12N2O)6](ClO4)3, the Tb atom lies on a site of \overline 3 crystallographic symmetry and the unique Tb-O distance is 2.278 (2) Å. One of the perchlorate anions has threefold crystallographic symmetry, while the other is disordered about a \overline 3 site.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100002298/qb0180sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100002298/qb0180Isup2.hkl
Contains datablock I

CCDC reference: 143323

Comment top

As a bulky monodentate ligand with hard O atom as donor, antipyrine has long been known to form complexes with transition and alkaline-earth metals, as well as rare-earth metals. Its lanthanide complexes have drawn much attention primarily due to the interest in exploring their luminescent properties. The lanthanide nitrates or iodides react steadily with antipyrine to offer complexes involving three or six antipyrines (Baker & Jeffery, 1974), in which a brilliantly triboluminescent characteristic was found (Rheingold & King, 1989). Our interests in finding highly luminescent terbium(III) or europium(III) complexes led us to synthesize a series of lanthanide complexes incorporating aromatic heterocyclic ligands (Su et al., 1997, 1998, 1999). This paper reports the structure of a terbium(III) antipyrine complexe with perchlorate as counter-anion, (I), which servers as a complement for comparison with the nitrate and iodide complexes.

The X-ray structure estabilshes that (I) consists of a discrete monomeric [Tb(C11H12N2O)6]3+ cation and three perchlorate anions. The central terbium(III) ion is in an octahedral geometry, bonding to O atoms of six antipyrine ligands. The molecule possesses -3 symmetry, with the Tb atom residues at inversion centers. So the six antipyrines are S6 related with only one unique, and the six Tb—O bonds are identical with a distance of 2.278 (2) Å. The O—Tb—O angles of 88.96 (8), 91.04 (8) and 180° closely resemble the theoretical values, indicating that the coordination polyhedral of the terbium(III) ion is normal as predicted by ligand-field theories. The benzene ring and pyrazole ring are both planar with mean-plane equations 12.491X - 0.860Y + 1.516Z = -3.4899 and 1.745X + 11.099 + 2.329Z = 0.0795, and mean deviations of 0.0036 and 0.0133 Å, respectively.

One of the perchlorate anions possesses a threefold axis passing through one Cl—O bond, while another lies on a symmetry center with the O atoms S6 disordered, each set of ClO4- anion possessing half occupancy.

Experimental top

The title compound was obtained from the reaction of hydrated Tb(ClO4)3 with antipyrine in a 1:3 molar ratio in MeOH–MeCN mixed medium (v/v 1:1). Vapour diffusion of diethyl ether into the dilute reaction mixture gave colorless crystals suitable for single-crystal X-ray structure determination.

Refinement top

Difference maps indicated that the methyl H atoms at C4 and C5 were possibly disordered and these H atoms were allowed for at C4 and C5 by placing six 0.5 occupancy, equally spaced riding H atoms at these sites.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; software used to prepare material for publication: SHELXTL.

Hexakis(antipyrine-O)terbium(III) triperchlorate top
Crystal data top
C66H72N12O6Tb·3(ClO4)Dx = 1.444 Mg m3
Mr = 1586.63Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 980 reflections
a = 13.9691 (10) Åθ = 2.6–16.8°
c = 32.390 (3) ŵ = 1.15 mm1
V = 5473.6 (8) Å3T = 293 K
Z = 3Block, colorless
F(000) = 24360.21 × 0.15 × 0.06 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2800 independent reflections
Radiation source: fine-focus sealed tube2688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
Multi-scan (Blessing, 1995)
h = 918
Tmin = 0.793, Tmax = 0.933k = 1818
12276 measured reflectionsl = 4239
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0697P)2]
where P = (Fo2 + 2Fc2)/3
2800 reflections(Δ/σ)max = 0.017
160 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C66H72N12O6Tb·3(ClO4)Z = 3
Mr = 1586.63Mo Kα radiation
Trigonal, R3µ = 1.15 mm1
a = 13.9691 (10) ÅT = 293 K
c = 32.390 (3) Å0.21 × 0.15 × 0.06 mm
V = 5473.6 (8) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2800 independent reflections
Absorption correction: multi-scan
Multi-scan (Blessing, 1995)
2688 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.933Rint = 0.054
12276 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.04Δρmax = 0.80 e Å3
2800 reflectionsΔρmin = 0.50 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tb10.00000.00000.00000.03472 (15)
O10.11759 (18)0.02504 (19)0.04133 (7)0.0434 (5)
N10.2737 (2)0.0377 (2)0.05057 (9)0.0451 (6)
N20.3318 (3)0.0436 (3)0.08415 (11)0.0645 (9)
C10.1882 (3)0.0242 (3)0.06515 (10)0.0394 (7)
C20.1998 (3)0.0159 (3)0.10838 (11)0.0581 (9)
H20.15510.00500.12680.070*
C30.2884 (4)0.0268 (4)0.11809 (13)0.0698 (12)
C40.3377 (6)0.0192 (6)0.16031 (17)0.122 (3)
H4A0.39000.04460.15880.182*0.50
H4B0.28000.06440.17940.182*0.50
H4C0.37440.05620.16950.182*0.50
H4D0.30620.00940.17970.182*0.50
H4E0.41630.02920.15910.182*0.50
H4F0.32190.09140.16900.182*0.50
C50.4457 (4)0.0215 (5)0.07828 (19)0.0903 (17)
H5A0.46280.01410.04930.136*0.50
H5B0.45230.08160.08940.136*0.50
H5C0.49630.04580.09220.136*0.50
H5D0.47810.01920.10470.136*0.50
H5E0.48860.04830.06460.136*0.50
H5F0.44470.07910.06180.136*0.50
C60.2749 (2)0.0830 (3)0.01147 (11)0.0433 (7)
C70.2754 (3)0.0264 (3)0.02312 (11)0.0507 (8)
H70.28160.04290.02070.061*
C80.2666 (4)0.0724 (5)0.06146 (15)0.0815 (15)
H80.26540.03400.08470.098*
C90.2599 (4)0.1685 (7)0.0661 (2)0.104 (2)
H90.25490.19710.09250.124*
C100.2602 (4)0.2273 (5)0.0322 (3)0.103 (2)
H100.25560.29560.03570.123*
C110.2673 (3)0.1857 (4)0.00741 (19)0.0725 (13)
H110.26700.22540.03050.087*
Cl10.66670.33330.11996 (6)0.0738 (5)
O120.66670.33330.0778 (3)0.131 (3)
O110.5646 (6)0.2555 (7)0.1302 (3)0.241 (4)
Cl20.33330.33330.16670.0779 (8)
O220.33330.33330.1264 (6)0.152 (8)0.50
O210.2661 (15)0.4378 (11)0.1819 (4)0.187 (5)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.03412 (16)0.03412 (16)0.0359 (2)0.01706 (8)0.0000.000
O10.0415 (12)0.0572 (14)0.0413 (12)0.0321 (11)0.0085 (9)0.0031 (10)
N10.0380 (14)0.0593 (17)0.0432 (15)0.0282 (13)0.0071 (11)0.0071 (13)
N20.0486 (18)0.089 (2)0.061 (2)0.0379 (18)0.0179 (15)0.0116 (18)
C10.0376 (15)0.0398 (16)0.0395 (16)0.0185 (13)0.0007 (13)0.0017 (13)
C20.061 (2)0.070 (2)0.0397 (18)0.030 (2)0.0048 (16)0.0015 (17)
C30.070 (3)0.086 (3)0.043 (2)0.032 (2)0.0175 (19)0.007 (2)
C40.143 (6)0.165 (7)0.061 (3)0.081 (5)0.049 (4)0.001 (4)
C50.049 (2)0.120 (4)0.109 (4)0.048 (3)0.015 (2)0.023 (3)
C60.0281 (14)0.0443 (17)0.060 (2)0.0199 (13)0.0019 (13)0.0021 (15)
C70.0483 (19)0.059 (2)0.0468 (19)0.0284 (17)0.0064 (15)0.0051 (16)
C80.065 (3)0.122 (5)0.053 (3)0.044 (3)0.012 (2)0.007 (3)
C90.059 (3)0.131 (6)0.120 (5)0.048 (4)0.001 (3)0.061 (4)
C100.060 (3)0.069 (3)0.191 (7)0.042 (3)0.001 (4)0.052 (4)
C110.051 (2)0.056 (2)0.123 (4)0.036 (2)0.008 (2)0.008 (2)
Cl10.0876 (8)0.0876 (8)0.0462 (9)0.0438 (4)0.0000.000
O120.152 (5)0.152 (5)0.088 (5)0.076 (3)0.0000.000
O110.179 (7)0.227 (9)0.250 (8)0.050 (6)0.121 (6)0.064 (7)
Cl20.0907 (13)0.0907 (13)0.0521 (15)0.0454 (6)0.0000.000
O220.191 (13)0.191 (13)0.073 (11)0.096 (7)0.0000.000
O210.202 (15)0.155 (11)0.177 (15)0.070 (10)0.057 (12)0.064 (10)
Geometric parameters (Å, º) top
Tb1—O1i2.278 (2)C6—C111.391 (5)
Tb1—O1ii2.278 (2)C7—C81.375 (6)
Tb1—O1iii2.278 (2)C7—H70.9300
Tb1—O12.278 (2)C8—C91.307 (9)
Tb1—O1iv2.278 (2)C8—H80.9300
Tb1—O1v2.278 (2)C9—C101.373 (9)
O1—C11.248 (4)C9—H90.9300
N1—C11.382 (4)C10—C111.392 (9)
N1—N21.384 (4)C10—H100.9300
N1—C61.420 (5)C11—H110.9300
N2—C31.332 (6)Cl1—O11vi1.333 (6)
N2—C51.474 (5)Cl1—O111.333 (6)
C1—C21.408 (5)Cl1—O11vii1.333 (6)
C2—C31.357 (6)Cl1—O121.365 (8)
C2—H20.9300Cl2—O221.303 (18)
C3—C41.511 (6)Cl2—O22viii1.303 (18)
C4—H4A0.9600Cl2—O21ix1.373 (11)
C4—H4B0.9600Cl2—O21x1.373 (11)
C4—H4C0.9600Cl2—O21viii1.373 (11)
C4—H4D0.9600Cl2—O211.373 (11)
C4—H4E0.9600Cl2—O21xi1.373 (11)
C4—H4F0.9600Cl2—O21xii1.373 (11)
C5—H5A0.9600O22—O21ix1.516 (16)
C5—H5B0.9600O22—O21viii1.516 (17)
C5—H5C0.9600O22—O21xii1.516 (16)
C5—H5D0.9600O21—O22viii1.516 (16)
C5—H5E0.9600O21—O21ix1.618 (17)
C5—H5F0.9600O21—O21xii1.618 (17)
C6—C71.370 (5)
O1i—Tb1—O1ii180H5B—C5—H5F56.3
O1i—Tb1—O1iii88.96 (8)H5C—C5—H5F141.1
O1ii—Tb1—O1iii91.04 (8)H5D—C5—H5F109.5
O1i—Tb1—O191.04 (8)H5E—C5—H5F109.5
O1ii—Tb1—O188.96 (8)C7—C6—C11119.6 (4)
O1iii—Tb1—O191.04 (8)C7—C6—N1118.0 (3)
O1i—Tb1—O1iv91.04 (8)C11—C6—N1122.1 (4)
O1ii—Tb1—O1iv88.96 (8)C6—C7—C8119.7 (4)
O1iii—Tb1—O1iv180C6—C7—H7120.2
O1—Tb1—O1iv88.96 (8)C8—C7—H7120.2
O1i—Tb1—O1v88.96 (8)C9—C8—C7121.9 (6)
O1ii—Tb1—O1v91.04 (8)C9—C8—H8119.1
O1iii—Tb1—O1v88.96 (8)C7—C8—H8119.1
O1—Tb1—O1v180C8—C9—C10120.2 (6)
O1iv—Tb1—O1v91.04 (8)C8—C9—H9119.9
C1—O1—Tb1171.7 (2)C10—C9—H9119.9
C1—N1—N2108.2 (3)C9—C10—C11120.5 (5)
C1—N1—C6124.7 (3)C9—C10—H10119.7
N2—N1—C6122.5 (3)C11—C10—H10119.7
C3—N2—N1107.8 (3)C6—C11—C10118.1 (5)
C3—N2—C5127.5 (4)C6—C11—H11121.0
N1—N2—C5119.3 (4)C10—C11—H11121.0
O1—C1—N1121.4 (3)O11vi—Cl1—O11114.0 (3)
O1—C1—C2132.3 (3)O11vi—Cl1—O11vii114.0 (3)
N1—C1—C2106.2 (3)O11—Cl1—O11vii114.0 (3)
C3—C2—C1107.2 (4)O11vi—Cl1—O12104.5 (4)
C3—C2—H2126.4O11—Cl1—O12104.5 (4)
C1—C2—H2126.4O11vii—Cl1—O12104.5 (4)
N2—C3—C2110.5 (3)O22—Cl2—O22viii180
N2—C3—C4121.9 (5)O22—Cl2—O21ix68.9 (6)
C2—C3—C4127.7 (5)O22viii—Cl2—O21ix111.1 (6)
C3—C4—H4A109.5O22—Cl2—O21x111.1 (6)
C3—C4—H4B109.5O22viii—Cl2—O21x68.9 (6)
H4A—C4—H4B109.5O21ix—Cl2—O21x179.998 (4)
C3—C4—H4C109.5O22—Cl2—O21viii68.9 (6)
H4A—C4—H4C109.5O22viii—Cl2—O21viii111.1 (6)
H4B—C4—H4C109.5O21ix—Cl2—O21viii107.8 (7)
C3—C4—H4D109.5O21x—Cl2—O21viii72.2 (7)
H4A—C4—H4D141.1O22—Cl2—O21111.1 (6)
H4B—C4—H4D56.3O22viii—Cl2—O2168.9 (6)
H4C—C4—H4D56.3O21ix—Cl2—O2172.2 (7)
C3—C4—H4E109.5O21x—Cl2—O21107.8 (7)
H4A—C4—H4E56.3O21viii—Cl2—O21180
H4B—C4—H4E141.1O22—Cl2—O21xi111.1 (6)
H4C—C4—H4E56.3O22viii—Cl2—O21xi68.9 (6)
H4D—C4—H4E109.5O21ix—Cl2—O21xi72.2 (7)
C3—C4—H4F109.5O21x—Cl2—O21xi107.8 (7)
H4A—C4—H4F56.3O21viii—Cl2—O21xi72.2 (7)
H4B—C4—H4F56.3O21—Cl2—O21xi107.8 (7)
H4C—C4—H4F141.1O22—Cl2—O21xii68.9 (6)
H4D—C4—H4F109.5O22viii—Cl2—O21xii111.1 (6)
H4E—C4—H4F109.5O21ix—Cl2—O21xii107.8 (7)
N2—C5—H5A109.5O21x—Cl2—O21xii72.2 (7)
N2—C5—H5B109.5O21viii—Cl2—O21xii107.8 (7)
H5A—C5—H5B109.5O21—Cl2—O21xii72.2 (7)
N2—C5—H5C109.5O21xi—Cl2—O21xii180
H5A—C5—H5C109.5Cl2—O22—O21ix57.7 (8)
H5B—C5—H5C109.5Cl2—O22—O21viii57.7 (8)
N2—C5—H5D109.5O21ix—O22—O21viii94.1 (10)
H5A—C5—H5D141.1Cl2—O22—O21xii57.7 (8)
H5B—C5—H5D56.3O21ix—O22—O21xii94.1 (10)
H5C—C5—H5D56.3O21viii—O22—O21xii94.1 (10)
N2—C5—H5E109.5Cl2—O21—O22viii53.4 (8)
H5A—C5—H5E56.3Cl2—O21—O21ix53.9 (3)
H5B—C5—H5E141.1O22viii—O21—O21ix89.5 (7)
H5C—C5—H5E56.3Cl2—O21—O21xii53.9 (3)
H5D—C5—H5E109.5O22viii—O21—O21xii89.5 (7)
N2—C5—H5F109.5O21ix—O21—O21xii86.6 (13)
H5A—C5—H5F56.3
Symmetry codes: (i) xy, x, z; (ii) x+y, x, z; (iii) y, x+y, z; (iv) y, xy, z; (v) x, y, z; (vi) y+1, xy, z; (vii) x+y+1, x+1, z; (viii) x2/3, y+2/3, z1/3; (ix) xy+1/3, x+2/3, z1/3; (x) x+y1, x, z; (xi) y, xy+1, z; (xii) y2/3, x+y1/3, z1/3.

Experimental details

Crystal data
Chemical formulaC66H72N12O6Tb·3(ClO4)
Mr1586.63
Crystal system, space groupTrigonal, R3
Temperature (K)293
a, c (Å)13.9691 (10), 32.390 (3)
V3)5473.6 (8)
Z3
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.21 × 0.15 × 0.06
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
Multi-scan (Blessing, 1995)
Tmin, Tmax0.793, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
12276, 2800, 2688
Rint0.054
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.110, 1.04
No. of reflections2800
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.50

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Bruker, 1998), SHELXTL.

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds