Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the title compound, Zr(OH)2CrO4, has been reinvestigated [Mark (1972). Acta Chem. Scand. 26, 3744-3756]. It is composed of ordered layers whose stacking in the c direction is disordered. The symmetry of the superposition structure is tetragonal, space group I41/amd with a = 6.8709 (1) and c = 29.0432 (2) Å. The true 0D structure has ordered layers of the dimensions aL = bL = 2a and c0 = c/4, where c0 is the spacing between adjacent layers. The Zr atoms are joined by double hydroxide bridges and the structure consists of infinite nets with the composition [Zr3(OH)6CrO4]n4n+, joined together in c direction by chromate groups. The zirconium polyhedra are not influenced by the 0D phenomenon.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100000421/qb0152sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100000421/qb0152Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270100000421/qb0152sup3.pdf
Supplementary Fig. 1

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270100000421/qb0152sup4.pdf
Supplementary Fig. 2

Comment top

%T Investigations of the xZrO$_{2}$,yCrO$_{3}$,zH$_{2}$O system were carried out by Lundgren (1958) and Mark (1972, 1973). They showed that three different phases can be obtained by hydro\-thermal hydro\-lysis and indicated that two phases have similar structures, while the third structure, Zr(OH)$_{2}$CrO$_{4}$, is essentially different. In the title compound, the zirconium is more highly polymerized than in the other phases. This phase is obtained at lower chromium trioxide concentration and higher temperature than the others. The Zr(OH)$_{2}$CrO$_{4}$ crystallizes as small red square plates with a tetragonal shape.

The structure of zirconium di\-hydroxide chromate has been redetermined. In accordance with the earlier investigation (Mark, 1972) of this compound, this structure is an OD structure (Dornberger-Shiff, 1956, 1982) consisting of ordered layers whose stacking in {ιt c} direction is disordered. The space group of the superposition structure is tetragonal I4$_{1}$/amd with a = 6.8709κern2pt(1)κern2ptσmash{AA{}} and {ιt c} = 29.0432κern2pt(2)κern2ptσmash{AA{}} and Z = 12. There are four equivalent layers L$_{0}$, L$_{1}$, L$_{2}$ and L$_{4}$ in the true structure. The space group of the superposition structure implies consecutive layers L to be linked by the operation:

$$λeft (µatrix {x_{Ln+1}χr y_{Ln+1}χr z_{Ln+1}χr} ρight) = λeft (µatrix {0 & 1 & 0 χr −1 & 0 & 0 χr 0 & 0 & 1 χr} ρight) λeft (µatrix {x_{Ln} χr y_{Ln} χr z_{Ln} χr} ρight) + λeft (µatrix {σcriptstyle{3 οver 4} χr σcriptstyle{−1 οver 4} χr σcriptstyle{1 οver 4} χr} ρight) $$

The superposition structure, $ρho$$_{S}$(x,{ιt y},{ιt z}) is related to the true structure, $ρho$(x,{ιt y},{ιt z}) by the relation: $ρho$$_{S}$(x,{ιt y},{ιt z}) = 1/4[$ρho$(x,{ιt y},{ιt z}) + $ρho$(x + 1/2,{ιt y},{ιt z}) + $ρho$(x,{ιt y} + 1/2,{ιt z}) + $ρho$(x + 1/2,{ιt y} + 1/2,{ιt z})] (Mark, 1972)

There are two structurally non-equivalent Zr atoms in the structure; one with eightfold coordination forming a dodecahedron, ZrO$_{8}$, and one with sevenfold coordination forming a pentagonal bipyramid, ZrO$_{7}$. There also are two structurally non-equivalent chromate groups. The zirconium polyhedra are well described by the space group symmetry of the superposition structure. The disorder in the structure is, in accordance with the earlier structure determination (Mark, 1972), due to the chromate groups. One particular chromate tetrahedron (Cr1) may be situated either above or below the edge sharing ZrO$_{8}$ dodecadron, thus affecting the available positions for the (Cr2) chromate tetrahedron. The only atoms affected by the disorder are the Cr1, O6, Cr2, O5 and the O2 bonded H atoms. The OD-grupoids associated to the disordered atoms was formulated by Mark (1972) as follows:

Starting from layer L$_{0}$ or L$_{2}$: $$ κern-15ptP κern2ptm κern2ptm κern6pt(n)_{1,1/2} κern10pt1 κern22pt1$$ $$λeft \ {κern6pt1 κern6pt1 κern8ptπmatrix {οverline{4} χr 4_{4}} {2_{1/2} οver n_{1/4, 2}} {2 οver n_{1/4, 2}} ρight \} $$

Starting from layer L$_{1}$ or L$_{3}$: $$ κern-15ptP κern2ptm κern2ptm κern6pt(n)_{1/2,1} κern10pt1 κern22pt1$$ $$λeft \ {κern6pt1 κern6pt1 κern8ptπmatrix {οverline{4} χr 4_{4}} {2 οver n_{1/4, 2}} {2_{1/2} οver n_{1/4, 2}} ρight \} $$

The main structural feature in zirconium and related hydro\-xide salts (Lundgren, 1958; Mark, 1972, 1973; Hansson, 1973{ιt b}; El Brahimi {ιt et al.}. 1988), is the forming of infinite parallel chains with the formula [Zr(OH)$_{2}$]$_{{ιt n}}$${2{ιt n}+}$, all running in the same direction. The coordination numbers of the metal atoms seem to be of importance for the type of chains adopted by the compounds. In structures containing parallel linear chains (Hansson 1969; Hansson \& Lundgren 1968; Hansson \& Mark, 1973; Mark, 1973) the metal atoms are 7-coordinated to O atoms, while in the structures containing parallel zigzag chains (Lundgren, 1950; Hansson, 1973{ιt a},{ιt b}; El Brahimi, 1988), with the metal atoms situated at alternate sides of the rows of hydro\-xide ions, the metal atoms are 8-coordinated.

In every layer of the title compound, the Zr atoms form parallel linear and intersecting chains. There are two kinds of layers, containing chains of zirconium polyhedra either along the {ιt a} axis or along the {ιt b} axis. The layers alternate, creating nets with the composition [Zr$_{3}$(OH)$_{6}$CrO$_{4}$]$_{{ιt n}}$${4{ιt n}+}$, joined together in {ιt c} direction by chromate groups. The most important interatomic distances and angles in the structure are given in Table 1. One third of the Zr atoms (Zr1, Wyckoff position 4a) exhibit eight fold oxy\-gen coordination while the remaining two thirds (Zr2, Wyckoff position 8 e) are coordinated to seven O atoms. Each Zr1 atom is joined by double hydro\-xide bridges to four Zr2 atoms. Each ZrO$_{7}$ pentagonal bipyramid shares two edges with ZrO$_{8}$ dodecahedra. One third of the Cr atoms (Cr1, Wyckoff position 8 e, site occupancy 1/8) are included in the infinite nets while the others (Cr2, Wyckoff position 16 h, site occupancy 1/4) are net-connecting. The net-included chromate group shares one of its tetrahedral edges with an edge of a ZrO$_{8}$ dodecahedron, in this case the two bridging hydro\-xide ions have been displaced by two chromate O atoms (Fig. 2). The net-connecting chromate group shares three vertices with three different ZrO$_{7}$ polyhedra, two belonging to the same net and one belonging to a net above or below. The extent of distortion of the cromate groups from ideal tetrahedral symmetry is in accordance with the one expected from calculation by the bond valence sum method (Brown \& Kung, 1976; Brown \& Altermatt, 1985). The positions of the H atoms were not located.

Experimental top

Zirconium compounds of the system xZrO2,yCrO3,zH2O was prepared by hydrothermal hydrolysis, according to a method originally described by Briggs (1929). The synthesis has been performed in two steps. First an amorphous product has been prepared (Lundgren, 1958), which then was converted to crystals by hydrothermal hydrolysis as described ealier by Mark (1972).

Refinement top

The well diffracting crystal produced a regular pattern of sharp and intense reflections. A visual exploration of the frames was performed and several frames showed continuous streaks between rows of sharp reflections. The continuous lines were parallel to the c* direction and situated midway between neighbouring reflections in both a* and b* directions. This indicated, in accordance with the earlier structure determination (Mark, 1972) that the true structure is periodic in the a and b directions but lacks periodicity in the c direction.

The determination of the structure is more precise than the original one (Mark, 1972) making the stucture features well defined, s.u.'s beeing smaller by a factor of about 5.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995) and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL (Bruker, 1997); molecular graphics: SHELXTL (Bruker, 1997).

Zirconium dihydroxide chromate top
Crystal data top
Zr(OH)2CrO4Dx = 3.506 Mg m3
Mr = 241.23Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/amd[originatcentre(2/m)]Cell parameters from 5231 reflections
a = 6.8709 (1) Åθ = 2–33°
c = 29.0432 (2) ŵ = 4.59 mm1
V = 1371.11 (3) Å3T = 293 K
Z = 12Square plate, red
F(000) = 13310.10 × 0.10 × 0.04 mm
Data collection top
Siemens SMART CCD
diffractometer
731 independent reflections
Radiation source: fine-focus sealed tube638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 33.0°, θmin = 2.8°
Absorption correction: multi-scan
(Sheldrick, 1996)
h = 710
Tmin = 0.657, Tmax = 0.838k = 109
4914 measured reflectionsl = 4335
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0379P)2 + 5.9927P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.80 e Å3
731 reflectionsΔρmin = 1.02 e Å3
52 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00063 (15)
Crystal data top
Zr(OH)2CrO4Z = 12
Mr = 241.23Mo Kα radiation
Tetragonal, I41/amd[originatcentre(2/m)]µ = 4.59 mm1
a = 6.8709 (1) ÅT = 293 K
c = 29.0432 (2) Å0.10 × 0.10 × 0.04 mm
V = 1371.11 (3) Å3
Data collection top
Siemens SMART CCD
diffractometer
731 independent reflections
Absorption correction: multi-scan
(Sheldrick, 1996)
638 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.838Rint = 0.035
4914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02552 parameters
wR(F2) = 0.0700 restraints
S = 1.04Δρmax = 0.80 e Å3
731 reflectionsΔρmin = 1.02 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zr10.00000.75000.1250000.01240 (15)
Zr20.50000.75000.082939 (14)0.00889 (13)
Cr10.00000.75000.02349 (5)0.0129 (3)0.50
Cr20.43089 (15)0.25000.04577 (3)0.00839 (18)0.50
O10.50000.4492 (4)0.07498 (8)0.0182 (5)
O20.1937 (3)0.75000.06262 (8)0.0152 (4)
O30.50000.75000.00595 (13)0.0296 (10)
O40.6933 (3)0.75000.14003 (8)0.0149 (4)
O50.2010 (8)0.25000.03892 (18)0.0217 (10)0.50
O60.00000.5637 (9)0.0086 (2)0.0308 (13)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.00641 (18)0.00641 (18)0.0244 (3)0.0000.0000.000
Zr20.00658 (19)0.0074 (2)0.0127 (2)0.0000.0000.000
Cr10.0121 (6)0.0144 (7)0.0121 (6)0.0000.0000.000
Cr20.0100 (4)0.0065 (4)0.0086 (4)0.0000.0013 (3)0.000
O10.0280 (13)0.0084 (10)0.0182 (10)0.0000.0000.0019 (8)
O20.0103 (10)0.0222 (12)0.0131 (9)0.0000.0003 (8)0.000
O30.056 (3)0.024 (2)0.0092 (14)0.0000.0000.000
O40.0076 (10)0.0244 (12)0.0128 (9)0.0000.0003 (8)0.000
O50.013 (2)0.032 (3)0.020 (2)0.0000.0005 (18)0.000
O60.042 (3)0.026 (3)0.024 (3)0.0000.0000.012 (2)
Geometric parameters (Å, º) top
Zr1—O4i2.152 (2)O2—O6v2.774 (5)
Zr1—O4ii2.152 (2)O2—O62.774 (5)
Zr1—O4iii2.152 (2)O2—O4ii2.847 (2)
Zr1—O4iv2.152 (2)O2—O4i2.847 (2)
Zr1—O2v2.248 (2)O3—Cr2ix1.575 (4)
Zr1—O22.248 (2)O3—Cr2xi1.575 (4)
Zr1—O2vi2.248 (2)O3—O5ix2.433 (6)
Zr1—O2vii2.248 (2)O3—O5xi2.433 (6)
Zr2—O12.080 (2)O3—O2iii2.672 (3)
Zr2—O1iii2.080 (2)O3—O1xi2.720 (4)
Zr2—O42.124 (2)O3—O1ix2.720 (4)
Zr2—O4iii2.124 (2)O3—O1iii2.880 (4)
Zr2—O2iii2.186 (2)O4—Zr1xii2.152 (2)
Zr2—O22.186 (2)O4—O2iii2.378 (3)
Zr2—O32.236 (4)O4—O4iii2.656 (5)
Cr1—O6v1.584 (6)O4—O5vi2.816 (5)
Cr1—O61.584 (6)O4—O5xiii2.816 (5)
Cr1—O21.750 (2)O4—O2xiv2.847 (2)
Cr1—O2v1.750 (2)O4—O2xiii2.847 (2)
Cr1—O6viii2.198 (6)O5—O6xv2.078 (7)
Cr1—O6ix2.198 (6)O5—O6viii2.078 (7)
Cr1—O5viii2.279 (5)O5—Cr1viii2.279 (5)
Cr1—O5ix2.279 (5)O5—O3xi2.433 (6)
Cr2—Cr2x0.950 (2)O5—O1x2.681 (5)
Cr2—O3xi1.575 (4)O5—O5xvi2.762 (10)
Cr2—O51.592 (5)O5—O4i2.816 (5)
Cr2—O11.679 (2)O5—O4vii2.816 (5)
Cr2—O1x1.679 (2)O5—O62.909 (6)
O1—Cr2x1.679 (2)O5—O6xvi2.909 (6)
O1—O5x2.681 (5)O6—O6viii1.009 (12)
O1—O52.681 (5)O6—O5ix2.078 (7)
O1—O3xi2.720 (4)O6—O5viii2.078 (7)
O1—O1x2.737 (5)O6—Cr1viii2.198 (6)
O1—O32.880 (4)O6—O6v2.560 (12)
O2—O4iii2.379 (3)O6—O2v2.774 (5)
O2—O2v2.662 (5)O6—O5xvi2.909 (6)
O2—O32.672 (3)
O4i—Zr1—O4ii156.60 (12)Zr2—O3—O2iii51.97 (8)
O4i—Zr1—O4iii92.36 (2)O5ix—O3—O2iii174.35 (19)
O4ii—Zr1—O4iii92.36 (2)O5xi—O3—O2iii70.42 (13)
O4i—Zr1—O4iv92.36 (2)O2—O3—O2iii103.93 (16)
O4ii—Zr1—O4iv92.36 (2)Cr2ix—O3—O1xi34.51 (7)
O4iii—Zr1—O4iv156.59 (12)Cr2xi—O3—O1xi34.51 (7)
O4i—Zr1—O2v80.59 (5)Zr2—O3—O1xi149.79 (7)
O4ii—Zr1—O2v80.59 (5)O5ix—O3—O1xi62.43 (13)
O4iii—Zr1—O2v138.01 (8)O5xi—O3—O1xi62.43 (13)
O4iv—Zr1—O2v65.40 (9)O2—O3—O1xi122.17 (5)
O4i—Zr1—O280.59 (5)O2iii—O3—O1xi122.17 (5)
O4ii—Zr1—O280.59 (5)Cr2ix—O3—O1ix34.51 (7)
O4iii—Zr1—O265.40 (9)Cr2xi—O3—O1ix34.51 (7)
O4iv—Zr1—O2138.01 (8)Zr2—O3—O1ix149.79 (7)
O2v—Zr1—O272.61 (12)O5ix—O3—O1ix62.43 (13)
O4i—Zr1—O2vi138.01 (8)O5xi—O3—O1ix62.43 (13)
O4ii—Zr1—O2vi65.40 (9)O2—O3—O1ix122.17 (5)
O4iii—Zr1—O2vi80.59 (5)O2iii—O3—O1ix122.17 (5)
O4iv—Zr1—O2vi80.59 (5)O1xi—O3—O1ix60.41 (13)
O2v—Zr1—O2vi130.50 (7)Cr2ix—O3—O1131.59 (6)
O2—Zr1—O2vi130.50 (7)Cr2xi—O3—O1131.59 (6)
O4i—Zr1—O2vii65.40 (9)Zr2—O3—O145.87 (7)
O4ii—Zr1—O2vii138.01 (8)O5ix—O3—O1111.89 (9)
O4iii—Zr1—O2vii80.59 (5)O5xi—O3—O1111.89 (9)
O4iv—Zr1—O2vii80.59 (5)O2—O3—O164.60 (7)
O2v—Zr1—O2vii130.50 (7)O2iii—O3—O164.60 (7)
O2—Zr1—O2vii130.50 (7)O1xi—O3—O1103.92 (6)
O2vi—Zr1—O2vii72.61 (12)O1ix—O3—O1164.33 (12)
O1—Zr2—O1iii167.24 (14)Cr2ix—O3—O1iii131.59 (6)
O1—Zr2—O494.98 (5)Cr2xi—O3—O1iii131.59 (6)
O1iii—Zr2—O494.97 (5)Zr2—O3—O1iii45.87 (7)
O1—Zr2—O4iii94.98 (5)O5ix—O3—O1iii111.89 (9)
O1iii—Zr2—O4iii94.97 (5)O5xi—O3—O1iii111.89 (9)
O4—Zr2—O4iii77.38 (12)O2—O3—O1iii64.60 (7)
O1—Zr2—O2iii88.28 (2)O2iii—O3—O1iii64.60 (7)
O1iii—Zr2—O2iii88.28 (2)O1xi—O3—O1iii164.33 (12)
O4—Zr2—O2iii66.97 (9)O1ix—O3—O1iii103.92 (6)
O4iii—Zr2—O2iii144.35 (8)O1—O3—O1iii91.75 (14)
O1—Zr2—O288.28 (2)Zr2—O4—Zr1xii116.99 (10)
O1iii—Zr2—O288.28 (2)Zr2—O4—O2iii57.75 (8)
O4—Zr2—O2144.35 (8)Zr1xii—O4—O2iii59.25 (8)
O4iii—Zr2—O266.98 (9)Zr2—O4—O4iii51.31 (6)
O2iii—Zr2—O2148.68 (12)Zr1xii—O4—O4iii168.30 (6)
O1—Zr2—O383.62 (7)O2iii—O4—O4iii109.06 (8)
O1iii—Zr2—O383.62 (7)Zr2—O4—O5vi106.10 (10)
O4—Zr2—O3141.31 (6)Zr1xii—O4—O5vi127.62 (9)
O4iii—Zr2—O3141.31 (6)O2iii—O4—O5vi147.85 (12)
O2iii—Zr2—O374.34 (6)O4iii—O4—O5vi61.86 (7)
O2—Zr2—O374.34 (6)Zr2—O4—O5xiii106.10 (10)
O6v—Cr1—O6107.8 (4)Zr1xii—O4—O5xiii127.62 (9)
O6v—Cr1—O2112.50 (13)O2iii—O4—O5xiii147.85 (12)
O6—Cr1—O2112.50 (13)O4iii—O4—O5xiii61.86 (7)
O6v—Cr1—O2v112.50 (13)O5vi—O4—O5xiii58.7 (2)
O6—Cr1—O2v112.50 (13)Zr2—O4—O2xiv147.12 (7)
O2—Cr1—O2v99.01 (16)Zr1xii—O4—O2xiv51.17 (6)
O6v—Cr1—O6viii132.59 (13)O2iii—O4—O2xiv102.41 (10)
O6—Cr1—O6viii24.8 (4)O4iii—O4—O2xiv137.75 (5)
O2—Cr1—O6viii97.31 (10)O5vi—O4—O2xiv76.45 (7)
O2v—Cr1—O6viii97.31 (10)O5xiii—O4—O2xiv102.97 (11)
O6v—Cr1—O6ix24.8 (4)Zr2—O4—O2xiii147.12 (7)
O6—Cr1—O6ix132.59 (13)Zr1xii—O4—O2xiii51.17 (6)
O2—Cr1—O6ix97.31 (10)O2iii—O4—O2xiii102.41 (10)
O2v—Cr1—O6ix97.31 (10)O4iii—O4—O2xiii137.75 (5)
O6viii—Cr1—O6ix157.4 (3)O5vi—O4—O2xiii102.97 (11)
O6v—Cr1—O5viii62.05 (17)O5xiii—O4—O2xiii76.45 (7)
O6—Cr1—O5viii62.05 (18)O2xiv—O4—O2xiii55.75 (10)
O2—Cr1—O5viii167.80 (16)Cr2—O5—O6xv135.4 (2)
O2v—Cr1—O5viii93.19 (15)Cr2—O5—O6viii135.4 (2)
O6viii—Cr1—O5viii81.03 (12)O6xv—O5—O6viii76.0 (3)
O6ix—Cr1—O5viii81.03 (12)Cr2—O5—Cr1viii134.5 (3)
O6v—Cr1—O5ix62.05 (17)O6xv—O5—Cr1viii42.33 (18)
O6—Cr1—O5ix62.05 (17)O6viii—O5—Cr1viii42.33 (18)
O2—Cr1—O5ix93.18 (15)Cr2—O5—O3xi39.56 (14)
O2v—Cr1—O5ix167.81 (16)O6xv—O5—O3xi109.6 (2)
O6viii—Cr1—O5ix81.03 (12)O6viii—O5—O3xi109.6 (2)
O6ix—Cr1—O5ix81.03 (12)Cr1viii—O5—O3xi94.9 (2)
O5viii—Cr1—O5ix74.6 (3)Cr2—O5—O136.01 (10)
Cr2x—Cr2—O3xi72.46 (5)O6xv—O5—O1171.4 (2)
Cr2x—Cr2—O5172.83 (19)O6viii—O5—O1111.11 (14)
O3xi—Cr2—O5100.4 (2)Cr1viii—O5—O1140.81 (15)
Cr2x—Cr2—O173.56 (4)O3xi—O5—O164.04 (14)
O3xi—Cr2—O1113.37 (9)Cr2—O5—O1x36.01 (10)
O5—Cr2—O1110.11 (10)O6xv—O5—O1x111.11 (14)
Cr2x—Cr2—O1x73.56 (4)O6viii—O5—O1x171.4 (2)
O3xi—Cr2—O1x113.37 (9)Cr1viii—O5—O1x140.81 (15)
O5—Cr2—O1x110.11 (10)O3xi—O5—O1x64.04 (14)
O1—Cr2—O1x109.21 (16)O1—O5—O1x61.37 (15)
Cr2x—O1—Cr232.87 (8)Cr2—O5—O5xvi172.82 (19)
Cr2x—O1—Zr2150.03 (13)O6xv—O5—O5xvi48.35 (16)
Cr2—O1—Zr2150.03 (13)O6viii—O5—O5xvi48.35 (16)
Cr2x—O1—O5x33.88 (9)Cr1viii—O5—O5xvi52.69 (13)
Cr2—O1—O5x66.63 (11)O3xi—O5—O5xvi147.61 (14)
Zr2—O1—O5x123.41 (9)O1—O5—O5xvi140.01 (10)
Cr2x—O1—O566.63 (11)O1x—O5—O5xvi140.01 (10)
Cr2—O1—O533.88 (9)Cr2—O5—O4i113.3 (2)
Zr2—O1—O5123.41 (9)O6xv—O5—O4i105.9 (2)
O5x—O1—O5100.02 (19)O6viii—O5—O4i72.2 (2)
Cr2x—O1—O3xi32.12 (7)Cr1viii—O5—O4i106.59 (18)
Cr2—O1—O3xi32.12 (7)O3xi—O5—O4i143.78 (15)
Zr2—O1—O3xi126.59 (12)O1—O5—O4i81.31 (11)
O5x—O1—O3xi53.53 (11)O1x—O5—O4i109.28 (18)
O5—O1—O3xi53.54 (11)O5xvi—O5—O4i60.63 (10)
Cr2x—O1—O1x35.39 (8)Cr2—O5—O4vii113.3 (2)
Cr2—O1—O1x35.40 (8)O6xv—O5—O4vii72.2 (2)
Zr2—O1—O1x173.62 (7)O6viii—O5—O4vii105.9 (2)
O5x—O1—O1x59.32 (8)Cr1viii—O5—O4vii106.59 (18)
O5—O1—O1x59.32 (8)O3xi—O5—O4vii143.78 (15)
O3xi—O1—O1x59.79 (7)O1—O5—O4vii109.28 (18)
Cr2x—O1—O3103.49 (12)O1x—O5—O4vii81.31 (11)
Cr2—O1—O3103.49 (12)O5xvi—O5—O4vii60.63 (10)
Zr2—O1—O350.51 (8)O4i—O5—O4vii56.27 (13)
O5x—O1—O395.41 (10)Cr2—O5—O6122.03 (16)
O5—O1—O395.41 (10)O6xv—O5—O686.56 (17)
O3xi—O1—O376.08 (6)O6viii—O5—O613.39 (18)
O1x—O1—O3135.88 (7)Cr1viii—O5—O648.28 (13)
Cr1—O2—Zr2155.17 (13)O3xi—O5—O698.43 (15)
Cr1—O2—Zr194.19 (11)O1—O5—O699.85 (10)
Zr2—O2—Zr1110.64 (9)O1x—O5—O6158.03 (19)
Cr1—O2—O4iii149.55 (15)O5xvi—O5—O661.65 (12)
Zr2—O2—O4iii55.28 (8)O4i—O5—O676.45 (13)
Zr1—O2—O4iii55.36 (8)O4vii—O5—O6117.68 (19)
Cr1—O2—O2v40.50 (8)Cr2—O5—O6xvi122.03 (16)
Zr2—O2—O2v164.33 (6)O6xv—O5—O6xvi13.39 (18)
Zr1—O2—O2v53.69 (6)O6viii—O5—O6xvi86.56 (17)
O4iii—O2—O2v109.05 (8)Cr1viii—O5—O6xvi48.28 (13)
Cr1—O2—O3101.47 (11)O3xi—O5—O6xvi98.43 (15)
Zr2—O2—O353.69 (8)O1—O5—O6xvi158.03 (19)
Zr1—O2—O3164.34 (12)O1x—O5—O6xvi99.85 (10)
O4iii—O2—O3108.98 (13)O5xvi—O5—O6xvi61.65 (12)
O2v—O2—O3141.97 (8)O4i—O5—O6xvi117.68 (19)
Cr1—O2—O6v31.85 (10)O4vii—O5—O6xvi76.45 (13)
Zr2—O2—O6v131.57 (10)O6—O5—O6xvi95.6 (2)
Zr1—O2—O6v108.50 (11)O6viii—O6—Cr1114.0 (7)
O4iii—O2—O6v149.54 (14)O6viii—O6—O5ix138.14 (17)
O2v—O2—O6v61.33 (7)Cr1—O6—O5ix75.6 (2)
O3—O2—O6v85.31 (11)O6viii—O6—O5viii138.14 (16)
Cr1—O2—O631.85 (10)Cr1—O6—O5viii75.6 (2)
Zr2—O2—O6131.57 (10)O5ix—O6—O5viii83.3 (3)
Zr1—O2—O6108.50 (11)O6viii—O6—Cr1viii41.2 (5)
O4iii—O2—O6149.54 (14)Cr1—O6—Cr1viii155.2 (4)
O2v—O2—O661.33 (7)O5ix—O6—Cr1viii121.4 (2)
O3—O2—O685.31 (11)O5viii—O6—Cr1viii121.4 (2)
O6v—O2—O655.0 (3)O6viii—O6—O6v150.1 (6)
Cr1—O2—O4ii87.60 (8)Cr1—O6—O6v36.1 (2)
Zr2—O2—O4ii108.65 (6)O5ix—O6—O6v51.98 (16)
Zr1—O2—O4ii48.23 (5)O5viii—O6—O6v51.98 (16)
O4iii—O2—O4ii72.30 (7)Cr1viii—O6—O6v168.69 (15)
O2v—O2—O4ii62.12 (5)O6viii—O6—O291.6 (6)
O3—O2—O4ii131.75 (5)Cr1—O6—O235.66 (10)
O6v—O2—O4ii78.14 (13)O5ix—O6—O273.3 (2)
O6—O2—O4ii118.54 (11)O5viii—O6—O2110.5 (3)
Cr1—O2—O4i87.60 (8)Cr1viii—O6—O2126.8 (2)
Zr2—O2—O4i108.65 (6)O6v—O6—O262.52 (13)
Zr1—O2—O4i48.23 (5)O6viii—O6—O2v91.6 (6)
O4iii—O2—O4i72.31 (7)Cr1—O6—O2v35.66 (10)
O2v—O2—O4i62.12 (5)O5ix—O6—O2v110.5 (2)
O3—O2—O4i131.75 (5)O5viii—O6—O2v73.3 (2)
O6v—O2—O4i118.54 (11)Cr1viii—O6—O2v126.8 (2)
O6—O2—O4i78.14 (13)O6v—O6—O2v62.52 (13)
O4ii—O2—O4i95.52 (10)O2—O6—O2v57.35 (14)
Cr2ix—O3—Cr2xi35.09 (11)O6viii—O6—O528.47 (12)
Cr2ix—O3—Zr2162.46 (5)Cr1—O6—O5108.6 (2)
Cr2xi—O3—Zr2162.46 (5)O5ix—O6—O5110.0 (2)
Cr2ix—O3—O5ix40.07 (13)O5viii—O6—O5166.61 (18)
Cr2xi—O3—O5ix75.16 (17)Cr1viii—O6—O550.69 (15)
Zr2—O3—O5ix122.38 (14)O6v—O6—O5137.81 (12)
Cr2ix—O3—O5xi75.16 (17)O2—O6—O576.10 (13)
Cr2xi—O3—O5xi40.07 (13)O2v—O6—O5102.4 (2)
Zr2—O3—O5xi122.38 (14)O6viii—O6—O5xvi28.47 (12)
O5ix—O3—O5xi115.2 (3)Cr1—O6—O5xvi108.6 (2)
Cr2ix—O3—O2110.49 (6)O5ix—O6—O5xvi166.61 (18)
Cr2xi—O3—O2145.58 (12)O5viii—O6—O5xvi110.0 (2)
Zr2—O3—O251.97 (8)Cr1viii—O6—O5xvi50.69 (15)
O5ix—O3—O270.42 (13)O6v—O6—O5xvi137.81 (12)
O5xi—O3—O2174.35 (19)O2—O6—O5xvi102.4 (2)
Cr2ix—O3—O2iii145.58 (12)O2v—O6—O5xvi76.09 (13)
Cr2xi—O3—O2iii110.49 (6)O5—O6—O5xvi56.7 (2)
Symmetry codes: (i) y+3/4, x1/4, z+1/4; (ii) y3/4, x+7/4, z+1/4; (iii) x+1, y+3/2, z; (iv) x1, y, z; (v) x, y+3/2, z; (vi) y+3/4, x+3/4, z+1/4; (vii) y3/4, x+3/4, z+1/4; (viii) x, y+1, z; (ix) x, y+1/2, z; (x) x+1, y+1/2, z; (xi) x+1, y+1, z; (xii) x+1, y, z; (xiii) y+1/4, x+3/4, z+1/4; (xiv) y+7/4, x+3/4, z+1/4; (xv) x, y1/2, z; (xvi) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaZr(OH)2CrO4
Mr241.23
Crystal system, space groupTetragonal, I41/amd[originatcentre(2/m)]
Temperature (K)293
a, c (Å)6.8709 (1), 29.0432 (2)
V3)1371.11 (3)
Z12
Radiation typeMo Kα
µ (mm1)4.59
Crystal size (mm)0.10 × 0.10 × 0.04
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(Sheldrick, 1996)
Tmin, Tmax0.657, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
4914, 731, 638
Rint0.035
(sin θ/λ)max1)0.767
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.070, 1.04
No. of reflections731
No. of parameters52
Δρmax, Δρmin (e Å3)0.80, 1.02

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995) and SADABS (Sheldrick, 1996), SHELXTL (Bruker, 1997).

Selected geometric parameters (Å, º) top
Zr1—O4i2.152 (2)Cr1—O61.584 (6)
Zr1—O22.248 (2)Cr1—O21.750 (2)
Zr2—O12.080 (2)Cr2—O3ii1.575 (4)
Zr2—O42.124 (2)Cr2—O51.592 (5)
Zr2—O22.186 (2)Cr2—O11.679 (2)
Zr2—O32.236 (4)
O4i—Zr1—O265.40 (9)O2—Zr2—O374.34 (6)
O2iii—Zr1—O272.61 (12)O6iii—Cr1—O6107.8 (4)
O1—Zr2—O1i167.24 (14)O6—Cr1—O2112.50 (13)
O1—Zr2—O494.98 (5)O2—Cr1—O2iii99.01 (16)
O4—Zr2—O4i77.38 (12)O3ii—Cr2—O5100.4 (2)
O1—Zr2—O288.28 (2)O3ii—Cr2—O1iv113.37 (9)
O4i—Zr2—O266.98 (9)O5—Cr2—O1iv110.11 (10)
O1—Zr2—O383.62 (7)O1—Cr2—O1iv109.21 (16)
Symmetry codes: (i) x+1, y+3/2, z; (ii) x+1, y+1, z; (iii) x, y+3/2, z; (iv) x+1, y+1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds