Download citation
Download citation
link to html
The preparation and X-ray analysis of the title compound, [Sn2Br4(CH3)4(C5H9NO)], are described. The compound contains two Sn atoms in the asymmetric unit, that complexed by N-methyl­pyrrolidin-2-one being hexacoordinated (a), the other exhibiting pentacoordination (b). The most important features are three different Sn-Br bond lengths at both Sn atoms with the following values: (a) 2.5060 (9), 2.7152 (10) and 3.7118 (10) Å; (b) 2.5084 (10), 2.5279 (9) and 3.5841 (10) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100014980/qa0424sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014980/qa0424Isup2.hkl
Contains datablock I

CCDC reference: 156193

Comment top

Molecular complexes derived from 1:1 and 1:2 complexation of dimethyltin dihalides by N-methylpyrrolidinone (NMP) are well known (König et al., 2000a,b). The 2:1 complexation of dimethyltin dichloride by NMP shows pentacoordination at both Sn atoms, which are bridged by a chloro ligand, the angle Sn—Cl—Sn being 135.56 (5)°. The values of the Sn—Cl bond lengths are 2.5704 (13) and 3.1159 (13) Å (König et al., 2000c). Two bridging bromine ligands are found in the analogous adduct of dimethyltin dibromide and NMP, (I). The central atom which is complexed by NMP exhibits the octahedral geometry typically found in hexacoordinated tin complexes, whereas the other tin atom is surrounded by five ligands, generating a trigonal–bipyramidal geometry. \scheme

It is sometimes difficult to pinpoint the geometry around the central atom in certain molecular complexes. The most important parameters measured are the bond angles and bond lengths. For this reason a definition and quantitative limitation of the term bond can be made satisfactorily with the method of van der Waals radii. This term is used correctly when the measured distance between two atoms is smaller than the sum of the corresponding radii (Bondi, 1964) as for instance between Sn and Br atoms, the sum of whose van der Waals radii is calculated as 4.0–4.2 Å.

The Sn—C bond lengths of the pentacoordinated tin centre have normal values of 2.095 (5) and 2.126 (5) Å (Ho & Zuckerman, 1973). The deviation from ideal geometry in the equatorial plane is smaller than in other pentacoordinated complexes of dimethyltin dihalides and NMP (König et al. 2000b,c), as is demonstrated most clearly by the values of the angles C1—Sn1—C2, C1—Sn1—Br1 and C2—-Sn1–Br1: 132.4 (3), 106.98 (15) and 107.75 (14)°. The bromine ligands Br2 and Br4 take apical positions, the values of the Sn—Br bond lengths and the angle Br2—Sn1—Br4 being as follows: 2.5279 (9), 3.5841 (10) Å and 177.99 (3)°. The variation from the trigonal-bipyramidal geometry becomes most obvious from an extraordinarily small difference between the apical and equatorial bromine positions. The Sn1—Br1 bond has a length of 2.5084 (10) Å and is therefore only little shorter than the Sn1—Br2 bond.

The ligands in the equatorial plane are somewhat displaced towards the bridging bromine ligand Br4. This becomes evident from the values of the angles between the axial and the equatorial ligands: (a) Br2—Sn1—C1 102.38 (14)°, Br2—Sn1—C2 103.82 (15)°, Br2—Sn1—Br1 98.17 (3)°; (b) Br4—Sn1—C1 79.14 (14)°, Br4—Sn1—C2 74.17 (15)°, Br4—Sn1—Br1 82.57 (3)°.

Another difference between the chlorine and bromine derivatives lies in the angles Sn1—X4—Sn2 (X = Cl, Br). In the latter complex this angle has a value of 99.29 (3)° and thus is approximately 36° smaller than in the chlorine complex. The value of the second bridging angle Sn1—Br1—Sn2 is 100.17 (3)°.

At the hexacoordinated tin the values of the Sn—C bond lengths are 2.107 (6) Å and 2.116 (7) Å and thus lie in the normal range. The angle C3—Sn2—C4 (138.3 (3)°) is obviously smaller than the analogous angle 169.7 (4)° at the hexacoordinated central atom in cis-dibromo-trans-dimethyl-cis-bis(N-methylpyrrolidinone)tin(IV) (König et al., 2000a).

The Sn—Br bonds in the hexacoordinated part of the complex differ greatly and can be regarded as the adducts most interesting feature. The Sn2—Br4 bond has a value of 2.7152 (10) Å and is thus because of the bridging character of Br4 a little longer [2.6738 (10) and 2.6761 (12) Å] than in a related hexacoordinated complex (König et al., 2000a). The angle Br4—Sn2—O1 is almost linear [175.82 (14)°]. Nevertheless, the bond between the bromine ligand Br3 and Sn2 has a length of 2.5060 (9) Å which is typical of a Sn—Br bond in the equatorial plane of a trigonal bipyramid (Boer et al., 1970; König et al., 2000b). This is confirmed by the angles C3—Sn2—C4, C3—Sn2—Br3 and C4—Sn2—Br3 having the following values: 138.3 (3), 111.2 (2) and 109.48 (19)°.

As in cis-dibromo-trans-dimethyl-cis-bis(N-methylpyrrolidinone)tin(IV) (König et al., 2000b) the plane defined by the two methyl groups and the bromine ligand Br3 is displaced towards the NMP ligand. This becomes evident from the values of the following angles: (a) C3—Sn2—O1 90.1 (2)°, C4—Sn2—O1 83.2 (3)°, Br3—Sn2—O1 87.09 (12)°; (b) C3—Sn2—Br4 94.1 (2)°, C4—Sn2—Br4 93.2 (2)°, Br3—Sn2—Br4 92.11 (3)°.

The deviation from ideal geometry is closely related to the angles involving the bridging bromine ligand Br1: Br1—Sn2—C3 70.2 (2)°, Br1—Sn2—C4 71.44 (19)°, Br1—Sn2—O1 103.18 (12)°, Br1—Sn2—Br3 169.69 (3)°. The fragment C5—O1—Sn2 is not as often expected linear. The angle C5—O1—Sn2 has a value of 139.9 (5)° and is therefore within the range of known values (König, 2000). The value of the Sn2—O1 bond length is 2.271 (5) Å and thus shorter than those in related adducts (König et al., 2000a,b).

The values of the bond lengths and bond angles in the NMP ligand are comparable with those observed in other NMP coordinated organometallic compounds (Churchill & Rotella, 1979) and in free NMP (Müller et al., 1996).

Experimental top

The title compound is prepared by the reaction of N-methylpyrrolidinone (0.71 g, 0.69 ml, 7.3 mmol) with freshly sublimed dibromodimethylstannane (4.51 g, 14.6 mmol) derived from the reaction of dimethyltin oxide with HBr (Pfeiffer, 1902) in 10 ml of dry diethyl ether. The reaction mixture is stirred for 30 min and afterwards stored in a refrigerator at 278 K. Colourless crystals are obtained in quantitative yield after filtration and drying in vacuo, mp. 320 K. A solution of the complex (40 mg) in C6D6 (430 mg) gives the following values for the structure-relevant NMR parameters: 2J(119Sn, 1H) = 71 Hz, 1J(119Sn–13C) = 506 Hz and δ(119Sn)= 11.6 p.p.m.

Refinement top

The data collection covered almost the whole spere of reciprocal space. The crystal-to-detector distance was 35 mm. Crystal decay was monitored by repeating the initial frames at the end of data collection. Analysing the duplicate reflections there was no indication for any decay. Hydrogen atoms were placed in calculated positions with Uiso constrained to be 1.2Ueq of the carrier atom.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).

(I) top
Crystal data top
[Sn2Br4(CH3)4(C5H9NO)]Dx = 2.433 Mg m3
Mr = 716.29Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, P212121Cell parameters from 12688 reflections
a = 7.5279 (3) Åθ = 1.6–25.7°
b = 10.4817 (4) ŵ = 10.72 mm1
c = 24.7865 (11) ÅT = 173 K
V = 1955.78 (14) Å3Parallelepiped, colourless
Z = 40.11 × 0.1 × 0.1 mm
F(000) = 1320
Data collection top
Nonius KappaCCD
diffractometer
2662 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.073
Graphite monochromatorθmax = 25.7°, θmin = 1.6°
Detector resolution: 10 vertical, 18 horizontal pixels mm-1h = 98
443 frames via ω–rotation (Δω=1°) at different κ–angles and two times 75 s per frame scansk = 1212
12688 measured reflectionsl = 2930
3713 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.065Calculated w = 1/[σ2(Fo2) + (0.0131P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max = 0.001
3713 reflectionsΔρmax = 0.78 e Å3
154 parametersΔρmin = 0.98 e Å3
0 restraintsAbsolute structure: Flack (1983); 1570 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.117 (10)
Crystal data top
[Sn2Br4(CH3)4(C5H9NO)]V = 1955.78 (14) Å3
Mr = 716.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5279 (3) ŵ = 10.72 mm1
b = 10.4817 (4) ÅT = 173 K
c = 24.7865 (11) Å0.11 × 0.1 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
2662 reflections with I > 2σ(I)
12688 measured reflectionsRint = 0.073
3713 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.78 e Å3
S = 0.90Δρmin = 0.98 e Å3
3713 reflectionsAbsolute structure: Flack (1983); 1570 Friedel pairs
154 parametersAbsolute structure parameter: 0.117 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.10583 (7)0.94668 (5)0.94349 (2)0.04193 (16)
Sn20.51534 (7)0.78031 (5)0.81081 (2)0.03900 (15)
Br10.17872 (12)1.02190 (7)0.85000 (4)0.0538 (2)
Br20.14618 (11)1.09923 (8)0.96301 (3)0.0548 (3)
Br30.73656 (12)0.60304 (8)0.80141 (4)0.0603 (3)
Br40.45214 (11)0.72139 (8)0.91574 (3)0.0529 (2)
O10.5551 (7)0.8176 (5)0.7213 (2)0.0490 (15)
N10.6502 (8)0.8472 (5)0.6358 (3)0.0409 (16)
C10.3072 (7)1.0141 (5)0.9944 (2)0.049 (2)
H1A0.41100.96190.99010.074*
H1B0.33531.10080.98520.074*
H1C0.26771.01021.03120.074*
C20.0216 (7)0.7664 (5)0.9367 (2)0.053 (2)
H2A0.06530.70180.92910.079*
H2B0.08210.74590.96970.079*
H2C0.10590.77030.90770.079*
C30.6417 (10)0.9544 (6)0.8290 (3)0.049 (2)
H3A0.58201.02270.81070.073*
H3B0.76330.95090.81740.073*
H3C0.63760.96880.86730.073*
C40.2625 (9)0.7160 (7)0.7853 (3)0.052 (2)
H4A0.17890.72540.81420.077*
H4B0.26990.62770.77510.077*
H4C0.22410.76550.75490.077*
C50.6769 (11)0.8386 (6)0.6885 (3)0.0377 (19)
C60.8702 (9)0.8582 (7)0.6999 (3)0.051 (2)
H6A0.91840.78680.72010.076*
H6B0.88900.93580.72040.076*
C70.4791 (11)0.8291 (8)0.6097 (3)0.063 (3)
H7A0.39290.80310.63600.095*
H7B0.48950.76440.58250.095*
H7C0.44210.90780.59340.095*
C80.8068 (10)0.8728 (7)0.6040 (3)0.048 (2)
H8A0.79950.95620.58720.072*
H8B0.82180.80870.57610.072*
C90.9577 (11)0.8678 (9)0.6439 (4)0.068 (3)
H9A1.02990.94420.64130.101*
H9B1.03240.79410.63710.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0445 (3)0.0342 (3)0.0471 (4)0.0002 (3)0.0000 (3)0.0009 (3)
Sn20.0382 (3)0.0346 (3)0.0441 (3)0.0020 (3)0.0012 (3)0.0009 (3)
Br10.0619 (6)0.0411 (5)0.0582 (6)0.0075 (4)0.0140 (5)0.0095 (4)
Br20.0531 (6)0.0583 (6)0.0530 (6)0.0159 (5)0.0019 (5)0.0074 (4)
Br30.0662 (6)0.0511 (5)0.0635 (6)0.0247 (5)0.0027 (5)0.0057 (5)
Br40.0591 (6)0.0526 (5)0.0470 (5)0.0011 (4)0.0048 (5)0.0049 (4)
O10.051 (4)0.060 (4)0.036 (3)0.008 (3)0.005 (3)0.010 (3)
N10.041 (4)0.035 (4)0.046 (5)0.001 (3)0.000 (4)0.002 (3)
C10.056 (5)0.038 (5)0.054 (6)0.006 (4)0.008 (5)0.011 (4)
C20.063 (5)0.040 (4)0.055 (6)0.021 (4)0.008 (5)0.006 (4)
C30.055 (5)0.038 (5)0.053 (6)0.017 (4)0.002 (4)0.003 (4)
C40.043 (5)0.055 (5)0.057 (6)0.003 (4)0.000 (4)0.010 (4)
C50.051 (5)0.024 (4)0.038 (5)0.006 (4)0.009 (5)0.001 (4)
C60.037 (5)0.050 (5)0.065 (6)0.006 (4)0.020 (5)0.001 (4)
C70.054 (6)0.069 (6)0.067 (6)0.001 (5)0.020 (5)0.007 (5)
C80.063 (6)0.041 (5)0.039 (5)0.003 (4)0.012 (5)0.005 (4)
C90.049 (6)0.075 (6)0.079 (7)0.020 (5)0.002 (6)0.019 (6)
Geometric parameters (Å, º) top
Sn1—C12.095 (5)C2—H2C0.9601
Sn1—C22.126 (5)C3—H3A0.9600
Sn1—Br12.5084 (10)C3—H3B0.9600
Sn1—Br22.5279 (9)C3—H3C0.9600
Sn1—Br43.5841 (10)C4—H4A0.9600
Sn2—C32.107 (6)C4—H4B0.9600
Sn2—C42.116 (7)C4—H4C0.9600
Sn2—O12.271 (5)C5—C61.497 (10)
Sn2—Br32.5060 (9)C6—C91.541 (11)
Sn2—Br42.7152 (10)C6—H6A0.9700
Sn2—Br13.7118 (10)C6—H6B0.9700
O1—C51.245 (9)C7—H7A0.9600
N1—C51.324 (9)C7—H7B0.9600
N1—C81.444 (9)C7—H7C0.9600
N1—C71.454 (9)C8—C91.507 (10)
C1—H1A0.9600C8—H8A0.9700
C1—H1B0.9600C8—H8B0.9700
C1—H1C0.9600C9—H9A0.9700
C2—H2A0.9600C9—H9B0.9700
C2—H2B0.9599
C1—Sn1—C2132.4 (3)H2A—C2—H2C109.5
C1—Sn1—Br1106.98 (15)H2B—C2—H2C109.5
C2—Sn1—Br1107.75 (14)Sn2—C3—H3A109.5
C1—Sn1—Br2102.38 (14)Sn2—C3—H3B109.5
C2—Sn1—Br2103.82 (15)H3A—C3—H3B109.5
Br1—Sn1—Br298.17 (3)Sn2—C3—H3C109.5
C1—Sn1—Br479.14 (14)H3A—C3—H3C109.5
C2—Sn1—Br474.17 (15)H3B—C3—H3C109.5
Br1—Sn1—Br482.57 (3)Sn2—C4—H4A109.5
Br2—Sn1—Br4177.99 (3)Sn2—C4—H4B109.5
C3—Sn2—C4138.3 (3)H4A—C4—H4B109.5
C3—Sn2—O190.1 (2)Sn2—C4—H4C109.5
C4—Sn2—O183.2 (3)H4A—C4—H4C109.5
C3—Sn2—Br3111.2 (2)H4B—C4—H4C109.5
C4—Sn2—Br3109.48 (19)O1—C5—N1123.0 (7)
O1—Sn2—Br387.09 (12)O1—C5—C6128.1 (8)
C3—Sn2—Br494.1 (2)N1—C5—C6108.9 (7)
C4—Sn2—Br493.2 (2)C5—C6—C9104.8 (7)
O1—Sn2—Br4175.82 (14)C5—C6—H6A110.8
Br3—Sn2—Br492.11 (3)C9—C6—H6A110.8
C3—Sn2—Br170.2 (2)C5—C6—H6B110.8
C4—Sn2—Br171.44 (19)C9—C6—H6B110.8
O1—Sn2—Br1103.18 (12)H6A—C6—H6B108.9
Br3—Sn2—Br1169.69 (3)N1—C7—H7A109.5
Br4—Sn2—Br177.58 (2)N1—C7—H7B109.5
Sn1—Br1—Sn2100.17 (3)H7A—C7—H7B109.5
Sn2—Br4—Sn199.29 (3)N1—C7—H7C109.5
C5—O1—Sn2139.9 (5)H7A—C7—H7C109.5
C5—N1—C8115.3 (7)H7B—C7—H7C109.5
C5—N1—C7124.4 (7)N1—C8—C9104.5 (6)
C8—N1—C7120.3 (7)N1—C8—H8A110.9
Sn1—C1—H1A109.3C9—C8—H8A110.9
Sn1—C1—H1B109.7N1—C8—H8B110.9
H1A—C1—H1B109.5C9—C8—H8B110.9
Sn1—C1—H1C109.5H8A—C8—H8B108.9
H1A—C1—H1C109.5C8—C9—C6105.8 (6)
H1B—C1—H1C109.5C8—C9—H9A110.6
Sn1—C2—H2A109.5C6—C9—H9A110.6
Sn1—C2—H2B110.2C8—C9—H9B110.6
H2A—C2—H2B109.5C6—C9—H9B110.6
Sn1—C2—H2C108.6H9A—C9—H9B108.7
C1—Sn1—Br1—Sn280.35 (15)C3—Sn2—O1—C557.4 (7)
C2—Sn1—Br1—Sn266.55 (15)C4—Sn2—O1—C5163.8 (8)
Br2—Sn1—Br1—Sn2173.97 (3)Br3—Sn2—O1—C553.8 (7)
Br4—Sn1—Br1—Sn24.15 (2)Br4—Sn2—O1—C5132.9 (16)
C3—Sn2—Br1—Sn1104.6 (2)Br1—Sn2—O1—C5127.1 (7)
C4—Sn2—Br1—Sn192.2 (2)Sn2—O1—C5—N1174.7 (5)
O1—Sn2—Br1—Sn1170.22 (14)Sn2—O1—C5—C65.3 (13)
Br3—Sn2—Br1—Sn14.71 (19)C8—N1—C5—O1179.6 (6)
Br4—Sn2—Br1—Sn15.57 (3)C7—N1—C5—O12.2 (11)
C3—Sn2—Br4—Sn172.6 (2)C8—N1—C5—C60.3 (8)
C4—Sn2—Br4—Sn166.31 (19)C7—N1—C5—C6177.9 (7)
O1—Sn2—Br4—Sn197.0 (17)O1—C5—C6—C9175.0 (7)
Br3—Sn2—Br4—Sn1175.97 (3)N1—C5—C6—C95.0 (8)
Br1—Sn2—Br4—Sn13.88 (2)C5—N1—C8—C95.7 (8)
C1—Sn1—Br4—Sn2114.62 (15)C7—N1—C8—C9172.6 (7)
C2—Sn1—Br4—Sn2105.23 (15)N1—C8—C9—C68.3 (9)
Br1—Sn1—Br4—Sn25.66 (3)C5—C6—C9—C88.2 (9)
Br2—Sn1—Br4—Sn2106.3 (9)

Experimental details

Crystal data
Chemical formula[Sn2Br4(CH3)4(C5H9NO)]
Mr716.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)7.5279 (3), 10.4817 (4), 24.7865 (11)
V3)1955.78 (14)
Z4
Radiation typeMo Kα
µ (mm1)10.72
Crystal size (mm)0.11 × 0.1 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12688, 3713, 2662
Rint0.073
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.065, 0.90
No. of reflections3713
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.98
Absolute structureFlack (1983); 1570 Friedel pairs
Absolute structure parameter0.117 (10)

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXL97 and PARST95 (Nardelli, 1995).

Selected geometric parameters (Å, º) top
Sn1—C12.095 (5)Sn2—C42.116 (7)
Sn1—C22.126 (5)Sn2—O12.271 (5)
Sn1—Br12.5084 (10)Sn2—Br32.5060 (9)
Sn1—Br22.5279 (9)Sn2—Br42.7152 (10)
Sn1—Br43.5841 (10)Sn2—Br13.7118 (10)
Sn2—C32.107 (6)
C1—Sn1—C2132.4 (3)C4—Sn2—Br3109.48 (19)
C1—Sn1—Br1106.98 (15)O1—Sn2—Br387.09 (12)
C2—Sn1—Br1107.75 (14)C3—Sn2—Br494.1 (2)
C1—Sn1—Br2102.38 (14)C4—Sn2—Br493.2 (2)
C2—Sn1—Br2103.82 (15)O1—Sn2—Br4175.82 (14)
Br1—Sn1—Br298.17 (3)Br3—Sn2—Br492.11 (3)
C1—Sn1—Br479.14 (14)C3—Sn2—Br170.2 (2)
C2—Sn1—Br474.17 (15)C4—Sn2—Br171.44 (19)
Br1—Sn1—Br482.57 (3)O1—Sn2—Br1103.18 (12)
Br2—Sn1—Br4177.99 (3)Br3—Sn2—Br1169.69 (3)
C3—Sn2—C4138.3 (3)Br4—Sn2—Br177.58 (2)
C3—Sn2—O190.1 (2)Sn1—Br1—Sn2100.17 (3)
C4—Sn2—O183.2 (3)Sn2—Br4—Sn199.29 (3)
C3—Sn2—Br3111.2 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds