Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
We have synthesized a di­deoxy­dide­hydro­nucleoside derivative, 2(S)-acetoxymethyl-4-[4-amino-2-oxopyrimidin-1(2H)-yl]-2,5-di­hydro­furan, C11H13N3O4, which is an analogue of the potently anti-HIV active compound, di­deoxy-dide­hydro­cytidine (d4C). The target compound crystallizes with two mol­ecules in the asymmetric unit that differ primarily in the orientation of the C6'-acetyl group. One mol­ecule has an extended conformation and the orientation of the acetyl group in the second mol­ecule gives an unusual hooked-shaped conformation. The two conformers form A-B dimers via N-H...N hydrogen bonds. The dimers link via N-H...O hydrogen bonds to form chains parallel to the b cell axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100017005/qa0419sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100017005/qa0419Isup2.hkl
Contains datablock I

CCDC reference: 156223

Comment top

Dideoxydidehydrocytidine (d4C) has potent anti-HIV activity (Balzarini et al., 1986). Our interest in the design of novel isomeric nucleosides of potential anti-HIV activity (Nair et al., 1995) led to the synthesis of compound (II) and its lipophilic derivative (I) which are structural analogues of d4C. Because of the complex synthetic pathway to (II), it was necessary to confirm its structure through its more crystalline pro-drug derivative (I). Compound (I) was synthesized via a rearrangement reaction of 4(R)-[(3,4-dihydro-2,4-dioxo-1(2H)-pyrimidinyl]-2(R)-(benzoyloxymethyl)- tetrahydrofuran-3(S)—O-methanesulfonate followed by conversion of the uracil base to cytosine (Bera et al., 1999, Nair & Nuesca, 1992; Kakefuda et al., 1994). Compound (I) was characterized by NMR and HRMS data.

Compound (I) crystallizes with two confomers, A and B, in the asymmetric unit (atoms of a conformer are identified by A or B in the labels). For both conformers, the pyrimidine rings are planar (0.025 and 0.006 Å r.m.s. deviation from planarity for A and B, respectively) as are the acetyl substituents (0.004 and 0.001 Å r.m.s. deviation for A and B, respectively). Although the dihydrofuran (DHF) ring of A is planar (0.014 Å r.m.s. deviation) the DHF ring of B has an O1'B-envelope conformation [O1'B is 0.231 (6) Å from the C2'B, C3'B, C4'B, C5'B plane, 0.004 Å r.m.s. deviation]. Rotation about the N1–C4' bond relieves steric repulsion between the pyrimidine and DHF rings; however, the sense of rotation is reversed between A and B (see Table 1) and B is rotated to a greater degree. The greatest difference in conformation between A and B is the orientation of the C6' acetyl substituent. When considering rotation about the C2'—C6' bond, in A, O6'A is anti to C3'A which positions the acetyl moiety anti to the DHF ring resulting in an extended conformation. In B, O6'B is gauche to C3'B which positions the acetyl group syn to the DHF ring giving a hook-shaped molecule.

The two conformers form dimers via two N4—H4···N3 hydrogen bonds (see Table 2) to a symmetry-related molecule generated via the 1/2 − x, 1/2 + y, 1/2 − z symmetry operation. The dimers are linked via N4—H4···O2 hydrogen bonds to form chains of dimers parallel to the b unit-cell direction.

Experimental top

To a solution of 2(S)-(hydroxymethyl)-4-[(3,4-dihydro-2-oxo-4-amino-1(2H)-pyrimidinyl]- 2,5-dihydrofuran (0.08 g, 0.38 mmol) in pyridine (10 ml), Ac2O was added and the reaction mixture was stirred at room temperature overnight. Saturated NaHCO3 solution (30 ml) was then added and the solution was extracted with CHCl3 (3 × 20 ml). The combined CHCl3 part was evaporated to dryness and the residual pyridine was co-evaporated with toluene. The gummy residue was purified on a silica gel column to give the acetyl derivative (0.09 g, 94%). Triethylamine (0.1 ml, 0.72 mmol) was added to a solution of the acetyl derivative (0.09 g, 0.35 mmol) in CH3CN (10 ml) containing TPSCl (0.22 g, 0.72 mmol) and DMAP (0.90 g, 0.72 mmol) at 273 K. The reaction mixture was stirred at room temperature for 3.5 h. Concentrated NH4OH solution (28% solution, 6 ml) was added and the solution was further stirred at room temperature for 2 h. The solvent was evaporated to dryness, the residue was purified on a silica-gel column and crystallized from methanol to give (II) (0.048 g, 54% for two steps): m.p. 384 K; 1H NMR (DMSO-d6): δ 7.56 (d, J = 7.5 Hz, 1H, H-6), 7.40 (bd, 2H, NH2), 6.05 (m, 1H, H-3'), 5.78 (d, J = 7.5 Hz, 1H, H-5), 4.98 (m, 1H, H-2'), 4.87 (m, 2H, H-5'), 4.06 (m, 2H, –CH2), 2.01 (s, 3H, acetyl –CH3); 13C NMR (DMSO-d6): δ 172.7 (ester CO), 167.6 (C-2), 157.0 (C-4), 145.1 (C-6), 141.4 (C-4'), 115.9 (C-3'), 97.1 (C-5), 84.3 (C-2') 74.1 (C-5') 67.1 (–CH2), 20.7 (–CH3); HRMS (FAB): (M+H)+ calcd for C11H14N3O4 252.0984, found 252.0979.

Refinement top

H atoms were refined as riding (N—H = 0.86 Å and C—H = 0.93–0.98 Å). 950 Friedel pair reflections were merged for the last four cycles of refinement.

Computing details top

Data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977); cell refinement: CAD-4 Operations Manual; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXTL (Sheldrick, 1995); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 1995).

(I) top
Crystal data top
C11H13N3O4F(000) = 1056
Mr = 251.24Dx = 1.389 Mg m3
Monoclinic, I2Mo Kα radiation, λ = 0.71073 Å
a = 15.995 (2) ÅCell parameters from 22 reflections
b = 6.865 (1) Åθ = 10.0–13.6°
c = 21.934 (5) ŵ = 0.11 mm1
β = 94.16 (2)°T = 213 K
V = 2402.1 (7) Å3Prism, colourless
Z = 80.33 × 0.22 × 0.18 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
Rint = 0.052
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.5°
Graphite monochromatorh = 1818
θ–2θ scansk = 88
8222 measured reflectionsl = 2525
2283 independent reflections4 standard reflections every 120 min
1774 reflections with I > 2σ(I) intensity decay: <2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.4716P]
where P = (Fo2 + 2Fc2)/3
2283 reflections(Δ/σ)max = 0.003
327 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C11H13N3O4V = 2402.1 (7) Å3
Mr = 251.24Z = 8
Monoclinic, I2Mo Kα radiation
a = 15.995 (2) ŵ = 0.11 mm1
b = 6.865 (1) ÅT = 213 K
c = 21.934 (5) Å0.33 × 0.22 × 0.18 mm
β = 94.16 (2)°
Data collection top
Enraf-Nonius CAD4
diffractometer
Rint = 0.052
8222 measured reflections4 standard reflections every 120 min
2283 independent reflections intensity decay: <2%
1774 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.098H-atom parameters constrained
S = 1.10Δρmax = 0.19 e Å3
2283 reflectionsΔρmin = 0.15 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.62987 (16)0.6799 (4)0.32781 (12)0.0396 (6)
C2A0.6342 (2)0.6182 (5)0.26694 (14)0.0384 (8)
O2A0.62436 (16)0.4432 (3)0.25443 (11)0.0497 (6)
N3A0.64866 (17)0.7528 (4)0.22349 (12)0.0381 (6)
C4A0.66029 (18)0.9390 (5)0.23880 (15)0.0370 (7)
N4A0.66864 (17)1.0679 (4)0.19433 (12)0.0437 (7)
H4A10.66651.03010.15690.052*
H4A20.67621.18910.20310.052*
C5A0.6635 (2)1.0027 (5)0.30127 (15)0.0441 (8)
H5A0.67641.13080.31190.053*
C6A0.6473 (2)0.8713 (5)0.34311 (15)0.0435 (8)
H6A0.64770.90910.38380.052*
O1'A0.54676 (17)0.3059 (5)0.42688 (12)0.0733 (9)
C2'A0.6119 (2)0.3866 (6)0.46711 (16)0.0518 (9)
H2'A0.58810.44670.50240.062*
C3'A0.6518 (2)0.5394 (6)0.42967 (15)0.0504 (9)
H3'A0.69670.61790.44330.060*
C4'A0.61363 (19)0.5452 (5)0.37491 (14)0.0398 (7)
C5'A0.5427 (2)0.4036 (6)0.36962 (15)0.0486 (8)
H5'30.48960.47070.36220.058*
H5'40.54940.31230.33660.058*
C6'A0.6729 (2)0.2301 (6)0.48793 (19)0.0630 (10)
H6'30.70220.18520.45340.076*
H6'40.71410.28370.51790.076*
O6'A0.63128 (19)0.0661 (5)0.51458 (14)0.0757 (8)
C7'A0.6220 (3)0.0767 (10)0.5736 (3)0.0867 (16)
O7'A0.6488 (3)0.2085 (9)0.60597 (17)0.1191 (16)
C8'A0.5717 (4)0.0952 (10)0.5941 (3)0.127 (3)
H8'40.59690.21410.58140.191*
H8'50.51540.08680.57600.191*
H8'60.57100.09380.63780.191*
N1B0.88680 (17)0.4728 (4)0.53657 (12)0.0396 (6)
C2B0.8724 (2)0.5296 (5)0.47537 (15)0.0388 (7)
O2B0.86200 (17)0.7040 (3)0.46333 (11)0.0542 (6)
N3B0.87003 (17)0.3921 (4)0.43128 (12)0.0400 (6)
C4B0.8818 (2)0.2035 (5)0.44639 (14)0.0374 (7)
N4B0.87731 (19)0.0744 (5)0.40148 (13)0.0513 (7)
H4B10.86720.11220.36430.062*
H4B20.88450.04740.40950.062*
C5B0.8981 (2)0.1417 (5)0.50832 (15)0.0420 (8)
H5B0.90660.01120.51820.050*
C6B0.9005 (2)0.2802 (5)0.55164 (15)0.0434 (8)
H6B0.91160.24550.59240.052*
O1'B0.85489 (17)0.8726 (4)0.64398 (12)0.0639 (7)
C2'B0.9346 (2)0.7969 (6)0.66829 (17)0.0564 (10)
H2'B0.97620.90190.67020.068*
C3'B0.9572 (2)0.6497 (6)0.62247 (15)0.0509 (9)
H3'B1.00900.58880.62180.061*
C4'B0.8927 (2)0.6193 (5)0.58317 (14)0.0421 (8)
C5'B0.8203 (2)0.7440 (5)0.59756 (16)0.0527 (9)
H5'10.79870.81610.56180.063*
H5'20.77550.66600.61250.063*
C6'B0.9285 (3)0.7125 (7)0.73152 (17)0.0602 (10)
H6'10.98170.65440.74570.072*
H6'20.91580.81500.75980.072*
O6'B0.86357 (16)0.5669 (5)0.72953 (12)0.0590 (7)
C7'B0.8842 (3)0.3783 (8)0.7355 (2)0.0701 (12)
O7'B0.9543 (2)0.3234 (6)0.7413 (3)0.1290 (17)
C8'B0.8083 (3)0.2535 (8)0.7344 (3)0.0978 (17)
H8'10.77570.27140.69630.147*
H8'20.77540.28890.76760.147*
H8'30.82480.11940.73850.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0490 (15)0.0345 (16)0.0354 (14)0.0043 (12)0.0040 (11)0.0028 (12)
C2A0.0431 (18)0.0357 (19)0.0363 (17)0.0042 (14)0.0023 (13)0.0052 (15)
O2A0.0752 (17)0.0271 (13)0.0474 (14)0.0011 (11)0.0077 (12)0.0063 (11)
N3A0.0467 (15)0.0321 (15)0.0358 (13)0.0009 (12)0.0043 (12)0.0016 (12)
C4A0.0357 (17)0.0348 (18)0.0402 (18)0.0003 (14)0.0014 (14)0.0021 (14)
N4A0.0597 (17)0.0323 (14)0.0387 (14)0.0030 (13)0.0015 (13)0.0020 (12)
C5A0.061 (2)0.0297 (18)0.0419 (18)0.0038 (15)0.0039 (16)0.0035 (15)
C6A0.059 (2)0.0329 (17)0.0385 (17)0.0039 (16)0.0045 (15)0.0102 (16)
O1'A0.0702 (17)0.092 (2)0.0558 (16)0.0396 (16)0.0104 (13)0.0267 (15)
C2'A0.053 (2)0.059 (2)0.0429 (19)0.0133 (18)0.0019 (16)0.0052 (19)
C3'A0.0523 (19)0.052 (2)0.047 (2)0.0130 (18)0.0002 (16)0.0014 (18)
C4'A0.0419 (17)0.0391 (18)0.0388 (17)0.0010 (15)0.0067 (14)0.0012 (15)
C5'A0.0507 (19)0.053 (2)0.0418 (19)0.0118 (17)0.0005 (14)0.0005 (17)
C6'A0.062 (2)0.065 (3)0.063 (2)0.007 (2)0.0097 (19)0.014 (2)
O6'A0.085 (2)0.072 (2)0.0725 (19)0.0027 (17)0.0176 (16)0.0191 (17)
C7'A0.072 (3)0.112 (5)0.077 (4)0.029 (3)0.012 (3)0.038 (3)
O7'A0.111 (3)0.177 (5)0.068 (2)0.007 (3)0.004 (2)0.006 (3)
C8'A0.120 (5)0.123 (5)0.147 (5)0.030 (4)0.063 (4)0.086 (5)
N1B0.0546 (17)0.0308 (14)0.0333 (14)0.0027 (12)0.0026 (12)0.0006 (12)
C2B0.0498 (19)0.0278 (18)0.0385 (17)0.0065 (15)0.0025 (14)0.0010 (15)
O2B0.0885 (18)0.0292 (13)0.0450 (13)0.0015 (12)0.0061 (12)0.0018 (11)
N3B0.0553 (16)0.0290 (14)0.0358 (14)0.0021 (12)0.0033 (12)0.0011 (13)
C4B0.0483 (18)0.0276 (16)0.0369 (17)0.0031 (14)0.0066 (14)0.0011 (15)
N4B0.083 (2)0.0312 (15)0.0391 (15)0.0010 (14)0.0031 (14)0.0021 (13)
C5B0.055 (2)0.0299 (17)0.0407 (18)0.0033 (14)0.0023 (15)0.0028 (15)
C6B0.0516 (19)0.041 (2)0.0378 (18)0.0023 (16)0.0061 (15)0.0061 (16)
O1'B0.0845 (18)0.0507 (16)0.0560 (15)0.0122 (15)0.0016 (13)0.0187 (14)
C2'B0.062 (2)0.054 (2)0.052 (2)0.012 (2)0.0017 (18)0.0180 (19)
C3'B0.0478 (19)0.057 (2)0.049 (2)0.0045 (16)0.0067 (16)0.0121 (17)
C4'B0.052 (2)0.0360 (18)0.0388 (18)0.0020 (15)0.0083 (15)0.0048 (15)
C5'B0.059 (2)0.051 (2)0.0481 (19)0.0062 (18)0.0032 (16)0.0081 (18)
C6'B0.063 (2)0.068 (3)0.049 (2)0.001 (2)0.0021 (18)0.021 (2)
O6'B0.0542 (15)0.0656 (19)0.0578 (16)0.0017 (14)0.0080 (12)0.0085 (14)
C7'B0.065 (3)0.070 (3)0.077 (3)0.007 (2)0.018 (2)0.005 (3)
O7'B0.072 (2)0.091 (3)0.225 (5)0.022 (2)0.018 (3)0.006 (3)
C8'B0.090 (3)0.072 (4)0.136 (5)0.014 (3)0.038 (3)0.020 (3)
Geometric parameters (Å, º) top
N1A—C6A1.379 (4)N1B—C6B1.376 (4)
N1A—C2A1.407 (4)N1B—C2B1.401 (4)
N1A—C4'A1.425 (4)N1B—C4'B1.432 (4)
C2A—O2A1.239 (4)C2B—O2B1.235 (4)
C2A—N3A1.359 (4)C2B—N3B1.350 (4)
N3A—C4A1.331 (4)N3B—C4B1.346 (4)
C4A—N4A1.331 (4)C4B—N4B1.323 (4)
C4A—C5A1.435 (4)C4B—C5B1.429 (4)
N4A—H4A10.8600N4B—H4B10.8600
N4A—H4A20.8600N4B—H4B20.8600
C5A—C6A1.326 (5)C5B—C6B1.343 (5)
C5A—H5A0.9300C5B—H5B0.9300
C6A—H6A0.9300C6B—H6B0.9300
O1'A—C5'A1.421 (4)O1'B—C5'B1.429 (4)
O1'A—C2'A1.428 (4)O1'B—C2'B1.442 (5)
C2'A—C6'A1.499 (6)C2'B—C3'B1.488 (5)
C2'A—C3'A1.503 (5)C2'B—C6'B1.513 (6)
C2'A—H2'A0.9800C2'B—H2'B0.9800
C3'A—C4'A1.308 (5)C3'B—C4'B1.312 (5)
C3'A—H3'A0.9300C3'B—H3'B0.9300
C4'A—C5'A1.492 (5)C4'B—C5'B1.492 (5)
C5'A—H5'30.9700C5'B—H5'10.9700
C5'A—H5'40.9700C5'B—H5'20.9700
C6'A—O6'A1.452 (5)C6'B—O6'B1.440 (5)
C6'A—H6'30.9700C6'B—H6'10.9700
C6'A—H6'40.9700C6'B—H6'20.9700
O6'A—C7'A1.315 (6)O6'B—C7'B1.340 (6)
C7'A—O7'A1.210 (8)C7'B—O7'B1.181 (5)
C7'A—C8'A1.515 (8)C7'B—C8'B1.484 (7)
C8'A—H8'40.9600C8'B—H8'10.9600
C8'A—H8'50.9600C8'B—H8'20.9600
C8'A—H8'60.9600C8'B—H8'30.9600
C6A—N1A—C2A119.7 (3)C6B—N1B—C2B120.7 (3)
C6A—N1A—C4'A119.1 (3)C6B—N1B—C4'B120.1 (3)
C2A—N1A—C4'A121.1 (3)C2B—N1B—C4'B119.1 (3)
O2A—C2A—N3A121.9 (3)O2B—C2B—N3B121.9 (3)
O2A—C2A—N1A119.2 (3)O2B—C2B—N1B119.0 (3)
N3A—C2A—N1A118.9 (3)N3B—C2B—N1B119.0 (3)
C4A—N3A—C2A120.2 (3)C4B—N3B—C2B120.0 (3)
N4A—C4A—N3A118.2 (3)N4B—C4B—N3B117.5 (3)
N4A—C4A—C5A119.9 (3)N4B—C4B—C5B120.3 (3)
N3A—C4A—C5A121.8 (3)N3B—C4B—C5B122.2 (3)
C4A—N4A—H4A1120.0C4B—N4B—H4B1120.0
C4A—N4A—H4A2120.0C4B—N4B—H4B2120.0
H4A1—N4A—H4A2120.0H4B1—N4B—H4B2120.0
C6A—C5A—C4A117.3 (3)C6B—C5B—C4B117.2 (3)
C6A—C5A—H5A121.4C6B—C5B—H5B121.4
C4A—C5A—H5A121.4C4B—C5B—H5B121.4
C5A—C6A—N1A121.7 (3)C5B—C6B—N1B120.9 (3)
C5A—C6A—H6A119.1C5B—C6B—H6B119.5
N1A—C6A—H6A119.1N1B—C6B—H6B119.5
C5'A—O1'A—C2'A110.3 (3)C5'B—O1'B—C2'B109.1 (3)
O1'A—C2'A—C6'A109.9 (4)O1'B—C2'B—C3'B104.3 (3)
O1'A—C2'A—C3'A104.6 (3)O1'B—C2'B—C6'B111.3 (3)
C6'A—C2'A—C3'A112.0 (3)C3'B—C2'B—C6'B113.2 (3)
O1'A—C2'A—H2'A110.1O1'B—C2'B—H2'B109.3
C6'A—C2'A—H2'A110.1C3'B—C2'B—H2'B109.3
C3'A—C2'A—H2'A110.1C6'B—C2'B—H2'B109.3
C4'A—C3'A—C2'A109.6 (3)C4'B—C3'B—C2'B109.5 (3)
C4'A—C3'A—H3'A125.2C4'B—C3'B—H3'B125.3
C2'A—C3'A—H3'A125.2C2'B—C3'B—H3'B125.3
C3'A—C4'A—N1A126.0 (3)C3'B—C4'B—N1B126.1 (3)
C3'A—C4'A—C5'A110.7 (3)C3'B—C4'B—C5'B110.8 (3)
N1A—C4'A—C5'A123.0 (3)N1B—C4'B—C5'B122.8 (3)
O1'A—C5'A—C4'A104.7 (3)O1'B—C5'B—C4'B103.8 (3)
O1'A—C5'A—H5'3110.8O1'B—C5'B—H5'1111.0
C4'A—C5'A—H5'3110.8C4'B—C5'B—H5'1111.0
O1'A—C5'A—H5'4110.8O1'B—C5'B—H5'2111.0
C4'A—C5'A—H5'4110.8C4'B—C5'B—H5'2111.0
H5'3—C5'A—H5'4108.9H5'1—C5'B—H5'2109.0
O6'A—C6'A—C2'A111.8 (3)O6'B—C6'B—C2'B109.4 (3)
O6'A—C6'A—H6'3109.3O6'B—C6'B—H6'1109.8
C2'A—C6'A—H6'3109.3C2'B—C6'B—H6'1109.8
O6'A—C6'A—H6'4109.3O6'B—C6'B—H6'2109.8
C2'A—C6'A—H6'4109.3C2'B—C6'B—H6'2109.8
H6'3—C6'A—H6'4107.9H6'1—C6'B—H6'2108.2
C7'A—O6'A—C6'A116.2 (4)C7'B—O6'B—C6'B119.7 (3)
O7'A—C7'A—O6'A124.0 (6)O7'B—C7'B—O6'B122.9 (5)
O7'A—C7'A—C8'A125.6 (6)O7'B—C7'B—C8'B125.9 (5)
O6'A—C7'A—C8'A110.4 (6)O6'B—C7'B—C8'B111.1 (4)
C7'A—C8'A—H8'4109.5C7'B—C8'B—H8'1109.5
C7'A—C8'A—H8'5109.5C7'B—C8'B—H8'2109.5
H8'4—C8'A—H8'5109.5H8'1—C8'B—H8'2109.5
C7'A—C8'A—H8'6109.5C7'B—C8'B—H8'3109.5
H8'4—C8'A—H8'6109.5H8'1—C8'B—H8'3109.5
H8'5—C8'A—H8'6109.5H8'2—C8'B—H8'3109.5
C6A—N1A—C2A—O2A174.8 (3)C6B—N1B—C2B—O2B178.6 (3)
C4'A—N1A—C2A—O2A0.7 (5)C4'B—N1B—C2B—O2B2.7 (5)
C6A—N1A—C2A—N3A5.4 (4)C6B—N1B—C2B—N3B1.7 (5)
C4'A—N1A—C2A—N3A179.1 (3)C4'B—N1B—C2B—N3B177.5 (3)
O2A—C2A—N3A—C4A178.9 (3)O2B—C2B—N3B—C4B179.9 (3)
N1A—C2A—N3A—C4A1.4 (4)N1B—C2B—N3B—C4B0.3 (5)
C2A—N3A—C4A—N4A175.5 (3)C2B—N3B—C4B—N4B178.8 (3)
C2A—N3A—C4A—C5A4.1 (5)C2B—N3B—C4B—C5B0.8 (5)
N4A—C4A—C5A—C6A174.1 (3)N4B—C4B—C5B—C6B179.0 (3)
N3A—C4A—C5A—C6A5.6 (5)N3B—C4B—C5B—C6B0.6 (5)
C4A—C5A—C6A—N1A1.4 (5)C4B—C5B—C6B—N1B0.8 (5)
C2A—N1A—C6A—C5A3.9 (5)C2B—N1B—C6B—C5B1.9 (5)
C4'A—N1A—C6A—C5A179.5 (3)C4'B—N1B—C6B—C5B177.7 (3)
C5'A—O1'A—C2'A—C6'A122.7 (3)C5'B—O1'B—C2'B—C3'B15.9 (4)
C5'A—O1'A—C2'A—C3'A2.3 (4)C5'B—O1'B—C2'B—C6'B106.5 (3)
O1'A—C2'A—C3'A—C4'A0.2 (4)O1'B—C2'B—C3'B—C4'B10.2 (4)
C6'A—C2'A—C3'A—C4'A119.2 (4)C6'B—C2'B—C3'B—C4'B111.0 (4)
C2'A—C3'A—C4'A—N1A175.6 (3)C2'B—C3'B—C4'B—N1B172.6 (3)
C2'A—C3'A—C4'A—C5'A1.9 (4)C2'B—C3'B—C4'B—C5'B0.8 (4)
C6A—N1A—C4'A—C3'A38.5 (5)C6B—N1B—C4'B—C3'B54.7 (5)
C2A—N1A—C4'A—C3'A137.0 (4)C2B—N1B—C4'B—C3'B121.2 (4)
C6A—N1A—C4'A—C5'A134.5 (3)C6B—N1B—C4'B—C5'B118.0 (4)
C2A—N1A—C4'A—C5'A50.0 (4)C2B—N1B—C4'B—C5'B66.2 (4)
C2'A—O1'A—C5'A—C4'A3.3 (4)C2'B—O1'B—C5'B—C4'B15.3 (4)
C3'A—C4'A—C5'A—O1'A3.2 (4)C3'B—C4'B—C5'B—O1'B8.9 (4)
N1A—C4'A—C5'A—O1'A177.1 (3)N1B—C4'B—C5'B—O1'B177.4 (3)
O1'A—C2'A—C6'A—O6'A54.0 (4)O1'B—C2'B—C6'B—O6'B55.5 (4)
C3'A—C2'A—C6'A—O6'A169.8 (3)C3'B—C2'B—C6'B—O6'B61.6 (4)
C2'A—C6'A—O6'A—C7'A88.5 (5)C2'B—C6'B—O6'B—C7'B108.8 (4)
C6'A—O6'A—C7'A—O7'A3.2 (7)C6'B—O6'B—C7'B—O7'B1.6 (7)
C6'A—O6'A—C7'A—C8'A175.4 (4)C6'B—O6'B—C7'B—C8'B178.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H4A1···N3Bi0.862.193.031 (4)164
N4A—H4A2···O2Aii0.862.273.002 (4)144
N4B—H4B1···N3Aiii0.862.153.004 (4)170
N4B—H4B2···O2Biv0.862.122.901 (4)150
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+3/2, y1/2, z+1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H13N3O4
Mr251.24
Crystal system, space groupMonoclinic, I2
Temperature (K)213
a, b, c (Å)15.995 (2), 6.865 (1), 21.934 (5)
β (°) 94.16 (2)
V3)2402.1 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.33 × 0.22 × 0.18
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8222, 2283, 1774
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.10
No. of reflections2283
No. of parameters327
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15

Computer programs: CAD-4 Operations Manual (Enraf-Nonius, 1977), CAD-4 Operations Manual, MolEN (Fair, 1990), SHELXTL (Sheldrick, 1995), SHELXL97 (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
N1A—C6A1.379 (4)N1B—C6B1.376 (4)
N1A—C2A1.407 (4)N1B—C2B1.401 (4)
N1A—C4'A1.425 (4)N1B—C4'B1.432 (4)
C2A—O2A1.239 (4)C2B—O2B1.235 (4)
C2A—N3A1.359 (4)C2B—N3B1.350 (4)
N3A—C4A1.331 (4)N3B—C4B1.346 (4)
C4A—N4A1.331 (4)C4B—N4B1.323 (4)
C4A—C5A1.435 (4)C4B—C5B1.429 (4)
C5A—C6A1.326 (5)C5B—C6B1.343 (5)
O1'A—C5'A1.421 (4)O1'B—C5'B1.429 (4)
O1'A—C2'A1.428 (4)O1'B—C2'B1.442 (5)
C2'A—C6'A1.499 (6)C2'B—C3'B1.488 (5)
C2'A—C3'A1.503 (5)C2'B—C6'B1.513 (6)
C3'A—C4'A1.308 (5)C3'B—C4'B1.312 (5)
C4'A—C5'A1.492 (5)C4'B—C5'B1.492 (5)
C6'A—O6'A1.452 (5)C6'B—O6'B1.440 (5)
O6'A—C7'A1.315 (6)O6'B—C7'B1.340 (6)
C7'A—O7'A1.210 (8)C7'B—O7'B1.181 (5)
C7'A—C8'A1.515 (8)C7'B—C8'B1.484 (7)
C6A—N1A—C2A119.7 (3)C6B—N1B—C2B120.7 (3)
C6A—N1A—C4'A119.1 (3)C6B—N1B—C4'B120.1 (3)
C2A—N1A—C4'A121.1 (3)C2B—N1B—C4'B119.1 (3)
O2A—C2A—N3A121.9 (3)O2B—C2B—N3B121.9 (3)
O2A—C2A—N1A119.2 (3)O2B—C2B—N1B119.0 (3)
N3A—C2A—N1A118.9 (3)N3B—C2B—N1B119.0 (3)
C4A—N3A—C2A120.2 (3)C4B—N3B—C2B120.0 (3)
N4A—C4A—N3A118.2 (3)N4B—C4B—N3B117.5 (3)
N4A—C4A—C5A119.9 (3)N4B—C4B—C5B120.3 (3)
N3A—C4A—C5A121.8 (3)N3B—C4B—C5B122.2 (3)
C6A—C5A—C4A117.3 (3)C6B—C5B—C4B117.2 (3)
C5A—C6A—N1A121.7 (3)C5B—C6B—N1B120.9 (3)
C5'A—O1'A—C2'A110.3 (3)C5'B—O1'B—C2'B109.1 (3)
O1'A—C2'A—C6'A109.9 (4)O1'B—C2'B—C3'B104.3 (3)
O1'A—C2'A—C3'A104.6 (3)O1'B—C2'B—C6'B111.3 (3)
C6'A—C2'A—C3'A112.0 (3)C3'B—C2'B—C6'B113.2 (3)
C4'A—C3'A—C2'A109.6 (3)C4'B—C3'B—C2'B109.5 (3)
C3'A—C4'A—N1A126.0 (3)C3'B—C4'B—N1B126.1 (3)
C3'A—C4'A—C5'A110.7 (3)C3'B—C4'B—C5'B110.8 (3)
N1A—C4'A—C5'A123.0 (3)N1B—C4'B—C5'B122.8 (3)
O1'A—C5'A—C4'A104.7 (3)O1'B—C5'B—C4'B103.8 (3)
O6'A—C6'A—C2'A111.8 (3)O6'B—C6'B—C2'B109.4 (3)
C7'A—O6'A—C6'A116.2 (4)C7'B—O6'B—C6'B119.7 (3)
O7'A—C7'A—O6'A124.0 (6)O7'B—C7'B—O6'B122.9 (5)
O7'A—C7'A—C8'A125.6 (6)O7'B—C7'B—C8'B125.9 (5)
O6'A—C7'A—C8'A110.4 (6)O6'B—C7'B—C8'B111.1 (4)
C6A—N1A—C4'A—C3'A38.5 (5)C6B—N1B—C4'B—C3'B54.7 (5)
C3'A—C2'A—C6'A—O6'A169.8 (3)C2'B—O1'B—C5'B—C4'B15.3 (4)
C2'A—C6'A—O6'A—C7'A88.5 (5)C3'B—C4'B—C5'B—O1'B8.9 (4)
C5'B—O1'B—C2'B—C3'B15.9 (4)C3'B—C2'B—C6'B—O6'B61.6 (4)
O1'B—C2'B—C3'B—C4'B10.2 (4)C2'B—C6'B—O6'B—C7'B108.8 (4)
C2'B—C3'B—C4'B—C5'B0.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H4A1···N3Bi0.862.193.031 (4)164
N4A—H4A2···O2Aii0.862.273.002 (4)144
N4B—H4B1···N3Aiii0.862.153.004 (4)170
N4B—H4B2···O2Biv0.862.122.901 (4)150
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+3/2, y1/2, z+1/2; (iv) x, y1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds