Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, [Ba2(NCS)4(C17H25NO5)2], each Ba2+ cation is coordinated by one N atom, four O atoms of the macrocyclic unit, two N atoms of thio­cyanate unit and one O atom from each of the tropone units.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100009653/qa0361sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100009653/qa0361Isup2.hkl
Contains datablock I

CCDC reference: 150380

Comment top

Recently, we have prepared several aza-crown ethers having a tropone system and their guest cation complexes. By addition of metal thiocyanates, the original absorption bands of the organic molecule at 355 and 417 nm disappeared and a new absorption band appeared around 332 nm, suggesting that the conformation of the 2-aminotropone moiety changes (Takeshita et al., 1995). The X-ray crystallographic analysis of the Ca(NCS)2 complex of N-(tropon-2-yl)-1,4,7,10-tetraoxa-13-azacyclopentadecane (ttapd) showed that the Ca2+ ion is eight-coordinated, which includes four ether O atoms, one azacrown N, two thiocyanate N atoms and one tropone O atom instead of an O atom from the solvent, such as methanol or water (Kubo et al., 1999b). From the results of the association constants determined by the absorption spectral changes of ttapd for various guest cations, ttapd showed Ba2+ ion selectivity (Takeshita et al., 1995). The stoichiometry of the complexation between ttapd and Ba2+ ion was confirmed as n:n (n = 1 or 2), at least in acetonitrile, by the molar-ratio method. However, the cavity of ttapd seems to be too small to accommodate a Ba2+ ion and ttapd also lacks one potential coordination site, if one assumes a normal Ba2+ ion coodination number of nine. In order to reveal the detailed structure of ttapd and the Ba2+ ion complex, the barium thiocyanate complex, (I), has been investigated by X-ray crystallographic analysis.

The title complex has 2:2 stoichiometry with Ci symmetry. The structure of (I) is distinct from those of 2,5,8,11,14-pentaoxapentadecane–Ba(NCS)2–2H2O (Wei et al., 1987), 1,4,7,10,13,16-hexaoxacyclooctadecane–Ba(NCS)2–H2O (Wei et al., 1988) and 10-methyl-9-[2-methyl-4-(1,4,7,10-tetraoxa-13-aza-13- cyclopentadecyl)phenyl]acridinium—Ba(ClO4)2—CH3CN (Häming et al., 1990). Each Ba2+ ion of complex (I) has nine-coordination, which includes four ether O atoms (O1, O2, O3 and O4), one azacrown N1 atom, two thiocyanate N atoms (N2 and N3), one tropone O5 atom and one O atom from the other tropone, O5i [symmetry code: (i) 2 − x, −y, 1 − z]. One N atom (N1) and four O atoms (O1, O2, O3, and O4) of the azacrown are coordinated on one side of Ba1, and the two thiocyanate N atoms (N2 and N3) and the two tropone O atoms (O5 and O5i) on the opposite side. The dihedral angles between the least-squares azacrown plane defined by O1/O2/O3/O4/N1 and the tropone ring defined by C11–C17/O5 is 116.1 (1)°, while the two BaNCS planes intersect at 76.5 (5) and 50.6 (2)° to the azacrown plane, respectively.

The average value [2.846 (3) Å] of four Ba1—O ether distances is similar to those found in Ba(NCS)2–2,5,8,11,14-pentaoxapentadecane [2.878 (3) Å; Wei et al., 1987], Ba(NCS)2–1,4,7,10,13,16-hexaoxacyclooctadecane [2.835 (6) Å; Wei et al., 1988] and to the sum of the ionic and van der Waals radii (2.87 Å = 1.47 + 1.40 Å; Shannon, 1976; Lide, 1990). The Ba1—O5 distance [2.789 (2) Å] is significantly shorter than the Ba1—O ether distances and the Ba1—O5i distance [2.937 (2) Å]. The Ba1—N1 distance [3.096 (3) Å] is shorter than those of 10-methyl-9-[2-methyl-4-(1,4,7,10-tetraoxa-13-aza-13- cyclopentadecyl)phenyl]acridinium—Ba(ClO4)2—CH3CN [3.260 (8) Å; Häming et al., 1990] and N,N'-bis(1-naphthylmethyl)-1,4,10,13-tetraoxa-7,16- diazacyclooctadecane-Ba(NCS)2—H2O [3.127 (5) Å; Kubo et al., 1999a] and is similar to the sum of the ionic and van der Waals radii (3.02 Å = 1.47 + 1.55 Å; Shannon, 1976; Lide, 1990), indicating fairly strong coordination of 2-aminotropone to the Ba2+ ion.

The tropone moiety of complex (I) shows pronounced bond alternation similar to those of ttapd–Ca(NCS)2 (Kubo et al., 1999b) and tropone (Barrow & Mills, 1973) and its ring system deviates from planarity; the angle of the intersection between the least-squares planes A (defined by C11, C12, C17 and O5) and B (defined by C12, C13, C16 and C17) is 20.5 (2)°, while that between the least-squares planes B and C (defined by C13–C16) is 170.2 (3)°.

Experimental top

Ttapd was condensed with aza-15-crown-5 ether and 2-(p-toluenesulfonyloxy)tropone in toluene and EtOH (Takeshita et al., 1995). Single crystals of (I) were obtained by slow evaporation of an equimolar mixture of Ba(NCS)2 and ttapd in CH3CN.

Refinement top

All H atoms were placed at ideal positions and constrained to ride on the atom to which they are bonded. The H-atom isotropic displacement parameters were fixed to 1.2Ueq of the riding atoms.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software (Enraf-Nonius, 1989); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Xtal_GX (Hall & du Boulay, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

(I) top
Crystal data top
[Ba2(NCS)4(C17H25NO5)2]Z = 2
Mr = 576.88F(000) = 576
Triclinic, P1Dx = 1.646 Mg m3
a = 11.668 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.445 (5) ÅCell parameters from 25 reflections
c = 8.918 (5) Åθ = 10.7–18.1°
α = 96.697 (5)°µ = 1.92 mm1
β = 106.143 (5)°T = 296 K
γ = 106.720 (5)°Prism, yellow
V = 1163.8 (9) Å30.30 × 0.27 × 0.23 mm
Data collection top
Enraf-Nonius FR590
diffractometer
4973 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 28.0°, θmin = 2.7°
ω–2θ scansh = 1415
Absorption correction: empirical (using intensity measurements)
via ψ scans (North et al., 1968)
k = 160
Tmin = 0.570, Tmax = 0.643l = 1111
5850 measured reflections3 standard reflections every 120 min
5597 independent reflections intensity decay: 2.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0219P)2 + 1.0237P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.002
5597 reflectionsΔρmax = 0.67 e Å3
272 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0092 (5)
Crystal data top
[Ba2(NCS)4(C17H25NO5)2]γ = 106.720 (5)°
Mr = 576.88V = 1163.8 (9) Å3
Triclinic, P1Z = 2
a = 11.668 (5) ÅMo Kα radiation
b = 12.445 (5) ŵ = 1.92 mm1
c = 8.918 (5) ÅT = 296 K
α = 96.697 (5)°0.30 × 0.27 × 0.23 mm
β = 106.143 (5)°
Data collection top
Enraf-Nonius FR590
diffractometer
4973 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scans (North et al., 1968)
Rint = 0.018
Tmin = 0.570, Tmax = 0.6433 standard reflections every 120 min
5850 measured reflections intensity decay: 2.8%
5597 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.15Δρmax = 0.67 e Å3
5597 reflectionsΔρmin = 0.53 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.958569 (15)0.197204 (14)0.42676 (2)0.03188 (7)
N10.6842 (2)0.2092 (2)0.2528 (3)0.0392 (5)
N20.8317 (4)0.2901 (4)0.6257 (4)0.0704 (10)
N31.1699 (3)0.1827 (3)0.6796 (4)0.0685 (10)
O10.7643 (2)0.41122 (18)0.2474 (3)0.0485 (5)
O21.0118 (3)0.4043 (2)0.3731 (3)0.0555 (6)
O31.0708 (2)0.2465 (2)0.1917 (3)0.0516 (6)
O40.8985 (2)0.1263 (3)0.1362 (3)0.0561 (6)
O50.85073 (19)0.03251 (18)0.4955 (3)0.0404 (5)
S10.66979 (13)0.43922 (10)0.74368 (18)0.0853 (4)
S21.34209 (10)0.18728 (11)0.96152 (12)0.0638 (3)
C10.7933 (4)0.5076 (3)0.3017 (5)0.0613 (10)
H1A0.72570.57850.24190.074*
H1B0.80170.50120.41400.074*
C20.9139 (4)0.5083 (3)0.2774 (6)0.0644 (11)
H2A0.93420.57430.30910.077*
H2B0.90630.51260.16560.077*
C31.1269 (4)0.3809 (4)0.3368 (6)0.0694 (12)
H3A1.14970.44990.32940.083*
H3B1.19420.32230.42260.083*
C41.1148 (5)0.3416 (4)0.1848 (6)0.0714 (12)
H4A1.19630.31920.16800.086*
H4B1.05560.40350.09640.086*
C51.0129 (5)0.2332 (6)0.0352 (5)0.0850 (16)
H5A1.07100.22880.02510.102*
H5B0.93750.29940.01940.102*
C60.9802 (5)0.1335 (5)0.0427 (6)0.0870 (17)
H6A0.93870.12820.06530.104*
H6B1.05750.06770.08700.104*
C70.7745 (3)0.1334 (3)0.0460 (4)0.0537 (9)
H7A0.73270.20690.02900.064*
H7B0.77920.07330.01450.064*
C80.6992 (3)0.1209 (3)0.1544 (4)0.0468 (7)
H8A0.74000.04560.22530.056*
H8B0.61570.12410.08990.056*
C90.6101 (3)0.3250 (3)0.1517 (4)0.0504 (8)
H9A0.62890.33020.05230.060*
H9B0.52060.33550.12590.060*
C100.6364 (3)0.4200 (3)0.2289 (4)0.0502 (8)
H10A0.62410.41310.33230.060*
H10B0.57930.49390.16270.060*
C110.7390 (3)0.0687 (3)0.4968 (4)0.0388 (6)
C120.6481 (3)0.1753 (3)0.3845 (4)0.0395 (6)
C130.5436 (3)0.2441 (3)0.4123 (5)0.0563 (9)
H130.49860.31150.33490.068*
C140.4926 (4)0.2315 (4)0.5357 (6)0.0709 (12)
H140.43220.29740.54080.085*
C150.5185 (4)0.1375 (5)0.6481 (6)0.0781 (14)
H150.47220.14460.71820.094*
C160.6088 (4)0.0304 (5)0.6684 (5)0.0748 (13)
H160.60400.02960.73620.090*
C170.7017 (3)0.0017 (4)0.6039 (5)0.0586 (10)
H170.75060.07580.63430.070*
C180.7639 (3)0.3515 (3)0.6745 (4)0.0473 (7)
C191.2409 (3)0.1843 (3)0.7964 (4)0.0439 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.03061 (9)0.03009 (9)0.03254 (9)0.00721 (6)0.01006 (6)0.00604 (6)
N10.0335 (12)0.0337 (12)0.0390 (13)0.0017 (10)0.0070 (10)0.0013 (10)
N20.067 (2)0.090 (3)0.0562 (19)0.0153 (19)0.0298 (17)0.0255 (19)
N30.0545 (19)0.059 (2)0.070 (2)0.0104 (16)0.0053 (17)0.0170 (17)
O10.0493 (13)0.0313 (11)0.0598 (14)0.0043 (9)0.0214 (11)0.0058 (10)
O20.0632 (16)0.0391 (12)0.0725 (17)0.0192 (11)0.0320 (13)0.0134 (12)
O30.0533 (14)0.0620 (15)0.0449 (13)0.0217 (12)0.0215 (11)0.0123 (11)
O40.0539 (14)0.0817 (18)0.0482 (13)0.0323 (13)0.0238 (11)0.0304 (13)
O50.0275 (9)0.0334 (10)0.0525 (12)0.0039 (8)0.0107 (9)0.0021 (9)
S10.0828 (8)0.0583 (6)0.1126 (10)0.0057 (6)0.0658 (8)0.0019 (6)
S20.0500 (5)0.0870 (7)0.0475 (5)0.0222 (5)0.0079 (4)0.0105 (5)
C10.074 (3)0.0313 (16)0.077 (3)0.0106 (17)0.031 (2)0.0115 (17)
C20.083 (3)0.0351 (18)0.078 (3)0.0223 (18)0.031 (2)0.0055 (17)
C30.069 (3)0.063 (3)0.100 (3)0.037 (2)0.045 (3)0.025 (2)
C40.080 (3)0.066 (3)0.087 (3)0.033 (2)0.051 (3)0.010 (2)
C50.077 (3)0.157 (5)0.051 (2)0.064 (3)0.035 (2)0.038 (3)
C60.098 (4)0.135 (5)0.081 (3)0.069 (4)0.060 (3)0.071 (3)
C70.0505 (19)0.059 (2)0.0420 (17)0.0082 (16)0.0069 (15)0.0188 (16)
C80.0378 (16)0.0469 (18)0.0484 (18)0.0114 (14)0.0045 (13)0.0136 (14)
C90.0419 (17)0.0416 (17)0.0468 (18)0.0009 (14)0.0016 (14)0.0037 (14)
C100.0440 (17)0.0366 (16)0.0522 (19)0.0069 (13)0.0142 (15)0.0020 (14)
C110.0317 (14)0.0389 (15)0.0415 (15)0.0099 (12)0.0086 (12)0.0055 (12)
C120.0279 (13)0.0361 (15)0.0491 (17)0.0066 (11)0.0097 (12)0.0062 (13)
C130.0333 (16)0.053 (2)0.076 (3)0.0034 (14)0.0220 (16)0.0060 (18)
C140.046 (2)0.081 (3)0.097 (3)0.017 (2)0.042 (2)0.028 (3)
C150.053 (2)0.121 (4)0.071 (3)0.029 (3)0.037 (2)0.020 (3)
C160.052 (2)0.101 (4)0.065 (3)0.028 (2)0.021 (2)0.015 (2)
C170.0436 (18)0.057 (2)0.065 (2)0.0116 (16)0.0169 (17)0.0112 (18)
C180.0417 (17)0.0533 (19)0.0426 (17)0.0101 (15)0.0160 (14)0.0037 (14)
C190.0370 (15)0.0349 (15)0.0547 (19)0.0078 (12)0.0132 (14)0.0052 (13)
Geometric parameters (Å, º) top
Ba1—N22.762 (3)O3—C51.423 (5)
Ba1—N32.784 (3)O4—C71.418 (4)
Ba1—O52.789 (2)O4—C61.444 (5)
Ba1—O42.804 (3)O5—C111.255 (4)
Ba1—O22.838 (3)O5—Ba1i2.937 (2)
Ba1—O32.858 (3)S1—C181.619 (4)
Ba1—O12.882 (2)S2—C191.623 (4)
Ba1—O5i2.937 (2)C1—C21.485 (6)
Ba1—N13.096 (3)C3—C41.478 (7)
Ba1—Ba1i4.6697 (19)C5—C61.398 (7)
N1—C121.413 (4)C7—C81.498 (5)
N1—C91.478 (4)C9—C101.500 (5)
N1—C81.487 (4)C11—C171.433 (5)
N2—C181.149 (5)C11—C121.475 (4)
N3—C191.144 (5)C12—C131.378 (4)
O1—C101.425 (4)C13—C141.403 (6)
O1—C11.437 (4)C14—C151.349 (7)
O2—C31.426 (5)C15—C161.396 (7)
O2—C21.434 (5)C16—C171.343 (6)
O3—C41.422 (5)
N2—Ba1—N382.41 (12)C12—N1—C8112.2 (3)
N2—Ba1—O578.26 (10)C9—N1—C8111.2 (3)
N3—Ba1—O5112.09 (10)C12—N1—Ba1100.49 (17)
N2—Ba1—O4137.27 (10)C9—N1—Ba1110.04 (19)
N3—Ba1—O4139.77 (10)C8—N1—Ba1104.29 (17)
O5—Ba1—O478.18 (8)C18—N2—Ba1162.3 (3)
N2—Ba1—O287.92 (11)C19—N3—Ba1167.7 (3)
N3—Ba1—O272.26 (10)C10—O1—C1111.7 (3)
O5—Ba1—O2164.57 (7)C10—O1—Ba1117.30 (18)
O4—Ba1—O2108.47 (8)C1—O1—Ba1111.4 (2)
N2—Ba1—O3144.62 (11)C3—O2—C2114.3 (3)
N3—Ba1—O393.03 (11)C3—O2—Ba1109.3 (2)
O5—Ba1—O3134.57 (7)C2—O2—Ba1120.8 (2)
O4—Ba1—O359.38 (8)C4—O3—C5110.7 (4)
O2—Ba1—O357.58 (8)C4—O3—Ba1121.0 (2)
N2—Ba1—O171.66 (10)C5—O3—Ba1116.5 (2)
N3—Ba1—O1123.40 (9)C7—O4—C6114.7 (3)
O5—Ba1—O1110.51 (7)C7—O4—Ba1124.0 (2)
O4—Ba1—O184.07 (8)C6—O4—Ba1115.4 (2)
O2—Ba1—O157.77 (8)C11—O5—Ba1116.94 (19)
O3—Ba1—O182.20 (8)C11—O5—Ba1i133.65 (19)
N2—Ba1—O5i125.60 (10)Ba1—O5—Ba1i109.25 (7)
N3—Ba1—O5i70.08 (9)O1—C1—C2108.3 (3)
O5—Ba1—O5i70.75 (7)O2—C2—C1108.0 (3)
O4—Ba1—O5i78.01 (8)O2—C3—C4111.5 (4)
O2—Ba1—O5i123.78 (7)O3—C4—C3108.9 (3)
O3—Ba1—O5i84.43 (7)C6—C5—O3110.4 (4)
O1—Ba1—O5i161.41 (7)C5—C6—O4115.4 (4)
N2—Ba1—N177.88 (10)O4—C7—C8110.4 (3)
N3—Ba1—N1158.17 (10)N1—C8—C7114.7 (3)
O5—Ba1—N154.71 (7)N1—C9—C10113.5 (3)
O4—Ba1—N159.41 (7)O1—C10—C9107.8 (3)
O2—Ba1—N1115.91 (7)O5—C11—C17118.4 (3)
O3—Ba1—N1108.48 (8)O5—C11—C12119.9 (3)
O1—Ba1—N158.42 (7)C17—C11—C12121.6 (3)
O5i—Ba1—N1114.64 (7)C13—C12—N1121.6 (3)
N2—Ba1—Ba1i104.16 (9)C13—C12—C11123.6 (3)
N3—Ba1—Ba1i90.59 (7)N1—C12—C11114.4 (3)
O5—Ba1—Ba1i36.42 (4)C12—C13—C14132.0 (4)
O4—Ba1—Ba1i75.35 (6)C15—C14—C13129.3 (4)
O2—Ba1—Ba1i157.74 (6)C14—C15—C16125.7 (4)
O3—Ba1—Ba1i110.98 (5)C17—C16—C15129.3 (4)
O1—Ba1—Ba1i143.64 (5)C16—C17—C11131.6 (4)
O5i—Ba1—Ba1i34.33 (4)N2—C18—S1179.2 (4)
N1—Ba1—Ba1i85.25 (5)N3—C19—S2179.6 (4)
C12—N1—C9117.2 (3)
N2—Ba1—N1—C1240.08 (19)O4—Ba1—O3—C515.0 (3)
N3—Ba1—N1—C1214.1 (3)O2—Ba1—O3—C5129.3 (4)
O5—Ba1—N1—C1244.00 (17)O1—Ba1—O3—C572.7 (3)
O4—Ba1—N1—C12141.3 (2)O5i—Ba1—O3—C594.4 (3)
O2—Ba1—N1—C12121.71 (17)N1—Ba1—O3—C519.8 (3)
O3—Ba1—N1—C12176.07 (17)Ba1i—Ba1—O3—C572.2 (3)
O1—Ba1—N1—C12115.86 (19)N2—Ba1—O4—C70.7 (3)
O5i—Ba1—N1—C1283.74 (18)N3—Ba1—O4—C7168.8 (3)
Ba1i—Ba1—N1—C1265.51 (17)O5—Ba1—O4—C758.5 (3)
N2—Ba1—N1—C984.1 (2)O2—Ba1—O4—C7107.1 (3)
N3—Ba1—N1—C9110.1 (3)O3—Ba1—O4—C7138.4 (3)
O5—Ba1—N1—C9168.2 (2)O1—Ba1—O4—C754.0 (3)
O4—Ba1—N1—C994.5 (2)O5i—Ba1—O4—C7131.0 (3)
O2—Ba1—N1—C92.5 (2)N1—Ba1—O4—C72.6 (3)
O3—Ba1—N1—C959.7 (2)Ba1i—Ba1—O4—C795.8 (3)
O1—Ba1—N1—C98.4 (2)N2—Ba1—O4—C6152.0 (3)
O5i—Ba1—N1—C9152.0 (2)N3—Ba1—O4—C639.9 (4)
Ba1i—Ba1—N1—C9170.3 (2)O5—Ba1—O4—C6150.2 (3)
N2—Ba1—N1—C8156.5 (2)O2—Ba1—O4—C644.2 (4)
N3—Ba1—N1—C8130.5 (3)O3—Ba1—O4—C612.9 (3)
O5—Ba1—N1—C872.38 (19)O1—Ba1—O4—C697.3 (3)
O4—Ba1—N1—C824.91 (19)O5i—Ba1—O4—C677.7 (3)
O2—Ba1—N1—C8121.91 (19)N1—Ba1—O4—C6153.9 (4)
O3—Ba1—N1—C859.7 (2)Ba1i—Ba1—O4—C6112.9 (3)
O1—Ba1—N1—C8127.8 (2)N2—Ba1—O5—C1141.4 (2)
O5i—Ba1—N1—C832.6 (2)N3—Ba1—O5—C11118.1 (2)
Ba1i—Ba1—N1—C850.87 (19)O4—Ba1—O5—C11102.7 (2)
N3—Ba1—N2—C18123.9 (11)O2—Ba1—O5—C1114.6 (4)
O5—Ba1—N2—C18121.6 (11)O3—Ba1—O5—C11123.2 (2)
O4—Ba1—N2—C1863.9 (12)O1—Ba1—O5—C1123.7 (2)
O2—Ba1—N2—C1851.5 (11)O5i—Ba1—O5—C11176.0 (3)
O3—Ba1—N2—C1839.3 (12)N1—Ba1—O5—C1142.0 (2)
O1—Ba1—N2—C185.1 (11)Ba1i—Ba1—O5—C11176.0 (3)
O5i—Ba1—N2—C18177.4 (11)N2—Ba1—O5—Ba1i134.62 (11)
N1—Ba1—N2—C1865.6 (11)N3—Ba1—O5—Ba1i57.91 (12)
Ba1i—Ba1—N2—C18147.5 (11)O4—Ba1—O5—Ba1i81.28 (9)
N2—Ba1—N3—C192.9 (15)O2—Ba1—O5—Ba1i161.5 (2)
O5—Ba1—N3—C1971.1 (15)O3—Ba1—O5—Ba1i60.77 (12)
O4—Ba1—N3—C19169.0 (14)O1—Ba1—O5—Ba1i160.26 (7)
O2—Ba1—N3—C1993.1 (15)O5i—Ba1—O5—Ba1i0.0
O3—Ba1—N3—C19147.6 (15)N1—Ba1—O5—Ba1i142.02 (11)
O1—Ba1—N3—C1965.0 (15)C10—O1—C1—C2165.4 (3)
O5i—Ba1—N3—C19129.4 (15)Ba1—O1—C1—C261.3 (4)
N1—Ba1—N3—C1922.7 (16)C3—O2—C2—C1167.2 (3)
Ba1i—Ba1—N3—C19101.3 (15)Ba1—O2—C2—C133.4 (4)
N2—Ba1—O1—C1061.2 (2)O1—C1—C2—O262.0 (4)
N3—Ba1—O1—C10128.5 (2)C2—O2—C3—C474.1 (4)
O5—Ba1—O1—C108.2 (2)Ba1—O2—C3—C464.9 (4)
O4—Ba1—O1—C1083.2 (2)C5—O3—C4—C3158.0 (4)
O2—Ba1—O1—C10160.6 (2)Ba1—O3—C4—C316.4 (5)
O3—Ba1—O1—C10143.0 (2)O2—C3—C4—O354.0 (5)
O5i—Ba1—O1—C1098.6 (3)C4—O3—C5—C6174.6 (4)
N1—Ba1—O1—C1025.6 (2)Ba1—O3—C5—C642.0 (5)
Ba1i—Ba1—O1—C1027.9 (3)O3—C5—C6—O456.4 (6)
N2—Ba1—O1—C169.4 (2)C7—O4—C6—C5111.6 (5)
N3—Ba1—O1—C12.0 (3)Ba1—O4—C6—C542.4 (6)
O5—Ba1—O1—C1138.7 (2)C6—O4—C7—C8178.0 (4)
O4—Ba1—O1—C1146.3 (2)Ba1—O4—C7—C830.5 (4)
O2—Ba1—O1—C130.1 (2)C12—N1—C8—C7161.9 (3)
O3—Ba1—O1—C186.5 (2)C9—N1—C8—C764.6 (4)
O5i—Ba1—O1—C1130.9 (3)Ba1—N1—C8—C754.0 (3)
N1—Ba1—O1—C1156.1 (2)O4—C7—C8—N159.8 (4)
Ba1i—Ba1—O1—C1158.5 (2)C12—N1—C9—C1073.4 (4)
N2—Ba1—O2—C3151.9 (3)C8—N1—C9—C10155.6 (3)
N3—Ba1—O2—C369.2 (3)Ba1—N1—C9—C1040.5 (3)
O5—Ba1—O2—C3178.1 (3)C1—O1—C10—C9172.5 (3)
O4—Ba1—O2—C368.4 (3)Ba1—O1—C10—C957.1 (3)
O3—Ba1—O2—C336.4 (3)N1—C9—C10—O165.7 (4)
O1—Ba1—O2—C3138.6 (3)Ba1—O5—C11—C17148.1 (3)
O5i—Ba1—O2—C319.3 (3)Ba1i—O5—C11—C1726.7 (5)
N1—Ba1—O2—C3132.7 (3)Ba1—O5—C11—C1234.6 (4)
Ba1i—Ba1—O2—C328.0 (4)Ba1i—O5—C11—C12150.6 (2)
N2—Ba1—O2—C272.3 (3)C9—N1—C12—C133.8 (5)
N3—Ba1—O2—C2155.0 (3)C8—N1—C12—C13126.8 (3)
O5—Ba1—O2—C246.0 (4)Ba1—N1—C12—C13122.9 (3)
O4—Ba1—O2—C267.4 (3)C9—N1—C12—C11169.4 (3)
O3—Ba1—O2—C299.4 (3)C8—N1—C12—C1160.1 (3)
O1—Ba1—O2—C22.7 (3)Ba1—N1—C12—C1150.2 (3)
O5i—Ba1—O2—C2155.1 (3)O5—C11—C12—C13154.8 (3)
N1—Ba1—O2—C23.2 (3)C17—C11—C12—C1328.0 (5)
Ba1i—Ba1—O2—C2163.8 (2)O5—C11—C12—N118.1 (4)
N2—Ba1—O3—C424.6 (4)C17—C11—C12—N1159.0 (3)
N3—Ba1—O3—C456.5 (3)N1—C12—C13—C14177.2 (4)
O5—Ba1—O3—C4177.9 (3)C11—C12—C13—C144.7 (7)
O4—Ba1—O3—C4154.5 (3)C12—C13—C14—C1513.7 (9)
O2—Ba1—O3—C410.2 (3)C13—C14—C15—C162.7 (9)
O1—Ba1—O3—C466.8 (3)C14—C15—C16—C1712.5 (9)
O5i—Ba1—O3—C4126.2 (3)C15—C16—C17—C110.4 (9)
N1—Ba1—O3—C4119.7 (3)O5—C11—C17—C16156.4 (5)
Ba1i—Ba1—O3—C4148.3 (3)C12—C11—C17—C1626.4 (7)
N2—Ba1—O3—C5114.9 (4)Ba1—N2—C18—S179 (26)
N3—Ba1—O3—C5164.0 (3)Ba1—N3—C19—S2119 (70)
O5—Ba1—O3—C538.5 (4)
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Ba2(NCS)4(C17H25NO5)2]
Mr576.88
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.668 (5), 12.445 (5), 8.918 (5)
α, β, γ (°)96.697 (5), 106.143 (5), 106.720 (5)
V3)1163.8 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.92
Crystal size (mm)0.30 × 0.27 × 0.23
Data collection
DiffractometerEnraf-Nonius FR590
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scans (North et al., 1968)
Tmin, Tmax0.570, 0.643
No. of measured, independent and
observed [I > 2σ(I)] reflections
5850, 5597, 4973
Rint0.018
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.070, 1.15
No. of reflections5597
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.53

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), MolEN (Fair, 1990), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), Xtal_GX (Hall & du Boulay, 1995).

Selected geometric parameters (Å, º) top
Ba1—N22.762 (3)N3—C191.144 (5)
Ba1—N32.784 (3)O5—C111.255 (4)
Ba1—O52.789 (2)S1—C181.619 (4)
Ba1—O42.804 (3)S2—C191.623 (4)
Ba1—O22.838 (3)C11—C171.433 (5)
Ba1—O32.858 (3)C11—C121.475 (4)
Ba1—O12.882 (2)C12—C131.378 (4)
Ba1—O5i2.937 (2)C13—C141.403 (6)
Ba1—N13.096 (3)C14—C151.349 (7)
Ba1—Ba1i4.6697 (19)C15—C161.396 (7)
N1—C121.413 (4)C16—C171.343 (6)
N2—C181.149 (5)
N2—Ba1—N382.41 (12)O3—Ba1—O182.20 (8)
N2—Ba1—O578.26 (10)O5—Ba1—O5i70.75 (7)
N3—Ba1—O5112.09 (10)O4—Ba1—N159.41 (7)
O4—Ba1—O359.38 (8)O1—Ba1—N158.42 (7)
O2—Ba1—O357.58 (8)N2—C18—S1179.2 (4)
O2—Ba1—O157.77 (8)N3—C19—S2179.6 (4)
O1—C1—C2—O262.0 (4)O4—C7—C8—N159.8 (4)
O2—C3—C4—O354.0 (5)N1—C9—C10—O165.7 (4)
O3—C5—C6—O456.4 (6)
Symmetry code: (i) x+2, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds