Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complexes, [Pt(C4H7NO)2I2], (I), and [Pt(C4H9NO)2I2], (II), possess similar square-planar coordination geometries with modest distortions from ideality. For (I), the cis-L-Pt-L angles are in the range 87.0 (4)-94.2 (3)°, while the trans angles are 174.4 (3) and 176.4 (3)°. For (II), cis-L-Pt-L are 86.1 (8)-94.2 (6)° and trans-L-Pt-L are 174.4 (6) and 177.4 (5)°. One 3,6-di­hydro-2H-1,2-oxazine ligand in (I) is rotated so that the N-O bond is out of the square plane by approximately 70°, while the N-C bond is only ca 20° out of the plane. The other oxazine ligand is rotated so that the N-C bond is about 80° out of the plane, while the N-O bond is out of the plane by approximately 24°. In (II), the 3,4,5,6-tetra­hydro-2H-1,2-oxazine ligands are also positioned with one having the N-O bond further out of the plane and the other having the N-C bond positioned in that fashion. Both ligands, however, are rotated approximately 90° compared with their positions in (I). In both complexes, this results in an unsymmetrical distortion of the I-Pt-N bond angles in which one is expanded and the other contracted. These features are compared to those of reported cis-di­amine­di­iodo­platinum(II) complexes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100009707/qa0357sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100009707/qa0357Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100009707/qa0357IIsup3.hkl
Contains datablock II

CCDC references: 150383; 150384

Comment top

As part of a continuing study of potential chemotherapeutic alternatives to cisplatin and carboplatin (Lippard, 1982; Rosenberg, 1985), we have been examining the use of 1,2-oxazines as the cis-amine ligands in these platinum complexes (Dyksterhouse et al., 2000). Compounds (I) and (II) were obtained as intermediate products in an as yet unsuccessful effort to prepare cis-bis(1,2-oxazine)-1,1-cyclobutanedicarboxylatoplatinum(II). They are part of a small family of cis-diaminediiodoplatinum(II) complexes that have been structurally characterized. The Pt coordination geometry (Table 1) shows modest distortions from the square-planar ideal. All cis angles are within 4° of 90°, while the trans angles differ by 6 and 4° from 180°. The mean deviation from the PtI2N2 least-squares plane is 0.028 (5) Å, though only N2 is displaced by more than two s.u.'s, −0.17 (1) Å. The Pt—I and Pt—N distances are consistent with those seen in similar complexes (Raudaschl-Sieber et al., 1986; Oksanen et al., 1989; Zimmerman et al., 1999). The 3,6-dihydro-2H-1,2-oxazine ligands in (I) are bulkier than those found in the reported complexes, leading to an irregular distortion in the ligand bond angles not seen in the others. In cis-diamminediiodoplatinum(II) (N,N-dimethylacetamide solvate) (Raudaschl-Sieber et al., 1986), the I—Pt—I angle is approximately 93°, while the I—Pt—N and N—Pt—N angles are all about 89°, which is attributed to the large size of the I atoms. An essentially identical pattern is found in cis-diiodobis(2-hydroxyethylamine)platinum(II) (Zimmerman et al., 1999). In cis-bis(cyclopropylamine)diiodoplatinum(II) (Oksanen et al., 1989), the I—Pt—I angle is about 94°, the I—Pt—N angles are 86 and 88°, and the N—Pt—N angle is nearly 93°. The opening of the N—Pt—N angle and closing of the I—Pt—N angles occurs presumably to avoid non-bonded contacts between the cyclopropyl groups. In (I), the expansion and contraction of the bond angles is lopsided: N2—Pt—I1 is 87.6 (3)°, while N1—Pt—I2 is 94.0 (3)°, and N1—Pt—N2 is actually smaller [87.2 (4)°] than in any of the other cis-amine complexes. This distortion is consistent with the rotations of the oxazine groups with respect to the ligand plane. The N2 ring is twisted so that C8 is nearly perpendicular to the plane [torsion angle I1—Pt—N2—C8 − 83.1 (8)°], thus minimizing contacts with I1, allowing for a smaller bond angle. To avoid unfavorable contacts with the N2 ring, the N1 ring is rotated so that O1 is out of the plane [torsion angle I2—Pt—N1—O1 107.9 (6)°] and C4 is directed away from the other ring. This conformation, however, places C4 in closer contact with I2 [torsion angle I2—Pt—N1—C4 − 20.8 (9)°] which apparently results in the larger I—Pt—N angle. Both oxazine rings are in cyclohexene-like conformations with normal bond distances and angles. The absolute configurations at N are opposite for the two rings. The coordination environment for (II) (Table 2) is similar to that in (I). The average deviation from the PtI2N2 least-squares plane is 0.030 (8) Å with both N atoms displaced above the plane by significant amounts [0.089 (19) Å for N1 and 0.058 (17) Å for N2]. As in (I), the trans bond angles differ from 180° by roughly 6 and 4°. Also, the cis bond angles show the same type of unsymmetrical distortion in which one I—Pt—N angle is opened and the other is contracted. In this case, the N1 ring is rotated so that the N1—C4 bond is approximately perpendicular to the ligand plane [torsion angle I2—Pt—N1—C4 78 (2)°] allowing for closer contact with the neighboring I atom. Since O1 is then directed towards the N2 ring, the latter twists away so that O2 is out of the plane and C8 is directed towards I1 [torsion angles I1—Pt—N2—O2 − 108 (1)°; I1—Pt—N2—C8 17 (2)°], resulting in a larger N2—Pt—I1 angle. Both oxazine ligands possess a chair conformation with bond distances and angles similar to those in reported saturated oxazine derivatives (Riddell et al., 1974; Holzapfel et al., 1987). As is the case for the 3,6-dihydro-2H-1,2-oxazine ligands in (I), the 3,4,5,6-tetrahydro-2H-1,2-oxazine ligands in (II) have opposite absolute configurations at N.

Experimental top

Preparation of (I): to a solution of potassium tetrachloroplatinate (2.09 g, 5.04 mmol) in water (50 ml) were added a solution of potassium iodide (8.34 g, 50.2 mmol) in water (5 ml), followed by 3,6-dihydro-2H-1,2-oxazine (0.876 g, (10.3 mmol). The mixture was stirred for 45 min and the yellow powder that formed was isolated by filtration (yield 3.12 g). Recrystallization from a mixture of dimethylformamide and water yielded small orange crystals of (I). Preparation of (II): to a solution of potassium tetrachloroplatinate (1.66 g, 4.00 mmol) in water (35 ml) were added a solution of potassium iodide (6.64 g, 40.0 mmol) in water (5 ml), followed by a solution of 3,4,5,6-tetrahydro-2H-1,2-oxazine hydrochloride (0.988 g, 8.00 mmol) and potassium hydroxide (0.5 g, 9 mmol) in water (15 ml). The resulting mixture was stirred for 50 min and the orange powder that formed (2.17 g) was filtered. Crystals of (II) were obtained by recrystallization from a dimethylformamide/water solution.

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1991). Program(s) used to solve structure: MITHRIL (Gilmore, 1983) for (I); SIR (Burla et al., 1989) for (II). For both compounds, program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

(I) top
Crystal data top
[Pt(C4H7NO)2I2]F(000) = 1104
Mr = 619.11Dx = 2.996 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 10.146 (4) ÅCell parameters from 23 reflections
b = 9.003 (7) Åθ = 9.2–13.4°
c = 15.035 (2) ŵ = 14.8 mm1
β = 92.28 (2)°T = 296 K
V = 1372 (1) Å3Flat needle, yellow–orange
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Rigaku AFC-6S
diffractometer
1544 reflections with I > 3σ(I)
Radiation source: X-ray tubeRint = 0.022
Graphite monochromatorθmax = 25.0°
ω scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.039, Tmax = 0.052l = 1818
2718 measured reflections3 standard reflections every 150 reflections
2387 independent reflections intensity decay: 3.5%
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.030H-atom parameters not refined
wR(F2) = 0.028Weighting scheme based on measured s.u.'s w = 4Fo2/σ2(Fo2)
S = 1.48(Δ/σ)max = 0.016
1544 reflectionsΔρmax = 1.49 e Å3
136 parametersΔρmin = 0.70 e Å3
Crystal data top
[Pt(C4H7NO)2I2]V = 1372 (1) Å3
Mr = 619.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.146 (4) ŵ = 14.8 mm1
b = 9.003 (7) ÅT = 296 K
c = 15.035 (2) Å0.30 × 0.20 × 0.20 mm
β = 92.28 (2)°
Data collection top
Rigaku AFC-6S
diffractometer
1544 reflections with I > 3σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.039, Tmax = 0.0523 standard reflections every 150 reflections
2718 measured reflections intensity decay: 3.5%
2387 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.028H-atom parameters not refined
S = 1.48Δρmax = 1.49 e Å3
1544 reflectionsΔρmin = 0.70 e Å3
136 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt0.42222 (5)0.17948 (6)0.94926 (3)0.0380 (1)
I10.46637 (10)0.21387 (10)1.11910 (6)0.0532 (3)
I20.17500 (9)0.1301 (1)0.97163 (6)0.0592 (3)
O10.4186 (9)0.2999 (10)0.7707 (6)0.056 (3)
O20.6654 (8)0.170 (1)0.8513 (5)0.048 (3)
N10.4065 (10)0.152 (1)0.8104 (6)0.045 (3)
N20.6197 (10)0.233 (1)0.9333 (7)0.048 (4)
C10.471 (1)0.278 (2)0.6834 (10)0.068 (6)
C20.406 (2)0.161 (2)0.6303 (9)0.068 (6)
C30.324 (1)0.071 (2)0.6646 (9)0.060 (5)
C40.299 (1)0.073 (2)0.7613 (9)0.053 (5)
C50.810 (1)0.183 (2)0.8465 (9)0.057 (5)
C60.854 (1)0.337 (2)0.8684 (9)0.056 (5)
C70.782 (1)0.432 (2)0.9066 (10)0.059 (5)
C80.644 (1)0.398 (2)0.9318 (9)0.052 (5)
H10.47150.08860.80940.0543
H20.68230.18030.95860.0570
H30.46650.37170.65040.0736
H40.56560.25590.69010.0736
H50.42630.15250.56790.0773
H60.27820.00090.62650.0714
H70.21490.12170.77130.0609
H80.28910.02800.78370.0609
H90.83580.15660.78960.0664
H100.85080.11680.88990.0664
H110.94250.36880.85150.0652
H120.81960.52960.92230.0708
H130.58070.44430.88940.0597
H140.62450.44170.98940.0597
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.0370 (3)0.0423 (3)0.0351 (3)0.0021 (3)0.0072 (2)0.0029 (3)
I10.0678 (7)0.0555 (6)0.0366 (5)0.0046 (5)0.0060 (5)0.0004 (4)
I20.0405 (6)0.0836 (8)0.0543 (6)0.0038 (5)0.0140 (5)0.0018 (6)
O10.071 (7)0.051 (6)0.046 (6)0.006 (5)0.007 (5)0.016 (5)
O20.041 (5)0.058 (6)0.044 (5)0.002 (5)0.011 (4)0.004 (5)
N10.050 (7)0.055 (8)0.031 (6)0.012 (6)0.007 (5)0.007 (5)
N20.031 (6)0.069 (9)0.046 (7)0.008 (6)0.002 (5)0.001 (6)
C10.06 (1)0.09 (1)0.050 (9)0.022 (10)0.030 (8)0.037 (9)
C20.06 (1)0.10 (1)0.042 (9)0.00 (1)0.000 (8)0.002 (10)
C30.048 (9)0.09 (1)0.040 (9)0.008 (9)0.014 (7)0.004 (9)
C40.036 (8)0.06 (1)0.059 (10)0.001 (8)0.002 (7)0.005 (8)
C50.034 (8)0.08 (1)0.060 (9)0.004 (9)0.017 (7)0.027 (9)
C60.053 (9)0.07 (1)0.045 (9)0.020 (9)0.002 (7)0.003 (8)
C70.054 (10)0.06 (1)0.06 (1)0.017 (9)0.009 (8)0.002 (9)
C80.07 (1)0.041 (9)0.048 (9)0.007 (8)0.003 (8)0.010 (7)
Geometric parameters (Å, º) top
Pt—I12.593 (1)C7—C81.50 (2)
Pt—I22.582 (1)N1—H10.87
Pt—N12.103 (9)N2—H20.87
Pt—N22.085 (10)C1—H30.98
O1—N11.47 (1)C1—H40.98
O1—C11.45 (1)C2—H50.97
O2—N21.45 (1)C3—H60.97
O2—C51.47 (1)C4—H70.97
N1—C41.47 (1)C4—H80.98
N2—C81.50 (2)C5—H90.93
C1—C21.46 (2)C5—H100.96
C2—C31.28 (2)C6—H110.98
C3—C41.49 (2)C7—H120.98
C5—C61.49 (2)C8—H130.98
C6—C71.28 (2)C8—H140.98
I1—Pt—I291.31 (4)O1—C1—H3109
I1—Pt—N1174.4 (3)O1—C1—H4109
I1—Pt—N287.5 (3)C2—C1—H3109
I2—Pt—N194.2 (3)C2—C1—H4109
I2—Pt—N2176.4 (3)H3—C1—H4104
N1—Pt—N287.0 (4)C3—C2—H5120
N1—O1—C1106.4 (9)C1—C2—H5118
N2—O2—C5111.2 (9)C4—C3—H6119
Pt—N1—O1106.9 (7)C2—C3—H6119
Pt—N1—C4125.4 (8)N1—C4—H7110
O1—N1—C4107.7 (9)N1—C4—H8111
Pt—N2—O2110.3 (7)C3—C4—H7110
Pt—N2—C8112.8 (8)C3—C4—H8110
O2—N2—C8108.6 (9)H7—C4—H8105
N1—C4—C3110 (1)O2—C5—H9110
C1—C2—C3121 (1)O2—C5—H10109
C2—C3—C4121 (1)C6—C5—H9110
O1—C1—C2114 (1)C6—C5—H10108
N2—C8—C7110 (1)H9—C5—H10110
C5—C6—C7123 (1)C7—C6—H11118
C6—C7—C8122 (1)C5—C6—H11119
O2—C5—C6110 (1)C8—C7—H12119
Pt—N1—H194C6—C7—H12119
O1—N1—H1121N2—C8—H13109
C4—N1—H1103N2—C8—H14110
Pt—N2—H2121C7—C8—H13110
O2—N2—H284C7—C8—H14111
C8—N2—H2116H13—C8—H14105
(II) top
Crystal data top
[Pt(C4H9NO)2I2]Z = 2
Mr = 623.14F(000) = 560
Triclinic, P1Dx = 2.841 Mg m3
a = 9.379 (5) ÅMo Kα radiation, λ = 0.7107 Å
b = 9.537 (4) ÅCell parameters from 21 reflections
c = 8.950 (4) Åθ = 11.8–16.1°
α = 91.10 (4)°µ = 13.9 mm1
β = 98.37 (4)°T = 296 K
γ = 66.98 (4)°Slab, orange
V = 728.3 (7) Å30.30 × 0.15 × 0.15 mm
Data collection top
Rigaku AFC-6S
diffractometer
1673 reflections with I > 3σ(I)
Radiation source: X-ray tubeRint = 0.079
Graphite monochromatorθmax = 25.0°
ω–2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.076, Tmax = 0.124l = 1111
2734 measured reflections3 standard reflections every 150 reflections
2561 independent reflections intensity decay: 7.0%
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.052H-atom parameters not refined
wR(F2) = 0.058Weighting scheme based on measured s.u.'s w = 4Fo2/σ2(Fo2)
S = 2.70(Δ/σ)max = 0.004
1673 reflectionsΔρmax = 2.35 e Å3
136 parametersΔρmin = 3.17 e Å3
Crystal data top
[Pt(C4H9NO)2I2]γ = 66.98 (4)°
Mr = 623.14V = 728.3 (7) Å3
Triclinic, P1Z = 2
a = 9.379 (5) ÅMo Kα radiation
b = 9.537 (4) ŵ = 13.9 mm1
c = 8.950 (4) ÅT = 296 K
α = 91.10 (4)°0.30 × 0.15 × 0.15 mm
β = 98.37 (4)°
Data collection top
Rigaku AFC-6S
diffractometer
1673 reflections with I > 3σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.079
Tmin = 0.076, Tmax = 0.1243 standard reflections every 150 reflections
2734 measured reflections intensity decay: 7.0%
2561 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.058H-atom parameters not refined
S = 2.70Δρmax = 2.35 e Å3
1673 reflectionsΔρmin = 3.17 e Å3
136 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt0.7141 (1)0.4680 (1)0.5236 (1)0.0330 (3)
I10.8218 (2)0.2057 (2)0.6657 (2)0.0520 (6)
I20.6089 (2)0.6056 (2)0.7630 (2)0.0490 (6)
O10.608 (2)0.668 (2)0.253 (2)0.043 (5)
O20.924 (2)0.420 (2)0.310 (2)0.048 (6)
N10.638 (2)0.677 (2)0.416 (2)0.040 (6)
N20.795 (2)0.380 (2)0.328 (2)0.036 (7)
C10.538 (3)0.816 (4)0.179 (3)0.058 (10)
C20.649 (4)0.898 (3)0.203 (3)0.07 (1)
C30.691 (3)0.912 (3)0.376 (3)0.06 (1)
C40.742 (4)0.757 (3)0.459 (3)0.07 (1)
C50.947 (3)0.414 (4)0.153 (3)0.06 (1)
C60.999 (3)0.249 (4)0.099 (3)0.07 (1)
C70.875 (3)0.194 (3)0.128 (3)0.056 (10)
C80.844 (3)0.218 (3)0.288 (3)0.052 (9)
H10.54870.73510.44390.0460
H20.71970.43000.25410.0439
H30.50870.80830.07310.0684
H40.44500.87750.21990.0684
H50.74670.83720.16210.0745
H60.60770.99510.14930.0745
H70.77050.95440.39780.0656
H80.59870.98410.41390.0656
H90.75650.76810.56620.0747
H100.84660.69290.43430.0747
H110.84860.47710.08970.0644
H121.02120.45710.13910.0644
H131.01300.24540.00610.0731
H141.09960.18750.15600.0731
H150.78000.24940.05890.0639
H160.90710.08790.10460.0639
H170.93700.15940.35730.0582
H180.76360.18280.30650.0582
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.0274 (6)0.0320 (6)0.0353 (6)0.0089 (5)0.0013 (4)0.0023 (4)
I10.055 (1)0.044 (1)0.047 (1)0.009 (1)0.0029 (10)0.0109 (9)
I20.040 (1)0.060 (1)0.044 (1)0.017 (1)0.0033 (9)0.0102 (10)
O10.04 (1)0.04 (1)0.05 (1)0.017 (9)0.008 (9)0.012 (9)
O20.05 (1)0.05 (1)0.04 (1)0.012 (10)0.005 (9)0.005 (9)
N10.02 (1)0.04 (1)0.05 (1)0.01 (1)0.009 (10)0.01 (1)
N20.02 (1)0.06 (2)0.04 (1)0.03 (1)0.004 (9)0.01 (1)
C10.04 (2)0.07 (2)0.05 (2)0.01 (2)0.00 (1)0.01 (2)
C20.06 (2)0.04 (2)0.08 (2)0.00 (2)0.02 (2)0.04 (2)
C30.06 (2)0.06 (2)0.05 (2)0.02 (2)0.01 (2)0.01 (2)
C40.10 (3)0.02 (2)0.06 (2)0.03 (2)0.03 (2)0.01 (1)
C50.04 (2)0.09 (3)0.05 (2)0.04 (2)0.01 (1)0.02 (2)
C60.04 (2)0.09 (3)0.04 (2)0.00 (2)0.01 (1)0.01 (2)
C70.05 (2)0.05 (2)0.06 (2)0.01 (2)0.02 (2)0.02 (2)
C80.05 (2)0.03 (2)0.07 (2)0.01 (1)0.01 (2)0.00 (1)
Geometric parameters (Å, º) top
Pt—I12.583 (3)N2—H20.88
Pt—I22.604 (2)C1—H30.96
Pt—N12.05 (2)C1—H40.96
Pt—N22.05 (2)C2—H50.99
O1—N11.45 (2)C2—H60.96
O1—C11.43 (3)C3—H70.97
O2—N21.43 (2)C3—H80.97
O2—C51.44 (3)C4—H90.96
N1—C41.47 (3)C4—H100.98
N2—C81.48 (3)C5—H110.98
C1—C21.52 (4)C5—H120.96
C2—C31.56 (4)C6—H130.97
C3—C41.53 (4)C6—H140.96
C5—C61.55 (4)C7—H150.97
C6—C71.50 (4)C7—H160.97
C7—C81.50 (3)C8—H170.96
N1—H10.87C8—H180.98
I1—Pt—I291.11 (8)C1—C2—H6113
I1—Pt—N1177.4 (5)C3—C2—H5109
I1—Pt—N294.2 (6)C3—C2—H6112
I2—Pt—N188.5 (6)H5—C2—H6105
I2—Pt—N2174.4 (6)C2—C3—H7112
N1—Pt—N286.1 (8)C2—C3—H8109
N1—O1—C1111 (1)C4—C3—H7111
N2—O2—C5110 (1)C4—C3—H8109
Pt—N1—O1111 (1)H7—C3—H8106
Pt—N1—C4113 (1)N1—C4—H9111
O1—N1—C4111 (1)N1—C4—H10108
Pt—N2—O2108 (1)C3—C4—H9110
Pt—N2—C8125 (1)C3—C4—H10107
O2—N2—C8105 (1)H9—C4—H10106
O1—C1—C2111 (2)O2—C5—H11110
C1—C2—C3108 (2)O2—C5—H12111
C2—C3—C4109 (2)C6—C5—H11108
N1—C4—C3114 (2)C6—C5—H12111
O2—C5—C6111 (2)H11—C5—H12106
C5—C6—C7106 (2)C5—C6—H13111
C6—C7—C8110 (2)C5—C6—H14109
N2—C8—C7112 (2)C7—C6—H13113
Pt—N1—H1108C7—C6—H14111
O1—N1—H1107H13—C6—H14107
C4—N1—H1105C6—C7—H15109
Pt—N2—H2106C6—C7—H16109
O2—N2—H2106C8—C7—H15110
C8—N2—H2105C8—C7—H16111
O1—C1—H3111H15—C7—H16107
O1—C1—H4110N2—C8—H17108
C2—C1—H3110N2—C8—H18109
C2—C1—H4108C7—C8—H17111
H3—C1—H4108C7—C8—H18111
C1—C2—H5110H17—C8—H18106

Experimental details

(I)(II)
Crystal data
Chemical formula[Pt(C4H7NO)2I2][Pt(C4H9NO)2I2]
Mr619.11623.14
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)296296
a, b, c (Å)10.146 (4), 9.003 (7), 15.035 (2)9.379 (5), 9.537 (4), 8.950 (4)
α, β, γ (°)90, 92.28 (2), 9091.10 (4), 98.37 (4), 66.98 (4)
V3)1372 (1)728.3 (7)
Z42
Radiation typeMo KαMo Kα
µ (mm1)14.813.9
Crystal size (mm)0.30 × 0.20 × 0.200.30 × 0.15 × 0.15
Data collection
DiffractometerRigaku AFC-6S
diffractometer
Rigaku AFC-6S
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.039, 0.0520.076, 0.124
No. of measured, independent and
observed [I > 3σ(I)] reflections
2718, 2387, 1544 2734, 2561, 1673
Rint0.0220.079
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.028, 1.48 0.052, 0.058, 2.70
No. of reflections15441673
No. of parameters136136
H-atom treatmentH-atom parameters not refinedH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.49, 0.702.35, 3.17

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1991), MITHRIL (Gilmore, 1983), SIR (Burla et al., 1989), TEXSAN.

Selected geometric parameters (Å, º) for (I) top
Pt—I12.593 (1)N1—C41.47 (1)
Pt—I22.582 (1)N2—C81.50 (2)
Pt—N12.103 (9)C1—C21.46 (2)
Pt—N22.085 (10)C2—C31.28 (2)
O1—N11.47 (1)C3—C41.49 (2)
O1—C11.45 (1)C5—C61.49 (2)
O2—N21.45 (1)C6—C71.28 (2)
O2—C51.47 (1)C7—C81.50 (2)
I1—Pt—I291.31 (4)O2—N2—C8108.6 (9)
I1—Pt—N1174.4 (3)N1—C4—C3110 (1)
I1—Pt—N287.5 (3)C1—C2—C3121 (1)
I2—Pt—N194.2 (3)C2—C3—C4121 (1)
I2—Pt—N2176.4 (3)O1—C1—C2114 (1)
N1—Pt—N287.0 (4)N2—C8—C7110 (1)
N1—O1—C1106.4 (9)C5—C6—C7123 (1)
N2—O2—C5111.2 (9)C6—C7—C8122 (1)
O1—N1—C4107.7 (9)O2—C5—C6110 (1)
Selected geometric parameters (Å, º) for (II) top
Pt—I12.583 (3)N1—C41.47 (3)
Pt—I22.604 (2)N2—C81.48 (3)
Pt—N12.05 (2)C1—C21.52 (4)
Pt—N22.05 (2)C2—C31.56 (4)
O1—N11.45 (2)C3—C41.53 (4)
O1—C11.43 (3)C5—C61.55 (4)
O2—N21.43 (2)C6—C71.50 (4)
O2—C51.44 (3)C7—C81.50 (3)
I1—Pt—I291.11 (8)N1—Pt—N286.1 (8)
I1—Pt—N1177.4 (5)N1—O1—C1111 (1)
I1—Pt—N294.2 (6)N2—O2—C5110 (1)
I2—Pt—N188.5 (6)O1—N1—C4111 (1)
I2—Pt—N2174.4 (6)O2—N2—C8105 (1)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds