Download citation
Download citation
link to html
The reaction of the diazine ligand 3,5-bis(2-pyridinyl)-1,3,4-oxa­diazole (pod, C12H8N4O), with Cu(CF3SO3)2 or Ni(ClO4)2 afforded the title complexes di­aqua­bis­[3,5-bis(2-pyridinyl)-1,3,4-oxa­diazole-N2,N3]copper(II) bis­(tri­fluoro­methane­sul­fon­ate), [Cu(pod)2(H2O)2](CF3SO3)2, and di­aqua­bis­[3,5-bis(2-pyridinyl)-1,3,4-oxa­diazo­le-N2,N3]­nickel(II) diperchlorate, [Ni(pod)2(H2O)2](ClO4)2. Both complexes present a crystallographically centrosymmetric mononuclear cation structure which consists of a six-coordinated CuII or NiII ion with two pod mol­ecules acting as bidentate ligands and two axially coordinated water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100011707/qa0347sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100011707/qa0347Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100011707/qa0347IIsup3.hkl
Contains datablock II

CCDC references: 152644; 152645

Comment top

Diazine bridging ligands of six- and five-membered rings provide binuclear complexes with a metal ion/diazine ligand ratio of 2:2 or 2:1, both bringing two metal centres into close proximity and thus providing an intramolecular pathway for spin-exchange interactions (Escuer et al., 1997; Mernari et al., 1993; Vreugdenhill et al., 1987; Ball & Blake, 1969, 1974). However, a metal ion/diazine ligand ratio of 1:2 has also been obtained (El Gueddi et al., 1996; Wignacourt et al., 1990). In our study of the structure and properties of new polyaza ligands (Mernari et al., 1998), we have investigated the reactions of a copper and nickel salt with the diazine ligand pod, i.e. 3,5-bis(2-pyridinyl)-1,3,4-oxadiazole, and obtained mononuclear complexes with a CuII or NiII/pod ratio of 1:2 in a trans coordination mode.

The structure consists of [M(pod)2(H2O)2]2+ (M = Cu, Ni) centrosymmetric monomeric cations and discrete entities of the counter-ions [CF3SO3] or [ClO4]. The pod molecule plays the role of a bidentate ligand coordinated to the metal ion via an oxadiazole and a pyridine N atom. The equatorial coordination of the metal is completed by a second pod molecule related to the former by a symmetry centre which coincides with the metal-atom position. The octahedral coordination of the metal is achieved by two water molecules in axial positions. These structures reveal a trans coordination mode which is the same already found with the pod ligand (Wignacourt et al., 1990). In the equatorial plane, the formation of a chelate ring of five atoms produces relatively acute N1—Cu—N7 and N1—Ni—N7 angles of 81.12 (8) and 79.36 (3)°, respectively. The metal–pyridine-N bonds [2.0579 (5) Å for Cu and 2.1073 (7) Å for Ni] are longer than the metal–oxadiazole-N bonds [1.993 (2) Å for Cu and 2.0475 (7) Å for Ni]. These variations of bond lengths are approximately the same as in [Cu(pod)2(H2O)](ClO4)2 (Wignacourt et al., 1990) and in [Cu2(C4H10N6)2(H2O)2](SO4)·4H20 (Koningsbruggen et al., 1992). However, in [Cu(pod)2Cl2]·H2O, the Cu–pyridine-N bond of 2.008 (2) Å is shorter than the Cu–oxadiazole-N bond of 2.484 (1) Å (Lagrenee et al., 1991). The axial bond lengths Cu—O19 [2.312 (2) Å], Ni—018 [2.088(3\)Å] and Ni—O19 [2.1122 (13) Å] are similar to those found in the complexes with diazine ligands (Keij et al., 1984; Rosenberg et al., 1986; Koningsbruggen et al., 1992). The metal ion is located essentially in the 5-pyridinyloxadiazole plane, at −0.025 (2) Å for Cu and at −0.022 (9) Å for Ni. In the case of the Cu complex, the 3-pyridinyl ring is almost coplanar with the 5-pyridinyloxadiazole plane [angle: 6.6 (5)°], but is at 24.0 (4)° in the case of the Ni complex. Despite the disordered structure of the counter-ions one can say that [ClO4] or [CF3SO3] ions are probably linked to the water molecules via hydrogen bonds; however, a clear description can not be given. Thus, in the Cu complex, O19 is 2.793 (6) Å from O26, 2.805 (6) Å from O21 and 2.847 (7) Å from O22; in the Ni complex, where the water molecule is disordered and located on two sites, O18 and O19, we found O18 2.813 (6) Å, 2.823 (5) Å and 2.949 (5) Å from O27, O24 and O40, respectively, while O19 is 2.648 (7), 2.642 (8) and 2.716 (8) Å from the same atomic sites.

Experimental top

The pod ligand was prepared according to the literature methods (Sharma & Tandon, 1984). The metal complexes were obtained by addition of Cu(CF3SO3) or Ni(ClO4) (2 mmol) to a methanolic solution of pod (4 mmol). After filtration of the undissolved reactants the filtrates were left at room temperature. After two weeks, blue crystals appeared and were filtered off and washed with water.

Refinement top

In both structures, the counter-ion is fully disordered. For the Cu compound, the O atoms of the perchlorate ion are located on 15 sites, with an occupancy ranging from 0.5 to 0.1. For the Ni compound, the O and F atoms of the trifluoromethanesulfonate are located on 8 and 9 positions, respectively, with an occupancy ranging from 0.52 to 0.18 for the fluoride sites and from 0.6 to 0.14 for the oxygen sites. Moreover, the water molecule linked to the copper ion occupies two positions, O18 and O19, with occupancies of 0.3 and O.7, respectively. In this case, the H atoms of the water molecule could not been found in the Fourier maps. Disordered atoms (O of the perchlorate; F and O of the trifluoromethanesulfonate) were refined isotropically. O atoms O18 and O19 of the disordered water molecule (Ni complex) were also refined isotropically

Computing details top

Data collection: KappaCCD Software (Nonius, 1997) for (I); KappaCCD (Nonius, 1997) for (II). For both compounds, data reduction: DENZO and SCALEPAK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: maXus (Mackay et al., 1999). Molecular graphics: ORTEP (Johnson, 1976) for (II). For both compounds, software used to prepare material for publication: maXus(Mackay et al., 1999).

(I) top
Crystal data top
[Cu(C12H8N4O)2(H2O)2](CF3SO3)2F(000) = 854
Mr = 846.15Dx = 1.685 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.5897 (5) ÅCell parameters from 12050 reflections
b = 10.0316 (4) Åθ = 1.0–25.8°
c = 22.624 (1) ŵ = 0.88 mm1
β = 147.261 (3)°T = 298 K
V = 1668.0 (3) Å3Prism, colourless
Z = 20.20 × 0.15 × 0.10 mm
Data collection top
KappaCCD
diffractometer
Rint = 0.035
Radiation source: fine-focus sealed tubeθmax = 25.8°
ϕ scansh = 1416
3270 measured reflectionsk = 120
3117 independent reflectionsl = 2714
2633 reflections with I > 3σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom, diff
R[F2 > 2σ(F2)] = 0.065H-atom parameters not refined
wR(F2) = 0.074Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo2) + 0.03Fo2]
S = 1.50(Δ/σ)max = 0.045
2633 reflectionsΔρmax = 0.59 e Å3
270 parametersΔρmin = 0.60 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Cu(C12H8N4O)2(H2O)2](CF3SO3)2V = 1668.0 (3) Å3
Mr = 846.15Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.5897 (5) ŵ = 0.88 mm1
b = 10.0316 (4) ÅT = 298 K
c = 22.624 (1) Å0.20 × 0.15 × 0.10 mm
β = 147.261 (3)°
Data collection top
KappaCCD
diffractometer
2633 reflections with I > 3σ(I)
3270 measured reflectionsRint = 0.035
3117 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065270 parameters
wR(F2) = 0.074H-atom parameters not refined
S = 1.50Δρmax = 0.59 e Å3
2633 reflectionsΔρmin = 0.60 e Å3
Special details top

Geometry. All standard uncertainties (except dihedral angles between l.s. planes) are estimated using the full covariance matrix. The standard uncertainties in cell dimensions are are used in calculating the standard uncertainties of bond distances, angles and torsion angles. Angles between l.s. planes have standard uncertainties calculated from atomic positional standard uncertainties; the errors in cell dimensions are not used in this case.

Refinement. Refinement on F2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu11.0000 (3)0.5000 (2)0.50000 (16)0.08456 (9)
O40.88392 (7)0.26501 (5)0.57921 (4)0.0841 (3)
O190.69698 (8)0.56133 (6)0.34268 (5)0.1149 (4)
N10.92817 (9)0.34318 (6)0.51247 (5)0.0768 (4)
N20.86069 (9)0.21457 (6)0.47217 (5)0.0898 (4)
N71.03524 (8)0.58187 (6)0.60042 (5)0.0704 (4)
N130.74169 (11)0.02811 (7)0.54208 (6)0.1321 (5)
C50.93850 (11)0.36881 (7)0.57385 (6)0.0729 (4)
C30.83674 (11)0.17214 (7)0.51331 (6)0.0780 (5)
C60.99967 (10)0.49651 (8)0.62737 (6)0.0714 (5)
C81.09227 (12)0.70333 (8)0.64321 (7)0.0944 (5)
C91.11811 (13)0.74222 (9)0.71454 (8)0.1114 (6)
C101.08246 (14)0.65414 (9)0.74097 (8)0.1243 (6)
C111.02302 (13)0.52982 (8)0.69742 (7)0.1076 (5)
C120.76331 (11)0.04330 (7)0.49486 (7)0.0784 (4)
C140.66667 (16)0.08712 (10)0.52078 (9)0.1560 (8)
C150.61301 (14)0.18473 (9)0.45611 (9)0.1281 (6)
C160.63885 (16)0.16700 (9)0.41041 (9)0.1445 (7)
C170.71696 (14)0.04974 (8)0.43012 (8)0.1212 (6)
H81.1217 (11)0.7529 (8)0.6280 (6)0.0500 (7)*
H91.1613 (11)0.8179 (8)0.7442 (7)0.0500 (7)*
H101.1198 (10)0.6758 (7)0.8026 (6)0 (5)*
H110.9888 (11)0.4706 (8)0.7062 (6)0.0500 (7)*
H140.6549 (11)0.0938 (7)0.5550 (6)0 (3)*
H150.5553 (3)0.2631 (2)0.44249 (16)0.0500 (7)*
H160.6065 (3)0.2373 (2)0.36690 (16)0.0500 (7)*
H170.7323470.0367310.3962400.050000*
H19A0.6226 (3)0.5319 (2)0.33417 (16)0.0500 (7)*
H19B0.6449750.6314290.2919090.050000*
S200.37858 (4)0.38621 (3)0.29278 (2)0.11292 (17)
F320.3724 (2)0.50027 (16)0.39320 (12)0.0784 (4)*0.44
F390.5129 (3)0.29317 (18)0.45801 (16)0.0754 (6)*0.41
O210.5490 (3)0.4675 (2)0.37437 (16)0.0655 (5)*0.41
O240.2115 (2)0.45422 (17)0.19804 (12)0.0625 (4)*0.60
C300.38942 (16)0.36836 (12)0.37608 (10)0.1293 (8)
F310.5072 (6)0.5073 (4)0.4360 (3)0.1422 (11)*0.24
F330.2989 (2)0.43978 (19)0.36146 (13)0.0798 (4)*0.44
F340.2520 (3)0.3407 (2)0.33626 (15)0.0940 (5)*0.41
F350.2481 (3)0.2661 (2)0.31740 (14)0.0786 (5)*0.36
F500.5468 (2)0.33319 (15)0.47854 (12)0.0740 (5)*0.52
O220.4969 (4)0.5165 (3)0.3475 (2)0.0763 (9)*0.27
O230.2763 (8)0.5090 (6)0.2261 (5)0.0922 (17)*0.14
O250.2063 (5)0.4013 (3)0.1878 (3)0.0791 (11)*0.25
O260.5352 (3)0.3929 (3)0.3441 (2)0.0677 (6)*0.29
O270.4690 (5)0.3028 (4)0.3000 (3)0.0766 (9)*0.24
O280.4158 (4)0.2589 (2)0.29189 (19)0.0917 (6)*0.42
O290.3251 (4)0.2289 (3)0.2642 (2)0.1055 (8)*0.35
F360.3161 (6)0.2120 (4)0.3286 (3)0.1097 (13)*0.18
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.05604 (9)0.03569 (7)0.04817 (8)0.00915 (7)0.04809 (8)0.00507 (7)
O40.0547 (4)0.0366 (3)0.0471 (3)0.0074 (2)0.0461 (3)0.0020 (2)
O190.0585 (4)0.0716 (4)0.0663 (4)0.0057 (3)0.0534 (4)0.0178 (3)
N10.0472 (4)0.0374 (4)0.0428 (4)0.0066 (3)0.0400 (4)0.0042 (3)
N20.0573 (5)0.0389 (4)0.0508 (4)0.0049 (3)0.0484 (4)0.0009 (3)
N70.0419 (4)0.0343 (3)0.0405 (4)0.0055 (3)0.0365 (4)0.0043 (3)
N130.0909 (6)0.0428 (5)0.0781 (5)0.0145 (4)0.0780 (6)0.0069 (4)
C50.0442 (5)0.0377 (4)0.0402 (5)0.0035 (3)0.0374 (5)0.0013 (3)
C30.0492 (5)0.0365 (4)0.0428 (5)0.0028 (4)0.0408 (5)0.0002 (4)
C60.0426 (5)0.0391 (4)0.0394 (4)0.0048 (4)0.0366 (4)0.0020 (4)
C80.0586 (6)0.0453 (5)0.0528 (5)0.0083 (4)0.0497 (5)0.0047 (4)
C90.0721 (7)0.0436 (5)0.0629 (6)0.0144 (5)0.0594 (6)0.0166 (5)
C100.0845 (7)0.0562 (6)0.0669 (6)0.0112 (5)0.0699 (7)0.0109 (5)
C110.0713 (6)0.0476 (6)0.0599 (6)0.0061 (4)0.0603 (6)0.0027 (4)
C120.0474 (5)0.0331 (4)0.0447 (5)0.0023 (3)0.0392 (5)0.0031 (3)
C140.1010 (9)0.0571 (6)0.0951 (9)0.0167 (6)0.0902 (9)0.0044 (6)
C150.0733 (8)0.0455 (6)0.0786 (7)0.0179 (5)0.0628 (7)0.0053 (5)
C160.0938 (9)0.0475 (6)0.0810 (8)0.0183 (5)0.0736 (8)0.0217 (5)
C170.0813 (7)0.0470 (5)0.0670 (6)0.0087 (5)0.0663 (7)0.0077 (4)
S200.05818 (18)0.0833 (2)0.06017 (17)0.00497 (14)0.05187 (17)0.00015 (14)
C300.0577 (8)0.0894 (9)0.0721 (8)0.0134 (6)0.0505 (8)0.0163 (7)
Geometric parameters (Å, º) top
Cu1—O192.3125 (6)N13—C141.3347 (13)
Cu1—N72.0579 (5)C5—C61.4509 (11)
Cu1—N11.9926 (5)C3—C121.4629 (10)
O4—C51.3418 (9)C6—C111.3704 (11)
O4—C31.3762 (9)C8—C91.3880 (13)
N1—N21.3894 (9)C9—C101.3640 (13)
N1—C51.2986 (10)C10—C111.3564 (12)
N2—C31.2895 (10)C12—C171.3642 (12)
N7—C61.3545 (10)C14—C151.3552 (15)
N7—C81.3268 (10)C15—C161.355 (2)
N13—C121.3338 (11)C16—C171.3830 (13)
O19—Cu1—N188.72 (2)N7—C6—C5110.69 (6)
O19—Cu1—N793.01 (2)N7—C6—C11122.91 (7)
N1—Cu1—N781.12 (3)C5—C6—C11126.39 (7)
C5—O4—C3102.52 (6)N7—C8—C9121.86 (8)
N2—N1—C5107.66 (6)C8—C9—C10119.46 (8)
N1—N2—C3105.13 (6)C9—C10—C11119.43 (9)
C6—N7—C8117.56 (7)C6—C11—C10118.78 (8)
C12—N13—C14115.20 (8)N13—C12—C3115.43 (7)
O4—C5—N1111.86 (6)N13—C12—C17124.60 (7)
O4—C5—C6125.59 (7)C3—C12—C17119.93 (8)
N1—C5—C6122.55 (7)N13—C14—C15124.71 (10)
O4—C3—N2112.83 (6)C14—C15—C16118.67 (9)
O4—C3—C12119.45 (7)C15—C16—C17119.14 (9)
N2—C3—C12127.70 (7)C12—C17—C16117.66 (9)
(II) top
Crystal data top
[Ni(C12H8N4O)2(H2O)2](ClO4)2F(000) = 756
Mr = 742.09Dx = 1.63 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.6569 (9) ÅCell parameters from 8346 reflections
b = 10.9630 (7) Åθ = 1.0–26.0°
c = 18.921 (1) ŵ = 0.89 mm1
β = 147.752 (3)°T = 298 K
V = 1511.6 (3) Å3Prism, colourless
Z = 20.20 × 0.15 × 0.10 mm
Data collection top
KappaCCD
diffractometer
Rint = 0.055
Radiation source: fine-focus sealed tubeθmax = 26.0°
ϕ scansh = 1617
3008 measured reflectionsk = 130
2851 independent reflectionsl = 2316
2576 reflections with I > 3σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.086H-atom parameters not refined
wR(F2) = 0.073Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo2) + 0.03Fo2]
S = 2.27(Δ/σ)max = 0.045
2576 reflectionsΔρmax = 0.63 e Å3
236 parametersΔρmin = 0.46 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Ni(C12H8N4O)2(H2O)2](ClO4)2V = 1511.6 (3) Å3
Mr = 742.09Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.6569 (9) ŵ = 0.89 mm1
b = 10.9630 (7) ÅT = 298 K
c = 18.921 (1) Å0.20 × 0.15 × 0.10 mm
β = 147.752 (3)°
Data collection top
KappaCCD
diffractometer
2576 reflections with I > 3σ(I)
3008 measured reflectionsRint = 0.055
2851 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.086236 parameters
wR(F2) = 0.073H-atom parameters not refined
S = 2.27Δρmax = 0.63 e Å3
2576 reflectionsΔρmin = 0.46 e Å3
Special details top

Geometry. All standard uncertainties (except dihedral angles between l.s. planes) are estimated using the full covariance matrix. The standard uncertainties in cell dimensions are are used in calculating the standard uncertainties of bond distances, angles and torsion angles. Angles between l.s. planes have standard uncertainties calculated from atomic positional standard uncertainties; the errors in cell dimensions are not used in this case.

Refinement. Refinement on F2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni11.0000 (12)0.0000 (7)0.5000 (9)0.05908 (10)
O40.80944 (8)0.31370 (5)0.29582 (6)0.0660 (4)
O190.72808 (19)0.04771 (12)0.36100 (14)0.0464 (5)*0.70
N70.99810 (10)0.15823 (6)0.56207 (7)0.0593 (4)
N10.89218 (10)0.12400 (7)0.36473 (8)0.0673 (4)
N20.82664 (11)0.13095 (7)0.25552 (8)0.0724 (5)
N130.71494 (13)0.41901 (8)0.11014 (9)0.1112 (6)
C81.05543 (13)0.17044 (9)0.66311 (10)0.0814 (6)
C30.77954 (12)0.24357 (8)0.21840 (9)0.0604 (5)
C120.69564 (13)0.29941 (9)0.10496 (9)0.0671 (6)
C50.87808 (12)0.23213 (8)0.38333 (9)0.0569 (5)
C100.98463 (16)0.38263 (9)0.62044 (12)0.1118 (7)
C60.93273 (12)0.25918 (8)0.48921 (9)0.0648 (5)
C110.92233 (14)0.37183 (8)0.51420 (11)0.0949 (6)
C160.52173 (18)0.28653 (13)0.10519 (12)0.1262 (9)
C91.05094 (15)0.28269 (10)0.69534 (11)0.0993 (7)
C150.53784 (17)0.40908 (13)0.10198 (12)0.1146 (9)
C140.63497 (18)0.47095 (10)0.00582 (13)0.1339 (8)
C170.6018 (12)0.2285 (7)0.0005 (9)0.1138 (7)
Cl200.34489 (4)0.16979 (2)0.07457 (3)0.07809 (15)
O240.5007 (6)0.1094 (5)0.1627 (5)0.1346 (17)*0.30
O290.2675 (4)0.1371 (3)0.0991 (3)0.0460 (9)*0.30
O270.4042 (3)0.0495 (2)0.1340 (3)0.0508 (7)*0.30
O220.4046 (10)0.1429 (6)0.0374 (7)0.114 (2)*0.20
O210.2771 (10)0.1419 (5)0.0400 (6)0.0815 (16)*0.20
H81.1013 (9)0.0995 (6)0.7150 (7)0.050000*
H100.9796 (9)0.4604 (6)0.6406 (7)0.050000*
H110.8735 (9)0.4392 (6)0.4580 (7)0.050000*
H160.4560 (9)0.2396 (6)0.1799 (7)0.050000*
H91.0946 (9)0.2908 (6)0.7696 (7)0.050000*
H150.4796 (9)0.4516 (6)0.1758 (7)0.050000*
H140.6502 (9)0.5576 (6)0.0104 (7)0.050000*
H170.5935 (12)0.1557 (8)0.0007 (9)0.050000*
O180.7453 (4)0.0379 (2)0.3901 (3)0.0280 (8)*0.30
O360.1857 (5)0.1623 (3)0.0713 (3)0.0628 (9)*0.30
O380.4758 (3)0.26310 (17)0.1794 (2)0.0694 (5)*0.50
O370.1709 (6)0.1927 (4)0.0190 (5)0.0666 (11)*0.20
O390.3991 (4)0.2948 (3)0.1129 (3)0.0740 (10)*0.30
O410.3529 (10)0.2076 (7)0.0042 (7)0.0350 (17)*0.10
O400.4369 (3)0.0568 (2)0.1172 (2)0.0577 (6)*0.40
O420.2126 (7)0.2200 (4)0.0456 (5)0.1096 (15)*0.30
O430.2109 (7)0.1413 (5)0.0462 (5)0.0424 (12)*0.20
O440.2319 (6)0.1933 (4)0.0691 (5)0.0461 (11)*0.20
O450.4758 (6)0.2531 (4)0.1371 (5)0.0641 (13)*0.20
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03588 (9)0.02510 (9)0.03094 (10)0.00563 (9)0.02779 (9)0.00546 (9)
O40.0392 (4)0.0309 (3)0.0353 (4)0.0074 (3)0.0319 (4)0.0088 (3)
N70.0353 (4)0.0312 (4)0.0300 (5)0.0033 (4)0.0279 (4)0.0036 (3)
N10.0405 (5)0.0327 (4)0.0355 (5)0.0057 (4)0.0329 (4)0.0053 (4)
N20.0452 (5)0.0387 (5)0.0348 (5)0.0040 (4)0.0345 (5)0.0037 (4)
N130.0774 (7)0.0456 (6)0.0519 (6)0.0084 (5)0.0559 (6)0.0119 (4)
C80.0506 (6)0.0383 (6)0.0415 (6)0.0022 (5)0.0395 (6)0.0029 (5)
C30.0335 (5)0.0382 (6)0.0298 (6)0.0016 (4)0.0267 (5)0.0012 (4)
C120.0364 (6)0.0457 (6)0.0333 (6)0.0052 (5)0.0300 (5)0.0076 (5)
C50.0322 (5)0.0255 (5)0.0317 (5)0.0039 (4)0.0267 (5)0.0058 (4)
C100.0730 (8)0.0361 (6)0.0634 (8)0.0002 (6)0.0606 (7)0.0056 (5)
C60.0360 (5)0.0281 (5)0.0391 (6)0.0017 (4)0.0328 (5)0.0015 (4)
C110.0587 (7)0.0306 (5)0.0571 (7)0.0093 (5)0.0513 (7)0.0069 (5)
C160.0809 (9)0.0971 (11)0.0446 (8)0.0204 (8)0.0536 (8)0.0147 (7)
C90.0639 (7)0.0551 (7)0.0466 (7)0.0038 (6)0.0490 (7)0.0087 (6)
C150.0655 (8)0.0897 (10)0.0482 (8)0.0084 (7)0.0490 (8)0.0230 (7)
C140.0929 (9)0.0504 (8)0.0649 (9)0.0080 (6)0.0683 (9)0.0147 (6)
C170.071 (3)0.0548 (7)0.0557 (7)0.0105 (7)0.0533 (4)0.0005 (7)
Cl200.04044 (15)0.04215 (15)0.04118 (16)0.00797 (13)0.03183 (14)0.01087 (12)
Geometric parameters (Å, º) top
Ni1—O182.088 (2)N13—C141.3292 (13)
Ni1—O192.1122 (13)C8—C91.3975 (13)
Ni1—N72.1073 (7)C3—C121.4611 (12)
Ni1—N12.0475 (7)C12—C171.3665 (10)
O4—C31.3755 (10)C5—C61.4591 (12)
O4—C51.3396 (10)C10—C111.3732 (14)
N7—C81.3244 (11)C10—C91.3631 (14)
N7—C61.3567 (10)C6—C111.3721 (12)
N1—N21.3958 (10)C16—C151.354 (2)
N1—C51.2965 (10)C16—C171.3795 (13)
N2—C31.2912 (11)C15—C141.343 (2)
N13—C121.3246 (12)
O18—Ni1—N193.21 (8)N13—C12—C17123.71 (8)
O18—Ni1—N785.60 (7)C3—C12—C17119.78 (8)
O19—Ni1—N187.69 (4)O4—C5—N1112.58 (8)
O19—Ni1—N793.46 (4)O4—C5—C6124.89 (8)
N7—Ni1—N179.36 (3)N1—C5—C6122.52 (8)
C3—O4—C5102.15 (7)C11—C10—C9119.80 (9)
C8—N7—C6117.52 (8)N7—C6—C5111.24 (7)
N2—N1—C5107.19 (7)N7—C6—C11123.70 (9)
N1—N2—C3104.96 (7)C5—C6—C11125.05 (8)
C12—N13—C14116.87 (10)C10—C11—C6117.75 (9)
N7—C8—C9121.89 (9)C15—C16—C17119.56 (10)
O4—C3—N2113.11 (8)C8—C9—C10119.34 (9)
O4—C3—C12119.21 (8)C16—C15—C14118.91 (10)
N2—C3—C12127.64 (9)N13—C14—C15123.69 (10)
N13—C12—C3116.50 (9)C12—C17—C16117.25 (7)

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C12H8N4O)2(H2O)2](CF3SO3)2[Ni(C12H8N4O)2(H2O)2](ClO4)2
Mr846.15742.09
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)298298
a, b, c (Å)13.5897 (5), 10.0316 (4), 22.624 (1)13.6569 (9), 10.9630 (7), 18.921 (1)
β (°) 147.261 (3) 147.752 (3)
V3)1668.0 (3)1511.6 (3)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.880.89
Crystal size (mm)0.20 × 0.15 × 0.100.20 × 0.15 × 0.10
Data collection
DiffractometerKappaCCD
diffractometer
KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 3σ(I)] reflections
3270, 3117, 2633 3008, 2851, 2576
Rint0.0350.055
(sin θ/λ)max1)0.6120.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.074, 1.50 0.086, 0.073, 2.27
No. of reflections26332576
No. of parameters270236
No. of restraints??
H-atom treatmentH-atom parameters not refinedH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.59, 0.600.63, 0.46

Computer programs: KappaCCD Software (Nonius, 1997), KappaCCD (Nonius, 1997), DENZO and SCALEPAK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), maXus (Mackay et al., 1999), ORTEP (Johnson, 1976), maXus(Mackay et al., 1999).

Selected geometric parameters (Å, º) for (I) top
Cu1—O192.3125 (6)N13—C141.3347 (13)
Cu1—N72.0579 (5)C5—C61.4509 (11)
Cu1—N11.9926 (5)C3—C121.4629 (10)
O4—C51.3418 (9)C6—C111.3704 (11)
O4—C31.3762 (9)C8—C91.3880 (13)
N1—N21.3894 (9)C9—C101.3640 (13)
N1—C51.2986 (10)C10—C111.3564 (12)
N2—C31.2895 (10)C12—C171.3642 (12)
N7—C61.3545 (10)C14—C151.3552 (15)
N7—C81.3268 (10)C15—C161.355 (2)
N13—C121.3338 (11)C16—C171.3830 (13)
O19—Cu1—N793.01 (2)N7—C6—C11122.91 (7)
N1—Cu1—N781.12 (3)C5—C6—C11126.39 (7)
C5—O4—C3102.52 (6)N7—C8—C9121.86 (8)
N2—N1—C5107.66 (6)C8—C9—C10119.46 (8)
N1—N2—C3105.13 (6)C9—C10—C11119.43 (9)
C6—N7—C8117.56 (7)C6—C11—C10118.78 (8)
C12—N13—C14115.20 (8)N13—C12—C3115.43 (7)
O4—C5—N1111.86 (6)N13—C12—C17124.60 (7)
O4—C5—C6125.59 (7)C3—C12—C17119.93 (8)
N1—C5—C6122.55 (7)N13—C14—C15124.71 (10)
O4—C3—N2112.83 (6)C14—C15—C16118.67 (9)
O4—C3—C12119.45 (7)C15—C16—C17119.14 (9)
N2—C3—C12127.70 (7)C12—C17—C16117.66 (9)
N7—C6—C5110.69 (6)
Selected geometric parameters (Å, º) for (II) top
Ni1—O182.088 (2)N13—C141.3292 (13)
Ni1—O192.1122 (13)C8—C91.3975 (13)
Ni1—N72.1073 (7)C3—C121.4611 (12)
Ni1—N12.0475 (7)C12—C171.3665 (10)
O4—C31.3755 (10)C5—C61.4591 (12)
O4—C51.3396 (10)C10—C111.3732 (14)
N7—C81.3244 (11)C10—C91.3631 (14)
N7—C61.3567 (10)C6—C111.3721 (12)
N1—N21.3958 (10)C16—C151.354 (2)
N1—C51.2965 (10)C16—C171.3795 (13)
N2—C31.2912 (11)C15—C141.343 (2)
N13—C121.3246 (12)
O18—Ni1—N193.21 (8)N13—C12—C17123.71 (8)
O18—Ni1—N785.60 (7)C3—C12—C17119.78 (8)
O19—Ni1—N187.69 (4)O4—C5—N1112.58 (8)
O19—Ni1—N793.46 (4)O4—C5—C6124.89 (8)
N7—Ni1—N179.36 (3)N1—C5—C6122.52 (8)
C3—O4—C5102.15 (7)C11—C10—C9119.80 (9)
C8—N7—C6117.52 (8)N7—C6—C5111.24 (7)
N2—N1—C5107.19 (7)N7—C6—C11123.70 (9)
N1—N2—C3104.96 (7)C5—C6—C11125.05 (8)
C12—N13—C14116.87 (10)C10—C11—C6117.75 (9)
N7—C8—C9121.89 (9)C15—C16—C17119.56 (10)
O4—C3—N2113.11 (8)C8—C9—C10119.34 (9)
O4—C3—C12119.21 (8)C16—C15—C14118.91 (10)
N2—C3—C12127.64 (9)N13—C14—C15123.69 (10)
N13—C12—C3116.50 (9)C12—C17—C16117.25 (7)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds