Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C12H16O4, (I), was prepared by oxidation of (5S*,6R*)-1,7-di­oxa­di­spiro­[4.0.4.4]­tetra­decane-2,8-diol us­ing silver(I) carbonate and posesses a cis configuration of the two five-membered-ring lactones fused spiro to the six-membered carbocycle, which has a chair conformation. It represents an exceptional structure for bis-tetra­hydro­furan units, which are interesting building blocks in natural products. The synthesis, spectroscopic data and X-ray structural analysis are described. The crystal contains discrete mol­ecules separated by normal van der Waals distances.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100009173/qa0344sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100009173/qa0344Isup2.hkl
Contains datablock I

CCDC reference: 150397

Comment top

NOT REQUIRED

Experimental top

Following the procedure of Nozaki et al. (1997) (5S*,6R*)-1,7-dioxadispiro[4.0.4.4]tetradecane-2,8-diol (300 mg, 1.31 mmol) and silver(I) carbonate (1.65 g, 5.98 mmol) in dry benzene (15 ml) were heated under reflux for 30 h. After cooling to room temperature, 2.5 g of celite was added and the mixture was stirred for an additional 10 min. The solid was filtered off and washed with methyl tert-butyl ether. After evaporation of the solvent, the crude product (light-yellow crystals, 260 mg) was recrystallized from 20 ml diethyl ether to give 212 mg (0.95 mmol, 72%) (5S*,6R*)-1,7-dioxadispiro[4.0.4.4]tetradecane-2,8-dione as colourless crystals. Analysis calculated for C12H16O4 (224.25 g mol−1): C 64.27, H 7.19%; found: C 64.2, H 7.2%; MS (EI, 70 eV): m/z (%) = 224 (M+, 16), 206 (15), 178 (12), 162 (5), 150 (4), 124 (100), 111 (71), 96 (27), 83 (19), 67 (13), 55 (45); IR (KBr) ~v [cm−1] = 2954 (s), 2940 (s), 2881 (m), 2863 (s), 1770 (versus), 1448 (m), 1280 (s), 1251 (s), 1193 (s), 1128 (s), 1035 (s), 983 (s), 925 (s); 1H NMR (400 MHz, DMSO-d6): δ (p.p.m.) = 1.46–1.76 (m, 6H), 1.87–1.95 (m, 2H), 2.00–2.18 (m, 4H), 2.50–2.61 (m, 2H), 2.71–2.81 (m, 2H); 13C NMR (100 MHz, dmso-d6): δ (p.p.m.) = 20.96 (CH2), 26.43 (CH2), 28.06 (CH2), 33.00 (CH2), 87.80 (Cq), 176.02 (Cq, CO); m.p.: 394 K.

Refinement top

All H atoms were located in a Δ-map and refined isotropically [C—H 0.917 (15)–1.023 (15) Å].

Computing details top

Data collection: COLLECT Software (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).

(I) top
Crystal data top
C12H16O4F(000) = 480
Mr = 224.25Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.8821 (2) ÅCell parameters from 9511 reflections
b = 13.4754 (4) Åθ = 3.4–27.5°
c = 12.0807 (4) ŵ = 0.10 mm1
β = 100.3383 (19)°T = 291 K
V = 1102.16 (6) Å3Block, colourless
Z = 40.40 × 0.39 × 0.26 mm
Data collection top
Nonius KappaCCD
diffractometer
1552 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
Detector resolution: 10 vertical, 18 horizontal pixels mm-1h = 88
281 frames via ω–rotation (Δω=1°) and two times 20 s per frame with three sets at different κ angles scansk = 1717
9511 measured reflectionsl = 1515
2492 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038All H-atom parameters refined
wR(F2) = 0.101Calculated w = 1/[σ2(Fo2) + (0.0627P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
2492 reflectionsΔρmax = 0.16 e Å3
210 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.035 (6)
Crystal data top
C12H16O4V = 1102.16 (6) Å3
Mr = 224.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8821 (2) ŵ = 0.10 mm1
b = 13.4754 (4) ÅT = 291 K
c = 12.0807 (4) Å0.40 × 0.39 × 0.26 mm
β = 100.3383 (19)°
Data collection top
Nonius KappaCCD
diffractometer
1552 reflections with I > 2σ(I)
9511 measured reflectionsRint = 0.031
2492 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.101All H-atom parameters refined
S = 0.95Δρmax = 0.16 e Å3
2492 reflectionsΔρmin = 0.15 e Å3
210 parameters
Special details top

Experimental. The data collection covered almost the whole sphere of reciprocal space. The crystal-to-detector distance was 3.4 cm. Crystal decay was monitored by repeating the initial frames at the end of the data collection and analysing the duplicate reflections there was no indication for any decay.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10929 (13)0.25692 (6)0.66256 (8)0.0509 (3)
O20.31510 (15)0.20079 (7)0.51315 (9)0.0689 (3)
O30.19961 (12)0.24056 (6)0.83872 (7)0.0446 (3)
O40.33557 (14)0.09793 (6)0.90372 (9)0.0620 (3)
C10.00572 (16)0.34628 (8)0.69944 (10)0.0384 (3)
C20.0937 (2)0.39840 (11)0.78622 (13)0.0516 (4)
H2A0.224 (2)0.4212 (10)0.7474 (12)0.059 (4)*
H2B0.1144 (19)0.3491 (11)0.8424 (12)0.060 (4)*
C30.0278 (2)0.48509 (12)0.84106 (14)0.0617 (4)
H3A0.031 (2)0.5369 (12)0.7847 (14)0.070 (4)*
H3B0.039 (2)0.5153 (12)0.8983 (15)0.084 (5)*
C40.2356 (3)0.45213 (12)0.89227 (13)0.0629 (4)
H4A0.315 (2)0.5066 (12)0.9262 (14)0.074 (5)*
H4B0.224 (2)0.4045 (10)0.9567 (13)0.062 (4)*
C50.3339 (2)0.40130 (10)0.80545 (13)0.0511 (4)
H5A0.3528 (19)0.4472 (9)0.7453 (12)0.052 (4)*
H5B0.468 (2)0.3776 (9)0.8385 (12)0.061 (4)*
C60.21556 (16)0.31332 (8)0.74988 (10)0.0389 (3)
C70.20784 (19)0.26578 (9)0.55622 (12)0.0480 (3)
C80.1633 (2)0.36326 (12)0.50787 (14)0.0581 (4)
H8A0.284 (3)0.4032 (12)0.4994 (14)0.087 (5)*
H8B0.132 (2)0.3510 (13)0.4375 (16)0.082 (5)*
C90.0009 (2)0.40806 (10)0.59203 (11)0.0420 (3)
H9A0.0224 (19)0.4732 (11)0.6083 (12)0.057 (4)*
H9B0.121 (2)0.4062 (9)0.5663 (12)0.058 (4)*
C100.32307 (17)0.16367 (9)0.83560 (11)0.0457 (3)
C110.4316 (2)0.17563 (12)0.73980 (15)0.0608 (4)
H11A0.437 (3)0.1136 (14)0.7016 (16)0.091 (6)*
H11B0.564 (3)0.1968 (12)0.7728 (16)0.089 (6)*
C120.3215 (2)0.25662 (11)0.66823 (13)0.0535 (4)
H12A0.400 (2)0.2985 (11)0.6353 (12)0.060 (4)*
H12B0.228 (3)0.2252 (11)0.6070 (15)0.074 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0522 (5)0.0446 (5)0.0527 (6)0.0111 (4)0.0009 (4)0.0083 (4)
O20.0677 (7)0.0631 (6)0.0724 (7)0.0175 (5)0.0026 (5)0.0156 (5)
O30.0476 (5)0.0467 (5)0.0408 (5)0.0057 (4)0.0115 (4)0.0123 (4)
O40.0637 (6)0.0494 (6)0.0707 (7)0.0016 (4)0.0065 (5)0.0220 (5)
C10.0389 (6)0.0360 (6)0.0405 (7)0.0040 (5)0.0079 (5)0.0042 (5)
C20.0484 (8)0.0589 (9)0.0509 (9)0.0108 (6)0.0183 (7)0.0106 (7)
C30.0805 (11)0.0570 (9)0.0484 (9)0.0164 (8)0.0136 (8)0.0062 (8)
C40.0807 (11)0.0529 (9)0.0501 (10)0.0041 (8)0.0015 (8)0.0057 (8)
C50.0463 (8)0.0513 (8)0.0526 (9)0.0045 (6)0.0010 (7)0.0093 (7)
C60.0408 (7)0.0400 (6)0.0373 (7)0.0017 (5)0.0111 (5)0.0086 (5)
C70.0443 (7)0.0509 (8)0.0482 (8)0.0006 (6)0.0068 (6)0.0052 (7)
C80.0643 (10)0.0604 (9)0.0462 (9)0.0094 (7)0.0008 (7)0.0070 (7)
C90.0449 (7)0.0408 (8)0.0399 (8)0.0015 (6)0.0067 (6)0.0066 (6)
C100.0424 (7)0.0415 (7)0.0512 (8)0.0005 (5)0.0025 (6)0.0066 (7)
C110.0604 (10)0.0585 (9)0.0673 (10)0.0176 (7)0.0219 (8)0.0116 (8)
C120.0551 (8)0.0572 (8)0.0520 (9)0.0133 (7)0.0202 (7)0.0086 (7)
Geometric parameters (Å, º) top
O1—C71.3461 (17)C4—H4B1.023 (15)
O1—C11.4657 (14)C5—C61.5240 (17)
O2—C71.2020 (15)C5—H5A0.980 (14)
O3—C101.3447 (15)C5—H5B0.992 (15)
O3—C61.4723 (13)C6—C121.5319 (17)
O4—C101.2016 (14)C7—C81.492 (2)
C1—C21.5222 (18)C8—C91.496 (2)
C1—C61.5291 (16)C8—H8A0.982 (18)
C1—C91.5355 (17)C8—H8B0.929 (18)
C2—C31.518 (2)C9—H9A0.917 (15)
C2—H2A0.986 (14)C9—H9B0.943 (15)
C2—H2B0.978 (15)C10—C111.4945 (19)
C3—C41.519 (2)C11—C121.509 (2)
C3—H3A0.979 (17)C11—H11A0.959 (19)
C3—H3B0.985 (19)C11—H11B0.967 (19)
C4—C51.510 (2)C12—H12A0.921 (15)
C4—H4A0.961 (16)C12—H12B0.983 (18)
C7—O1—C1111.68 (9)C5—C6—C1109.95 (9)
C10—O3—C6111.26 (9)O3—C6—C12104.09 (9)
O1—C1—C2107.67 (9)C5—C6—C12113.16 (11)
O1—C1—C6107.60 (9)C1—C6—C12114.39 (11)
C2—C1—C6111.62 (10)O2—C7—O1120.91 (12)
O1—C1—C9104.83 (9)O2—C7—C8128.72 (14)
C2—C1—C9112.52 (10)O1—C7—C8110.37 (11)
C6—C1—C9112.15 (9)C7—C8—C9105.67 (12)
C3—C2—C1112.05 (11)C7—C8—H8A107.0 (10)
C3—C2—H2A110.6 (8)C9—C8—H8A111.5 (10)
C1—C2—H2A107.5 (8)C7—C8—H8B107.5 (11)
C3—C2—H2B110.9 (8)C9—C8—H8B115.1 (10)
C1—C2—H2B107.7 (8)H8A—C8—H8B109.6 (15)
H2A—C2—H2B107.9 (11)C8—C9—C1105.12 (10)
C2—C3—C4110.93 (12)C8—C9—H9A113.7 (9)
C2—C3—H3A109.0 (9)C1—C9—H9A108.6 (9)
C4—C3—H3A110.8 (9)C8—C9—H9B111.3 (9)
C2—C3—H3B109.6 (10)C1—C9—H9B111.7 (8)
C4—C3—H3B111.0 (9)H9A—C9—H9B106.4 (11)
H3A—C3—H3B105.4 (13)O4—C10—O3121.12 (12)
C5—C4—C3110.85 (13)O4—C10—C11128.72 (12)
C5—C4—H4A110.5 (9)O3—C10—C11110.16 (11)
C3—C4—H4A111.8 (9)C10—C11—C12104.62 (11)
C5—C4—H4B110.4 (8)C10—C11—H11A110.2 (11)
C3—C4—H4B107.4 (8)C12—C11—H11A114.4 (11)
H4A—C4—H4B105.6 (13)C10—C11—H11B105.9 (11)
C4—C5—C6112.85 (12)C12—C11—H11B111.2 (10)
C4—C5—H5A111.3 (7)H11A—C11—H11B110.1 (14)
C6—C5—H5A107.2 (8)C11—C12—C6103.88 (11)
C4—C5—H5B111.6 (8)C11—C12—H12A114.6 (9)
C6—C5—H5B108.2 (8)C6—C12—H12A111.0 (9)
H5A—C5—H5B105.3 (12)C11—C12—H12B108.2 (9)
O3—C6—C5107.50 (10)C6—C12—H12B112.2 (10)
O3—C6—C1107.18 (8)H12A—C12—H12B107.1 (13)
C7—O1—C1—C2109.29 (11)C9—C1—C6—C573.62 (12)
C7—O1—C1—C6130.26 (10)O1—C1—C6—C1259.78 (12)
C7—O1—C1—C910.72 (12)C2—C1—C6—C12177.70 (10)
O1—C1—C2—C3172.78 (11)C9—C1—C6—C1254.99 (13)
C6—C1—C2—C354.90 (14)C1—O1—C7—O2177.58 (11)
C9—C1—C2—C372.21 (15)C1—O1—C7—C81.85 (15)
C1—C2—C3—C455.13 (17)O2—C7—C8—C9172.54 (13)
C2—C3—C4—C555.12 (18)O1—C7—C8—C98.09 (17)
C3—C4—C5—C656.16 (17)C7—C8—C9—C114.03 (16)
C10—O3—C6—C5103.82 (11)O1—C1—C9—C815.00 (13)
C10—O3—C6—C1138.02 (10)C2—C1—C9—C8101.72 (13)
C10—O3—C6—C1216.46 (13)C6—C1—C9—C8131.45 (12)
C4—C5—C6—O361.29 (14)C6—O3—C10—O4177.81 (11)
C4—C5—C6—C155.06 (14)C6—O3—C10—C111.99 (14)
C4—C5—C6—C12175.66 (12)O4—C10—C11—C12166.63 (14)
O1—C1—C6—O355.05 (11)O3—C10—C11—C1213.59 (18)
C2—C1—C6—O362.87 (12)C10—C11—C12—C622.61 (18)
C9—C1—C6—O3169.83 (9)O3—C6—C12—C1123.69 (15)
O1—C1—C6—C5171.61 (9)C5—C6—C12—C1192.71 (15)
C2—C1—C6—C553.69 (13)C1—C6—C12—C11140.31 (13)

Experimental details

Crystal data
Chemical formulaC12H16O4
Mr224.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)6.8821 (2), 13.4754 (4), 12.0807 (4)
β (°) 100.3383 (19)
V3)1102.16 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.39 × 0.26
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9511, 2492, 1552
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 0.95
No. of reflections2492
No. of parameters210
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: COLLECT Software (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXL97 and PARST95 (Nardelli, 1995).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds