Download citation
Download citation
link to html
The crystal and molecular structure of bis(tetra­methyl­ammonium) di­chloro­tetra-[mu]2-methoxo-di-[mu]2-oxo-octo­oxo­tetra­molybdate(VI), (C4H12N)2[Mo4O10(OCH3)4Cl2], has been determined from X-ray diffraction data. The crystallographically centrosymmetric anion is built up of four edge-sharing octahedra, two MoO6 and two MoO5Cl.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100012233/qa0331sup1.cif
Contains datablocks I, default

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012233/qa0331Isup2.hkl
Contains datablock I

CCDC reference: 152657

Comment top

During a continuing investigation of the structure–mechanism–function relationship regarding the role of molybdenum as a catalyst in the esterification reactions of 2-mercaptonicotinic acid (Cindrić et al., 1998.), we obtained the tetramethylammonium salt of dichloro-di-µ2-oxo-tetra-µ2-methoxo-octaoxotetramolybdate(VI), [(CH3)4N]2[Mo4O10(OCH3)4Cl2]. The same anion has already been observed in the complex (nBu4N)2[Mo4O10(OCH3)4Cl2] (Liu et al., 1987; Kang et al., 1989). The tetranuclear unit is by far the most common compositional motif in the coordination chemistry of polyoxomolybdates, as adopted by [Mo4O10(OMe)6]2− (Liu et al., 1987; Kang et al., 1989), with four edge-sharing octahedra in the compact cluster. Such structures illustrate a common feature of the chemistry of polymolybdates in alcoholic solvents, i.e. the incorporation of alkoxy groups into the cluster. Formation of the underivatized polyoxomolybdate parent structure, [Mo4O16]8−, is most likely precluded by the high negative charge. Replacement of bridging oxo groups by alkoxy ligands serves to reduce the overall cluster charge and hence to stabilize the unit in alcoholic solvents. Thus, the same core structure with replacement of peripheral and/or bridging alkoxy groups is common to the structures of [Mo4O10(OCH3)4Cl2]2−, [Mo4O10(OCH3)2(OC6H4O)2]2− (Kang et al., 1989) and [Mo4O8(OC2H5)2{RC(CH2O)3}2] (Wilson et al., 1983).

The crystal structure of the title complex, (I), is built up of tetranuclear [Mo4O10(OCH3)4Cl2]2− anions and tetramethylammonium cations. The centrosymmetric anion consists of four edge-sharing octahedra, two MoO6 and two MoO5Cl. As a result of displacement of metal ions towards the polyanion surface, all four octahedra are distorted. The Mo2 site displays an [MoO6] geometry through ligation by two terminal and one bridging oxo groups and two triply bridging and one doubly bridging methoxo group, while the Mo1 centre displays [MoO5Cl] coordination by one doubly bridging and one triply bridging methoxy group, one bridging and two terminal oxo groups, and the terminal chloride ligand. All bond lengths and angles are comparable with those observed in previously mentioned complexes (Table 1).

Experimental top

In an attempt to prepare a molybdenum(VI) complex with methyl ester of 2-hydroxynicotinic acid, a mixture of MoO2Cl2 (0.4 g), [(CH3)4N]Cl (0.22 g) and methanol suspension of 2-hydroxynicotinic acid (0.31 g in 10 ml MeOH) was dissolved in methanol (20 ml) and heated under reflux for 4 h. The resulting colourless solution was left at room temperature. After 2 d, transparent colourless crystals (0.17 g; 38.6% yield) were isolated. Elemental analysis (%) found (calculated) for [(CH3)4N]2[Mo4O10(OCH3)4Cl2]: Mo 43.6 (43.3), C 16.6 (16.3), H 4.2% (4.1%).

Refinement top

All H atoms were fixed geometrically.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

tetramethylammonium di-chloro-di-µ2-oxo-tetra-µ2-methoxotetradioxo -tetramolybdate(VI) top
Crystal data top
(C4H12N)2[Mo4O10(OCH3)4Cl2]F(000) = 872
Mr = 887.09Dx = 2.030 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.810 (2) ÅCell parameters from 6079 reflections
b = 11.047 (2) Åθ = 2.7–28.2°
c = 15.085 (3) ŵ = 1.93 mm1
β = 98.67 (3)°T = 293 K
V = 1451.4 (5) Å3Prism, colourless
Z = 20.38 × 0.36 × 0.35 mm
Data collection top
Nonius KappaCCD
diffractometer
3048 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 28.2°, θmin = 2.7°
ϕ and ω scansh = 1111
6079 measured reflectionsk = 1314
3568 independent reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.9758P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.034
3568 reflectionsΔρmax = 0.43 e Å3
161 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0035 (4)
Crystal data top
(C4H12N)2[Mo4O10(OCH3)4Cl2]V = 1451.4 (5) Å3
Mr = 887.09Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.810 (2) ŵ = 1.93 mm1
b = 11.047 (2) ÅT = 293 K
c = 15.085 (3) Å0.38 × 0.36 × 0.35 mm
β = 98.67 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3048 reflections with I > 2σ(I)
6079 measured reflectionsRint = 0.016
3568 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.04Δρmax = 0.43 e Å3
3568 reflectionsΔρmin = 0.68 e Å3
161 parameters
Special details top

Experimental. Lattice constants were determined from all reliable data. Crystal to detector distance was 28 mm, with exposure time of 50 s per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.85020 (3)0.28376 (2)0.047340 (17)0.03755 (10)
Mo21.07432 (3)0.50911 (2)0.122172 (16)0.03626 (10)
Cl0.61200 (9)0.27307 (8)0.05835 (6)0.0496 (2)
N0.6067 (3)0.5861 (3)0.33865 (19)0.0502 (7)
O110.8838 (3)0.1330 (2)0.04660 (17)0.0549 (6)
O120.7500 (3)0.3075 (2)0.13316 (16)0.0531 (6)
O211.2545 (3)0.5083 (2)0.17934 (17)0.0560 (7)
O220.9586 (3)0.5359 (2)0.20005 (16)0.0554 (6)
O11.0483 (2)0.3400 (2)0.10084 (14)0.0419 (5)
O20.8523 (2)0.48359 (18)0.01202 (13)0.0326 (4)
O30.9444 (2)0.3170 (2)0.07902 (14)0.0394 (5)
C10.7212 (3)0.5590 (3)0.0216 (2)0.0435 (7)
H110.75030.64270.02070.065*
H120.68650.54100.07750.065*
H130.63990.54320.02700.065*
C20.9790 (6)0.2199 (4)0.1373 (3)0.0677 (12)
H210.89910.21450.18790.101*
H220.98580.14480.10480.101*
H231.07520.23610.15760.101*
C30.5916 (8)0.7075 (5)0.2978 (4)0.121 (3)
H310.57820.76630.34290.181*
H320.50430.70910.25140.181*
H330.68270.72630.27270.181*
C40.4626 (5)0.5539 (5)0.3760 (3)0.0824 (15)
H410.47070.47270.39890.124*
H420.37580.55960.32930.124*
H430.44930.60890.42350.124*
C50.7404 (6)0.0817 (4)0.0893 (4)0.102 (2)
H510.75150.00130.06510.152*
H520.83160.10350.11340.152*
H530.72520.13760.04270.152*
C60.6249 (5)0.4915 (4)0.2705 (3)0.0653 (11)
H610.71990.50400.24800.098*
H620.54100.49670.22200.098*
H630.62540.41290.29770.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.03280 (15)0.03919 (17)0.04078 (16)0.00940 (10)0.00589 (11)0.00099 (11)
Mo20.02949 (15)0.04784 (18)0.03062 (15)0.00999 (11)0.00182 (10)0.00211 (10)
Cl0.0359 (4)0.0569 (5)0.0541 (5)0.0137 (4)0.0010 (3)0.0036 (4)
N0.0528 (16)0.0411 (15)0.0499 (15)0.0088 (13)0.0143 (13)0.0040 (13)
O110.0548 (14)0.0420 (13)0.0655 (16)0.0067 (11)0.0014 (12)0.0004 (11)
O120.0524 (14)0.0603 (15)0.0497 (13)0.0177 (12)0.0172 (11)0.0042 (11)
O210.0416 (13)0.0720 (18)0.0493 (14)0.0125 (11)0.0097 (11)0.0001 (12)
O220.0569 (15)0.0677 (17)0.0445 (13)0.0148 (13)0.0175 (11)0.0081 (12)
O10.0349 (11)0.0447 (13)0.0438 (11)0.0046 (9)0.0013 (9)0.0044 (10)
O20.0243 (9)0.0385 (11)0.0354 (10)0.0041 (8)0.0058 (8)0.0022 (8)
O30.0350 (11)0.0428 (12)0.0416 (11)0.0083 (9)0.0094 (9)0.0099 (9)
C10.0304 (15)0.0484 (19)0.0527 (18)0.0023 (13)0.0097 (13)0.0030 (15)
C20.085 (3)0.054 (2)0.071 (3)0.012 (2)0.035 (2)0.022 (2)
C30.165 (6)0.056 (3)0.121 (5)0.010 (3)0.043 (5)0.033 (3)
C40.075 (3)0.121 (4)0.055 (2)0.036 (3)0.022 (2)0.008 (3)
C50.103 (4)0.064 (3)0.113 (4)0.004 (3)0.067 (3)0.009 (3)
C60.054 (2)0.080 (3)0.065 (3)0.006 (2)0.023 (2)0.017 (2)
Geometric parameters (Å, º) top
Mo1—O111.692 (2)Mo2—O2i2.217 (2)
Mo1—O121.694 (2)Mo2—O22.384 (2)
Mo1—O11.913 (2)N—C31.473 (5)
Mo1—O32.221 (2)N—C5ii1.478 (5)
Mo1—O22.272 (2)N—C41.507 (5)
Mo1—Cl2.4395 (12)N—C61.491 (5)
Mo2—O211.689 (2)O2—C11.449 (3)
Mo2—O221.694 (2)O3—C21.448 (4)
Mo2—O11.904 (2)C5—Niii1.478 (5)
Mo2—O3i2.027 (2)
O11—Mo1—O12105.62 (12)O1—Mo2—O2i85.73 (8)
O11—Mo1—O199.99 (11)O3i—Mo2—O2i72.13 (8)
O12—Mo1—O1100.07 (11)O21—Mo2—O2164.68 (11)
O11—Mo1—O393.94 (10)O22—Mo2—O289.30 (10)
O12—Mo1—O3159.31 (11)O1—Mo2—O272.60 (8)
O1—Mo1—O382.72 (9)O3i—Mo2—O282.53 (8)
O11—Mo1—O2161.34 (10)O2i—Mo2—O271.91 (8)
O12—Mo1—O293.00 (10)C3—N—C5ii110.4 (4)
O1—Mo1—O275.17 (8)C3—N—C4110.0 (4)
O3—Mo1—O267.72 (7)C5ii—N—C4109.9 (4)
O11—Mo1—Cl94.70 (9)C3—N—C6111.2 (4)
O12—Mo1—Cl90.62 (9)C5ii—N—C6109.1 (3)
O1—Mo1—Cl158.71 (7)C4—N—C6106.0 (3)
O3—Mo1—Cl80.96 (6)Mo2—O1—Mo1117.98 (11)
O2—Mo1—Cl86.01 (5)C1—O2—Mo2i114.64 (18)
O21—Mo2—O22105.35 (13)C1—O2—Mo1120.01 (17)
O21—Mo2—O199.27 (11)Mo2i—O2—Mo1105.27 (8)
O22—Mo2—O1102.65 (11)C1—O2—Mo2116.41 (17)
O21—Mo2—O3i101.17 (11)Mo2i—O2—Mo2108.10 (8)
O22—Mo2—O3i91.65 (11)Mo1—O2—Mo289.22 (7)
O1—Mo2—O3i150.91 (9)C2—O3—Mo2i121.4 (2)
O21—Mo2—O2i94.90 (11)C2—O3—Mo1122.6 (2)
O22—Mo2—O2i156.30 (11)Mo2i—O3—Mo1114.16 (9)
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C4H12N)2[Mo4O10(OCH3)4Cl2]
Mr887.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.810 (2), 11.047 (2), 15.085 (3)
β (°) 98.67 (3)
V3)1451.4 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.93
Crystal size (mm)0.38 × 0.36 × 0.35
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6079, 3568, 3048
Rint0.016
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.04
No. of reflections3568
No. of parameters161
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.68

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Mo1—O111.692 (2)Mo2—O211.689 (2)
Mo1—O121.694 (2)Mo2—O221.694 (2)
Mo1—O11.913 (2)Mo2—O11.904 (2)
Mo1—O32.221 (2)Mo2—O3i2.027 (2)
Mo1—O22.272 (2)Mo2—O2i2.217 (2)
Mo1—Cl2.4395 (12)Mo2—O22.384 (2)
O11—Mo1—O12105.62 (12)O21—Mo2—O3i101.17 (11)
O11—Mo1—O199.99 (11)O22—Mo2—O3i91.65 (11)
O12—Mo1—O1100.07 (11)O1—Mo2—O3i150.91 (9)
O11—Mo1—O393.94 (10)O21—Mo2—O2i94.90 (11)
O12—Mo1—O3159.31 (11)O22—Mo2—O2i156.30 (11)
O1—Mo1—O382.72 (9)O1—Mo2—O2i85.73 (8)
O11—Mo1—O2161.34 (10)O3i—Mo2—O2i72.13 (8)
O12—Mo1—O293.00 (10)O21—Mo2—O2164.68 (11)
O1—Mo1—O275.17 (8)O22—Mo2—O289.30 (10)
O3—Mo1—O267.72 (7)O1—Mo2—O272.60 (8)
O11—Mo1—Cl94.70 (9)O3i—Mo2—O282.53 (8)
O12—Mo1—Cl90.62 (9)O2i—Mo2—O271.91 (8)
O1—Mo1—Cl158.71 (7)Mo2—O1—Mo1117.98 (11)
O3—Mo1—Cl80.96 (6)Mo2i—O2—Mo1105.27 (8)
O2—Mo1—Cl86.01 (5)Mo2i—O2—Mo2108.10 (8)
O21—Mo2—O22105.35 (13)Mo1—O2—Mo289.22 (7)
O21—Mo2—O199.27 (11)Mo2i—O3—Mo1114.16 (9)
O22—Mo2—O1102.65 (11)
Symmetry code: (i) x+2, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds