Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, di-[mu]-diethyl­amido-N:N-bis­[chloro­di­methyl­tin(IV)], consists of discrete [Sn2Cl2(CH3)4(C4H10N)2] dimer mol­ecules, with Sn atoms linked by bridging diethyl­amido groups. The coordination geometry about the metal atom is distorted trigonal bipyramidal, with the two methyl C atoms and one N atom in the equatorial plane, and the Cl and second N atom in axial positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100007897/qa0318sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100007897/qa0318Isup2.hkl
Contains datablock I

CCDC reference: 147689

Comment top

In the course of our studies on diethylaminodimethylstannane(IV), [(CH3)2Sn{N(C2H5)2}], as a novel molecular precursor for the Chemical Vapour Deposition (CVD) of SnO2 thin films (Barreca et al., 1999), we have observed that defects of LiN(C2H5)2 in the synthesis of

(CH3)2SnCl2 + 2LiN(C2H5)2 (CH3)2Sn(N(C2H5)2)2 + 2LiCl(s)

induce the formation of diethylaminodimethyltin chloride, (CH3)2Sn(N(C2H5)2)Cl, in accordance with literature data (Davies & Kennedy, 1970, and reference therein). In this work, the latter compound was reported to be unstable, so its complete characterization was not performed. Nevertheless, two different dimeric structures were proposed for it. In order to clarify the question, we have decided to verify the possibility of obtaining (CH3)2Sn(N(C2H5)2)Cl by the 1:1 reaction of (CH3)2SnCl2 and LiN(C2H5)2:

(CH3)2SnCl2 + LiN(C2H5)2 (CH3)2Sn(N(C2H5)2)Cl + LiCl(s)

and to undertake a structure determination of the obtained product. Operating under controlled atmosphere conditions, we obtained suitable crystals for X-ray diffraction of the title compound, (I). The structure consists of discrete dimers with an approximate binary symmetry. Two Sn atoms are bridged by two diethylamino N atoms, forming an irregular square. The coordination geometry about the Sn atom is distorted trigonal bipyramidal, with the two methyl C atoms and one N atom in the equatorial plane, and the Cl and second N atom in axial positions. The Sn—N bond distances are different, the shorter ones are for the equatorial positions [Sn1—N1eq 2.125 (8) and Sn2—N2eq 2.136 (7) Å], while the longer ones are for the axial positions [Sn1—N2ax 2.419 (7) and Sn2—N1ax 2.444 (7) Å]. The latter distances are comparable to the values of 2.459 (15) and 2.453 (14) Å found for the axial Sn—N bond distances in the dimeric structure of [(CH3)2Cl(N2C3H3)Sn(CH2)Sn(N2C3H3)Cl(CH3)2] with trigonal bipyramidal coordination geometry (Austin et al., 1987). The Sn—C(methyl) bond distances present the usual values found in similar derivatives (Chivers et al., 1989). The two axial Sn—Cl bond distances of 2.525 (2) and 2.543 (3) Å are comparable with the averaged value of 2.54 (2) Å reported for the two axial bonds in the Sn(CH3)2Cl3 anion (Einstein & Penfold, 1968).

Experimental top

The reaction between (CH3)2SnCl2 (3.5 g, 16 mmol) and LiN(C2H5)2 (1.25 g, 16 mmol) in a 1:1 molar ratio was carried out in n-hexane (Davies & Kennedy, 1970, and references therein). The suspension was stirred overnight. The LiCl was separated by filtration and the n-hexane solution was concentrated under vacuum,giving a colourless crystalline product suitable for a single-crystal X-ray analysis. 1H NMR signals (Brüker BHZ 200/52) spectrometer; positive δ values (p.p.m.) downfield from internal Si(CH3)4, in C6D6): 2.95 (quartet, 4H, NCH2CH3), 1.04 (triplet, 6H, NCH2CH3), 0.31 (singlet, 6H, SnCH3).

Refinement top

The H atoms of the C atoms were introduced at calculated positions in their described geometries and during refinement were allowed to ride on the attached C atom with fixed isotropic displacement parameters (1.2Ueq of the parent C atom).

Computing details top

Data collection: FEBO (Belletti, 1993); cell refinement: FEBO; data reduction: FEBO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: PARST94 (Nardelli, 1995).

Di-µ-diethylamido-N:N-bis[chlorodimethyltin(IV)] top
Crystal data top
[Sn2Cl2(CH3)4(C4H10N)2]F(000) = 2016
Mr = 512.68Dx = 1.718 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.015 (3) ÅCell parameters from 30 reflections
b = 10.219 (3) Åθ = 10–14°
c = 24.275 (5) ŵ = 2.78 mm1
β = 93.94 (3)°T = 293 K
V = 3963.4 (16) Å3Prism, white
Z = 80.50 × 0.40 × 0.24 mm
Data collection top
Philips PW1100 four-circle
diffractometer
3144 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.0°, θmin = 3.4°
Profile fitted θ/2θ scans (Lehman & Larsen 1974)h = 1918
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.276, Tmax = 0.513l = 028
4818 measured reflections3 standard reflections every 200 min
3183 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.21Calculated w = 1/[σ2(Fo2) + (0.0514P)2 + 78.9387P]
where P = (Fo2 + 2Fc2)/3
3114 reflections(Δ/σ)max = 0.003
171 parametersΔρmax = 1.03 e Å3
no restraints restraintsΔρmin = 1.27 e Å3
Crystal data top
[Sn2Cl2(CH3)4(C4H10N)2]V = 3963.4 (16) Å3
Mr = 512.68Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.015 (3) ŵ = 2.78 mm1
b = 10.219 (3) ÅT = 293 K
c = 24.275 (5) Å0.50 × 0.40 × 0.24 mm
β = 93.94 (3)°
Data collection top
Philips PW1100 four-circle
diffractometer
3144 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.276, Tmax = 0.5133 standard reflections every 200 min
4818 measured reflections intensity decay: none
3183 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056no restraints restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.21Δρmax = 1.03 e Å3
3114 reflectionsΔρmin = 1.27 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.19674 (4)0.18519 (6)0.15376 (2)0.0427 (2)
Sn20.17511 (3)0.07882 (6)0.06777 (2)0.0347 (2)
Cl10.3066 (2)0.3624 (3)0.17224 (14)0.0782 (9)
Cl20.05418 (16)0.2062 (3)0.02211 (11)0.0575 (7)
N10.2811 (4)0.0509 (7)0.1204 (3)0.0380 (16)
N20.1057 (4)0.0008 (7)0.1319 (3)0.0344 (15)
C10.1782 (11)0.1775 (14)0.2391 (5)0.085 (4)
H1A0.19960.09620.25410.102*
H1B0.11950.18360.24440.102*
H1C0.20710.24900.25760.102*
C20.1344 (8)0.3112 (11)0.0957 (5)0.067 (3)
H2A0.17470.36520.07900.080*
H2B0.09600.36550.11400.080*
H2C0.10430.26010.06770.080*
C30.2420 (7)0.2544 (10)0.0820 (5)0.058 (3)
H3A0.21300.32470.06260.070*
H3B0.24660.27310.12080.070*
H3C0.29700.24560.06890.070*
C40.1720 (6)0.0495 (11)0.0012 (4)0.053 (2)
H4A0.11490.06590.01410.063*
H4B0.20100.00990.03030.063*
H4C0.19870.13060.00940.063*
C50.3424 (6)0.1160 (11)0.0852 (4)0.054 (3)
H5A0.38110.16730.10890.064*
H5B0.31210.17590.06010.064*
C60.3924 (7)0.0219 (14)0.0515 (6)0.074 (4)
H6A0.42960.07080.03000.089*
H6B0.35480.02840.02740.089*
H6C0.42440.03590.07600.089*
C70.3256 (6)0.0293 (10)0.1632 (4)0.052 (2)
H7A0.35340.09970.14480.062*
H7B0.28400.06920.18510.062*
C80.3903 (9)0.0370 (16)0.2027 (6)0.093 (5)
H8A0.36400.10580.22220.111*
H8B0.43400.07320.18220.111*
H8C0.41380.02610.22870.111*
C90.1019 (6)0.0890 (10)0.1808 (4)0.050 (2)
H9A0.07580.04200.20980.060*
H9B0.15880.10910.19450.060*
C100.0553 (8)0.2173 (12)0.1709 (5)0.065 (3)
H10A0.05990.26900.20400.078*
H10B0.07920.26440.14160.078*
H10C0.00260.19970.16080.078*
C110.0191 (6)0.0386 (11)0.1103 (4)0.050 (2)
H11A0.01310.04010.10210.060*
H11B0.02250.08690.07620.060*
C120.0266 (7)0.1221 (14)0.1509 (6)0.074 (4)
H12A0.07730.15570.13280.089*
H12B0.00860.19360.16350.089*
H12C0.03990.06940.18190.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0514 (4)0.0504 (4)0.0263 (3)0.0068 (3)0.0025 (3)0.0030 (3)
Sn20.0330 (3)0.0479 (4)0.0229 (3)0.0005 (2)0.0008 (2)0.0004 (2)
Cl10.087 (2)0.0688 (19)0.078 (2)0.0299 (17)0.0017 (17)0.0160 (16)
Cl20.0513 (14)0.0705 (17)0.0481 (14)0.0111 (12)0.0152 (11)0.0090 (12)
N10.031 (3)0.050 (4)0.032 (4)0.007 (3)0.006 (3)0.001 (3)
N20.032 (3)0.053 (4)0.019 (3)0.004 (3)0.000 (3)0.007 (3)
C10.136 (13)0.085 (9)0.034 (6)0.030 (9)0.018 (7)0.013 (6)
C20.075 (8)0.056 (7)0.068 (8)0.003 (6)0.005 (6)0.015 (6)
C30.055 (6)0.048 (6)0.071 (7)0.010 (5)0.009 (5)0.001 (5)
C40.052 (6)0.073 (7)0.032 (5)0.002 (5)0.000 (4)0.007 (5)
C50.036 (5)0.067 (7)0.058 (6)0.018 (5)0.000 (4)0.003 (5)
C60.052 (6)0.093 (9)0.080 (9)0.005 (6)0.028 (6)0.004 (7)
C70.045 (5)0.057 (6)0.050 (6)0.010 (5)0.020 (4)0.019 (5)
C80.083 (9)0.108 (11)0.079 (9)0.017 (8)0.055 (8)0.013 (8)
C90.049 (5)0.072 (7)0.028 (5)0.011 (5)0.000 (4)0.012 (4)
C100.072 (7)0.073 (7)0.049 (6)0.025 (6)0.002 (5)0.013 (6)
C110.035 (5)0.074 (7)0.041 (5)0.010 (5)0.003 (4)0.001 (5)
C120.044 (6)0.094 (9)0.085 (9)0.002 (6)0.021 (6)0.016 (8)
Geometric parameters (Å, º) top
Sn1—C22.109 (11)C4—H4C0.9600
Sn1—C12.115 (11)C5—C61.525 (16)
Sn1—N12.125 (8)C5—H5A0.9700
Sn1—N22.419 (7)C5—H5B0.9700
Sn1—Cl12.543 (3)C6—H6A0.9600
Sn2—C32.106 (10)C6—H6B0.9600
Sn2—C42.125 (10)C6—H6C0.9600
Sn2—N22.136 (7)C7—C81.523 (14)
Sn2—N12.444 (7)C7—H7A0.9700
Sn2—Cl22.525 (2)C7—H7B0.9700
N1—C71.468 (11)C8—H8A0.9600
N1—C51.500 (12)C8—H8B0.9600
N2—C111.499 (11)C8—H8C0.9600
N2—C91.504 (11)C9—C101.519 (14)
C1—H1A0.9600C9—H9A0.9700
C1—H1B0.9600C9—H9B0.9700
C1—H1C0.9600C10—H10A0.9600
C2—H2A0.9600C10—H10B0.9600
C2—H2B0.9600C10—H10C0.9600
C2—H2C0.9600C11—C121.527 (15)
C3—H3A0.9600C11—H11A0.9700
C3—H3B0.9600C11—H11B0.9700
C3—H3C0.9600C12—H12A0.9600
C4—H4A0.9600C12—H12B0.9600
C4—H4B0.9600C12—H12C0.9600
C2—Sn1—C1125.9 (6)H4A—C4—H4B109.5
C2—Sn1—N1115.1 (4)Sn2—C4—H4C109.5
C1—Sn1—N1119.0 (5)H4A—C4—H4C109.5
C2—Sn1—N294.5 (4)H4B—C4—H4C109.5
C1—Sn1—N293.6 (4)N1—C5—C6114.5 (9)
N1—Sn1—N278.6 (2)N1—C5—H5A108.6
C2—Sn1—Cl188.4 (3)C6—C5—H5A108.6
C1—Sn1—Cl189.8 (4)N1—C5—H5B108.6
N1—Sn1—Cl194.4 (2)C6—C5—H5B108.6
N2—Sn1—Cl1173.06 (19)H5A—C5—H5B107.6
C3—Sn2—C4129.7 (5)C5—C6—H6A109.5
C3—Sn2—N2119.3 (4)C5—C6—H6B109.5
C4—Sn2—N2110.8 (4)H6A—C6—H6B109.5
C3—Sn2—N192.8 (3)C5—C6—H6C109.5
C4—Sn2—N193.2 (3)H6A—C6—H6C109.5
N2—Sn2—N177.9 (3)H6B—C6—H6C109.5
C3—Sn2—Cl289.9 (3)N1—C7—C8118.2 (9)
C4—Sn2—Cl289.8 (3)N1—C7—H7A107.7
N2—Sn2—Cl295.42 (19)C8—C7—H7A107.7
N1—Sn2—Cl2173.25 (18)N1—C7—H7B107.7
C7—N1—C5110.2 (7)C8—C7—H7B107.7
C7—N1—Sn1112.4 (6)H7A—C7—H7B107.1
C5—N1—Sn1112.9 (6)C7—C8—H8A109.5
C7—N1—Sn2110.7 (5)C7—C8—H8B109.5
C5—N1—Sn2113.6 (5)H8A—C8—H8B109.5
Sn1—N1—Sn296.5 (3)C7—C8—H8C109.5
C11—N2—C9110.3 (7)H8A—C8—H8C109.5
C11—N2—Sn2111.0 (5)H8B—C8—H8C109.5
C9—N2—Sn2113.2 (6)N2—C9—C10116.6 (8)
C11—N2—Sn1113.9 (6)N2—C9—H9A108.1
C9—N2—Sn1111.0 (5)C10—C9—H9A108.1
Sn2—N2—Sn196.9 (2)N2—C9—H9B108.1
Sn1—C1—H1A109.5C10—C9—H9B108.1
Sn1—C1—H1B109.5H9A—C9—H9B107.3
H1A—C1—H1B109.5C9—C10—H10A109.5
Sn1—C1—H1C109.5C9—C10—H10B109.5
H1A—C1—H1C109.5H10A—C10—H10B109.5
H1B—C1—H1C109.5C9—C10—H10C109.5
Sn1—C2—H2A109.5H10A—C10—H10C109.5
Sn1—C2—H2B109.5H10B—C10—H10C109.5
H2A—C2—H2B109.5N2—C11—C12113.0 (8)
Sn1—C2—H2C109.5N2—C11—H11A109.0
H2A—C2—H2C109.5C12—C11—H11A109.0
H2B—C2—H2C109.5N2—C11—H11B109.0
Sn2—C3—H3A109.5C12—C11—H11B109.0
Sn2—C3—H3B109.5H11A—C11—H11B107.8
H3A—C3—H3B109.5C11—C12—H12A109.5
Sn2—C3—H3C109.5C11—C12—H12B109.5
H3A—C3—H3C109.5H12A—C12—H12B109.5
H3B—C3—H3C109.5C11—C12—H12C109.5
Sn2—C4—H4A109.5H12A—C12—H12C109.5
Sn2—C4—H4B109.5H12B—C12—H12C109.5

Experimental details

Crystal data
Chemical formula[Sn2Cl2(CH3)4(C4H10N)2]
Mr512.68
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)16.015 (3), 10.219 (3), 24.275 (5)
β (°) 93.94 (3)
V3)3963.4 (16)
Z8
Radiation typeMo Kα
µ (mm1)2.78
Crystal size (mm)0.50 × 0.40 × 0.24
Data collection
DiffractometerPhilips PW1100 four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.276, 0.513
No. of measured, independent and
observed [I > 2σ(I)] reflections
4818, 3183, 3144
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.140, 1.21
No. of reflections3114
No. of parameters171
No. of restraintsno restraints
H-atom treatmentH-atom parameters constrained
Calculated w = 1/[σ2(Fo2) + (0.0514P)2 + 78.9387P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.03, 1.27

Computer programs: FEBO (Belletti, 1993), FEBO, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), PARST94 (Nardelli, 1995).

Selected geometric parameters (Å, º) top
Sn1—C22.109 (11)Sn2—C32.106 (10)
Sn1—C12.115 (11)Sn2—C42.125 (10)
Sn1—N12.125 (8)Sn2—N22.136 (7)
Sn1—N22.419 (7)Sn2—N12.444 (7)
Sn1—Cl12.543 (3)Sn2—Cl22.525 (2)
C2—Sn1—C1125.9 (6)C3—Sn2—N2119.3 (4)
C2—Sn1—N1115.1 (4)C4—Sn2—N2110.8 (4)
C1—Sn1—N1119.0 (5)N2—Sn2—N177.9 (3)
N1—Sn1—N278.6 (2)N1—Sn2—Cl2173.25 (18)
N2—Sn1—Cl1173.06 (19)Sn1—N1—Sn296.5 (3)
C3—Sn2—C4129.7 (5)Sn2—N2—Sn196.9 (2)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds