Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Cu(C5H10NO2S2)(C18H15P)2]·C18H15P, the Cu atom is in a distorted tetrahedral coordination, with two tri­phenyl­phosphine P atoms and two S atoms from an N,N-bis(2-hydroxy­ethyl)­di­thio­carbamate ligand occupying the vertices. The crystal structure is characterized by alternate layers of complex and tri­phenyl­phosphine mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100007873/qa0313sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100007873/qa0313Isup2.hkl
Contains datablock I

CCDC reference: 147688

Comment top

Group 12 metals form a wide range of tertiary phosphine (R3P) complexes of the general stoichiometry LnMX(L = R3P, n = 1–4; Attar, Alcock, Frye et al., 1991; Attar, Alcock, Bowmaker et al., 1991; Alyea et al., 1992). The value of n and the net electronic charge on the complex are somewhat dependent upon the coordinating ability of X. Also, the transition metal dithiolates containing MS4 chromophores show interesting variations in their reactions with Lewis bases (Cordes & Draganjac, 1988; Venkatachalam et al., 1996).

The asymmetric unit of the title structure contains one molecule of [Cu{(C2H4OH)2S2CN}(PPh3)2] together with a molecule of uncoordinated triphenylphosphine. The Cu1 atom is in a distorted tetrahedral environment, with the P atoms of the triphenylphosphine ligands and the S atoms of the bidentate dithiocarbamate ligand occupying the vertices. The angles around Cu1 range between 74.77 (4) (S1—Cu1—S2) and 124.51 (4)° (P1—Cu1—P2). The small S1—Cu1—S2 bond angle is due to the restricted bite angle of the ligand. The P1—Cu1—P2 bond angle is comparable with values reported for other bis(triphenylphosphine)copper(I) compounds (Karaglannidis et al., 1989; Long et al., 1996). The Cu—P distances are comparable to those found in (PPh3)2Cu(C2H4N2S2)Br (Long et al., 1996). The bond lengths of Cu—S1 and S2—C37 are longer than those of Cu—S2 and S1—C37, respectively. One of the S—C bond lengths (S1—C37) is close to the CS distance of 1.69 Å, while S2—C37 shows a value intermediate between single- and double-bond distances, indicating partial double-bond character. The longer Cu—S bond length (Cu1—S1) lies adjacent to C—S bond which is closer to the CS bond distance. The same characteristic is found in the structure of [Ni(pipdtc)(PPh3)2]ClO4(PPh3)·H2O (pipdtc is piperidinedithiocarbamate; Venkatachalam et al., 1996), but different from the complex of [Au(S2CPh)(PPh3)2] (Lanfredi et al., 1992), where the shorter Au—S bond lies adjacent to the C—S bond length which is closer to the CS bond distance. The four-membered CuS2C is nearly planar with normal bond lengths. The bond length of C37—N1 [1.360 (4) Å] has double-bond character, but slightly longer than those observed in a related structure (Jian et al., 1999). All the phenyl rings show normal bond parameters. The P—C bond distances are also normal. The C—P—C angles deviate appreciably from the ideal tetrahedral angle of 109.5°. The crystal structure is characterized by alternate layers of the complexes and the triphenylphosphine ligands which lie parallel to the bc plane. The structure is stabilized by C—H···π and van der Waals interactions (Table 2).

Experimental top

Sodium N,N-bis(2-hydroxyethyl)dithiocarbamate, Na[S2CN(C2H4OH)2], was dissolved in H2O. CuCl2 was then added at room temperature with stirring. The brown reaction mixture was filtered and the filtrate was washed with water and dried overnight in vacuo. The dried brown solid was dissolved in EtOH and triphenylphosphine was added at 253–263 K with stirring and refluxed for 4–5 h. Upon cooling, the colourless solution obtained was filtered and left to evaporate. After a few days, colourless solids were separated out and were recrystallized from EtOH/CHCl3. The single crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature of the EtOH solvent.

Refinement top

After checking their presence in the difference map, all H atoms were geometrically fixed and allowed to ride on their attached atoms. The O1 atom in one of the hydroxyethyl groups is disordered and was refined with an occupancy ratio of of 78:22.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

N,N-bis(2-hydroxyethyl)dithiocarbamatobis(triphenylphosphine) Copper(I) Triphenylphosphine top
Crystal data top
[Cu(C5H10NO2S2)(C18H15P)2]·C18H15PZ = 2
Mr = 1030.61F(000) = 1076
Triclinic, P1Dx = 1.291 Mg m3
a = 12.2892 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.1612 (5) ÅCell parameters from 7234 reflections
c = 19.3696 (7) Åθ = 1.1–28.3°
α = 95.512 (1)°µ = 0.62 mm1
β = 103.177 (1)°T = 293 K
γ = 116.801 (1)°Slab, colourless
V = 2650.47 (16) Å30.40 × 0.30 × 0.14 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
11791 independent reflections
Radiation source: fine-focus sealed tube5663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 8.33 pixels mm-1θmax = 27.5°, θmin = 1.1°
ω scansh = 1514
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1717
Tmin = 0.788, Tmax = 0.918l = 1825
18118 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0271P)2]
where P = (Fo2 + 2Fc2)/3
11791 reflections(Δ/σ)max < 0.001
624 parametersΔρmax = 0.44 e Å3
2 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Cu(C5H10NO2S2)(C18H15P)2]·C18H15Pγ = 116.801 (1)°
Mr = 1030.61V = 2650.47 (16) Å3
Triclinic, P1Z = 2
a = 12.2892 (4) ÅMo Kα radiation
b = 13.1612 (5) ŵ = 0.62 mm1
c = 19.3696 (7) ÅT = 293 K
α = 95.512 (1)°0.40 × 0.30 × 0.14 mm
β = 103.177 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
11791 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
5663 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.918Rint = 0.065
18118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0572 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 0.86Δρmax = 0.44 e Å3
11791 reflectionsΔρmin = 0.76 e Å3
624 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was −35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.80742 (4)0.72780 (4)0.17311 (2)0.03704 (14)
S10.66316 (10)0.56518 (8)0.21407 (6)0.0494 (3)
S20.90455 (10)0.77027 (9)0.30192 (6)0.0541 (3)
P10.89873 (9)0.64554 (8)0.11330 (5)0.0336 (2)
P20.75898 (9)0.86555 (8)0.13888 (5)0.0353 (2)
P30.34121 (14)0.21258 (11)0.40644 (7)0.0749 (4)
O1A0.7498 (15)0.3672 (11)0.2817 (8)0.086 (8)0.225 (12)
H1A0.82470.41650.30250.129*0.225 (12)
O1B0.7558 (12)0.3435 (8)0.3739 (6)0.276 (7)0.775 (12)
H1B0.82900.39840.38580.415*0.775 (12)
O20.9872 (8)0.5264 (7)0.4329 (3)0.238 (4)
H2A0.93250.47820.39610.358*
N10.7788 (4)0.5833 (3)0.3529 (2)0.0726 (12)
C10.9196 (3)0.5288 (3)0.14912 (19)0.0341 (8)
C20.9840 (4)0.5535 (3)0.2228 (2)0.0525 (11)
H2B1.01380.62660.25210.063*
C31.0040 (4)0.4690 (4)0.2529 (2)0.0669 (13)
H3A1.04890.48650.30200.080*
C40.9573 (4)0.3600 (4)0.2101 (3)0.0586 (12)
H4A0.96980.30350.23050.070*
C50.8930 (4)0.3340 (3)0.1379 (2)0.0541 (11)
H5A0.86200.26020.10920.065*
C60.8739 (3)0.4182 (3)0.1072 (2)0.0447 (10)
H6A0.83000.40000.05790.054*
C71.0598 (3)0.7436 (3)0.11043 (19)0.0358 (8)
C81.1457 (4)0.7067 (3)0.1010 (2)0.0488 (10)
H8A1.12130.62770.09540.059*
C91.2656 (4)0.7834 (4)0.0997 (3)0.0636 (13)
H9A1.32160.75610.09420.076*
C101.3045 (4)0.9012 (3)0.1064 (2)0.0572 (12)
H10A1.38540.95350.10480.069*
C111.2193 (4)0.9387 (3)0.1158 (2)0.0544 (11)
H11A1.24371.01770.12070.065*
C121.0994 (4)0.8621 (3)0.1178 (2)0.0454 (10)
H12A1.04410.88980.12430.054*
C130.8053 (3)0.5725 (3)0.01799 (19)0.0329 (8)
C140.8580 (4)0.5857 (3)0.0391 (2)0.0404 (9)
H14A0.94580.63220.02950.049*
C150.7800 (4)0.5298 (3)0.1103 (2)0.0493 (10)
H15A0.81610.53870.14810.059*
C160.6511 (4)0.4619 (3)0.1251 (2)0.0516 (11)
H16A0.59970.42540.17300.062*
C170.5968 (4)0.4472 (3)0.0698 (2)0.0512 (11)
H17A0.50890.40010.08010.061*
C180.6737 (3)0.5028 (3)0.0016 (2)0.0432 (10)
H18A0.63660.49320.03900.052*
C190.9015 (3)0.9973 (3)0.1382 (2)0.0352 (9)
C201.0015 (4)1.0569 (3)0.2033 (2)0.0461 (10)
H20A0.99131.03260.24600.055*
C211.1152 (4)1.1515 (3)0.2051 (2)0.0535 (11)
H21A1.18121.19040.24880.064*
C221.1306 (4)1.1875 (3)0.1430 (3)0.0577 (12)
H22A1.20731.25140.14460.069*
C231.0349 (4)1.1314 (3)0.0782 (2)0.0573 (12)
H23A1.04661.15700.03600.069*
C240.9202 (4)1.0361 (3)0.0758 (2)0.0465 (10)
H24A0.85510.99800.03170.056*
C250.6463 (3)0.8301 (3)0.0478 (2)0.0369 (9)
C260.6492 (4)0.7591 (3)0.0091 (2)0.0455 (10)
H26A0.70870.73280.00050.055*
C270.5646 (4)0.7273 (3)0.0784 (2)0.0549 (11)
H27A0.56840.68120.11630.066*
C280.4757 (4)0.7640 (4)0.0907 (3)0.0603 (12)
H28A0.41790.74130.13700.072*
C290.4704 (4)0.8334 (4)0.0362 (3)0.0619 (12)
H29A0.40990.85840.04550.074*
C300.5555 (4)0.8669 (3)0.0334 (2)0.0520 (11)
H30A0.55160.91430.07050.062*
C310.6961 (3)0.9253 (3)0.1992 (2)0.0376 (9)
C320.7103 (4)1.0365 (3)0.2033 (2)0.0513 (11)
H32A0.75591.08460.17630.062*
C330.6565 (4)1.0765 (4)0.2477 (3)0.0639 (13)
H33A0.66641.15120.25020.077*
C340.5897 (5)1.0071 (4)0.2875 (3)0.0730 (14)
H34A0.55391.03420.31700.088*
C350.5751 (4)0.8956 (4)0.2838 (3)0.0745 (14)
H35A0.52880.84750.31060.089*
C360.6289 (4)0.8563 (4)0.2407 (2)0.0554 (11)
H36A0.62020.78220.23930.066*
C370.7816 (4)0.6345 (3)0.2950 (2)0.0474 (10)
C380.6678 (6)0.4721 (4)0.3495 (3)0.108 (2)
H38A0.59200.46700.31680.130*
H38B0.65680.47200.39750.130*
C390.6767 (11)0.3672 (6)0.3249 (7)0.185 (4)
H39A0.59050.30760.29900.222*0.225 (12)
H39B0.70420.34250.36740.222*0.225 (12)
H39C0.70250.37400.28160.222*0.775 (12)
H39D0.59130.30240.31140.222*0.775 (12)
C400.8777 (6)0.6438 (5)0.4234 (3)0.0982 (19)
H40A0.84290.61020.46100.118*
H40B0.89880.72520.43300.118*
C411.0001 (8)0.6379 (7)0.4292 (3)0.148 (3)
H41A1.02780.65980.38720.177*
H41B1.06650.69460.47230.177*
C420.3256 (4)0.0683 (4)0.3986 (3)0.0736 (14)
C430.2878 (5)0.0012 (5)0.3280 (3)0.0874 (16)
H43A0.27380.03300.28830.105*
C440.2713 (5)0.1090 (5)0.3162 (4)0.106 (2)
H44A0.24400.15180.26870.127*
C450.2939 (6)0.1570 (5)0.3726 (4)0.107 (2)
H45A0.28330.23210.36410.129*
C460.3324 (7)0.0945 (6)0.4421 (5)0.138 (3)
H46A0.34970.12680.48110.165*
C470.3461 (6)0.0173 (5)0.4553 (4)0.108 (2)
H47A0.36940.05780.50290.129*
C480.4414 (5)0.2846 (4)0.5021 (3)0.0639 (13)
C490.5730 (5)0.3397 (4)0.5160 (3)0.0796 (15)
H49A0.60590.33530.47780.096*
C500.6555 (6)0.4001 (5)0.5838 (4)0.0962 (19)
H50A0.74340.43510.59160.115*
C510.6087 (7)0.4093 (5)0.6405 (3)0.098 (2)
H51A0.66500.45220.68660.117*
C520.4801 (6)0.3557 (5)0.6295 (3)0.0929 (18)
H52A0.44830.36050.66820.111*
C530.3960 (5)0.2930 (5)0.5594 (3)0.0818 (15)
H53A0.30810.25680.55170.098*
C540.1838 (5)0.1845 (4)0.4070 (2)0.0649 (13)
C550.0865 (6)0.0806 (5)0.4143 (3)0.0857 (16)
H55A0.10420.02050.42300.103*
C560.0324 (6)0.0640 (5)0.4093 (4)0.105 (2)
H56A0.09440.00680.41400.126*
C570.0614 (7)0.1493 (7)0.3975 (3)0.117 (3)
H57A0.14290.13760.39480.140*
C580.0276 (9)0.2520 (7)0.3896 (3)0.113 (3)
H58A0.00730.31070.38150.136*
C590.1486 (7)0.2696 (5)0.3937 (3)0.0935 (19)
H59A0.20840.34020.38750.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0467 (3)0.0355 (3)0.0384 (3)0.0244 (2)0.0180 (2)0.0143 (2)
S10.0560 (7)0.0412 (6)0.0466 (6)0.0163 (5)0.0227 (5)0.0121 (5)
S20.0656 (7)0.0457 (6)0.0415 (6)0.0274 (6)0.0022 (5)0.0025 (5)
P10.0376 (5)0.0313 (5)0.0387 (6)0.0200 (4)0.0154 (5)0.0114 (4)
P20.0426 (6)0.0328 (5)0.0390 (6)0.0221 (5)0.0173 (5)0.0133 (4)
P30.0951 (11)0.0748 (9)0.0525 (8)0.0418 (8)0.0192 (8)0.0115 (7)
O1A0.124 (15)0.028 (8)0.099 (15)0.025 (8)0.053 (11)0.010 (8)
O1B0.490 (18)0.204 (8)0.362 (16)0.275 (11)0.263 (14)0.156 (10)
O20.491 (12)0.355 (8)0.107 (4)0.384 (9)0.107 (6)0.110 (5)
N10.135 (4)0.067 (3)0.044 (2)0.063 (3)0.040 (2)0.029 (2)
C10.034 (2)0.034 (2)0.041 (2)0.0177 (17)0.0188 (18)0.0149 (18)
C20.070 (3)0.052 (2)0.044 (3)0.038 (2)0.014 (2)0.012 (2)
C30.093 (4)0.079 (3)0.050 (3)0.059 (3)0.016 (3)0.028 (3)
C40.069 (3)0.058 (3)0.075 (3)0.044 (2)0.030 (3)0.038 (3)
C50.064 (3)0.035 (2)0.069 (3)0.026 (2)0.025 (3)0.018 (2)
C60.049 (2)0.038 (2)0.046 (2)0.0195 (19)0.014 (2)0.0136 (19)
C70.040 (2)0.034 (2)0.037 (2)0.0205 (17)0.0128 (17)0.0078 (17)
C80.046 (2)0.037 (2)0.071 (3)0.021 (2)0.031 (2)0.011 (2)
C90.043 (3)0.061 (3)0.102 (4)0.031 (2)0.036 (3)0.018 (3)
C100.037 (2)0.048 (3)0.080 (3)0.012 (2)0.024 (2)0.014 (2)
C110.047 (3)0.037 (2)0.077 (3)0.015 (2)0.024 (2)0.015 (2)
C120.041 (2)0.039 (2)0.062 (3)0.0244 (19)0.016 (2)0.012 (2)
C130.041 (2)0.0280 (18)0.040 (2)0.0227 (17)0.0167 (18)0.0127 (17)
C140.043 (2)0.038 (2)0.045 (2)0.0203 (18)0.020 (2)0.0123 (19)
C150.063 (3)0.054 (3)0.040 (3)0.032 (2)0.024 (2)0.014 (2)
C160.056 (3)0.046 (2)0.043 (3)0.023 (2)0.004 (2)0.006 (2)
C170.037 (2)0.045 (2)0.061 (3)0.015 (2)0.008 (2)0.010 (2)
C180.041 (2)0.034 (2)0.054 (3)0.0143 (19)0.020 (2)0.016 (2)
C190.038 (2)0.0300 (19)0.045 (2)0.0196 (17)0.0157 (19)0.0146 (18)
C200.051 (3)0.044 (2)0.040 (2)0.020 (2)0.014 (2)0.012 (2)
C210.047 (3)0.050 (3)0.053 (3)0.020 (2)0.009 (2)0.008 (2)
C220.049 (3)0.039 (2)0.078 (4)0.014 (2)0.024 (3)0.015 (2)
C230.062 (3)0.049 (3)0.059 (3)0.019 (2)0.026 (2)0.023 (2)
C240.053 (3)0.042 (2)0.044 (2)0.022 (2)0.014 (2)0.015 (2)
C250.037 (2)0.0310 (19)0.043 (2)0.0142 (17)0.0150 (18)0.0151 (18)
C260.047 (2)0.043 (2)0.052 (3)0.023 (2)0.018 (2)0.014 (2)
C270.056 (3)0.054 (3)0.043 (3)0.021 (2)0.011 (2)0.004 (2)
C280.048 (3)0.065 (3)0.050 (3)0.018 (2)0.003 (2)0.016 (2)
C290.056 (3)0.073 (3)0.061 (3)0.039 (3)0.007 (2)0.015 (3)
C300.049 (3)0.052 (2)0.058 (3)0.028 (2)0.014 (2)0.011 (2)
C310.041 (2)0.036 (2)0.041 (2)0.0204 (18)0.0181 (18)0.0094 (18)
C320.062 (3)0.045 (2)0.059 (3)0.032 (2)0.025 (2)0.015 (2)
C330.075 (3)0.055 (3)0.071 (3)0.041 (3)0.025 (3)0.004 (3)
C340.077 (3)0.080 (4)0.074 (4)0.048 (3)0.032 (3)0.002 (3)
C350.080 (3)0.080 (4)0.087 (4)0.043 (3)0.055 (3)0.027 (3)
C360.067 (3)0.048 (2)0.064 (3)0.032 (2)0.033 (2)0.015 (2)
C370.085 (3)0.047 (2)0.035 (2)0.045 (2)0.031 (2)0.0194 (19)
C380.214 (7)0.073 (4)0.097 (4)0.086 (4)0.105 (5)0.057 (3)
C390.331 (14)0.085 (5)0.215 (11)0.129 (7)0.141 (12)0.070 (6)
C400.175 (6)0.125 (5)0.041 (3)0.111 (5)0.029 (4)0.026 (3)
C410.246 (9)0.219 (8)0.061 (4)0.189 (8)0.030 (5)0.036 (5)
C420.065 (3)0.085 (4)0.069 (4)0.041 (3)0.012 (3)0.006 (3)
C430.085 (4)0.093 (4)0.079 (4)0.047 (3)0.017 (3)0.003 (3)
C440.103 (5)0.092 (5)0.114 (6)0.053 (4)0.022 (4)0.018 (4)
C450.102 (5)0.071 (4)0.143 (7)0.056 (4)0.007 (5)0.004 (4)
C460.161 (7)0.103 (5)0.135 (7)0.084 (5)0.013 (6)0.008 (5)
C470.138 (5)0.081 (4)0.095 (5)0.066 (4)0.003 (4)0.006 (4)
C480.080 (4)0.052 (3)0.056 (3)0.030 (3)0.020 (3)0.011 (2)
C490.085 (4)0.075 (3)0.073 (4)0.030 (3)0.028 (3)0.025 (3)
C500.090 (4)0.078 (4)0.085 (5)0.023 (3)0.001 (4)0.020 (4)
C510.117 (6)0.081 (4)0.069 (4)0.046 (4)0.005 (4)0.000 (3)
C520.119 (5)0.117 (5)0.058 (4)0.074 (4)0.024 (4)0.010 (3)
C530.090 (4)0.097 (4)0.062 (4)0.052 (3)0.017 (3)0.014 (3)
C540.091 (4)0.059 (3)0.041 (3)0.040 (3)0.009 (3)0.008 (2)
C550.090 (4)0.073 (4)0.095 (4)0.048 (3)0.016 (3)0.005 (3)
C560.079 (4)0.099 (5)0.115 (5)0.039 (4)0.016 (4)0.014 (4)
C570.108 (6)0.167 (7)0.064 (4)0.090 (6)0.018 (4)0.029 (5)
C580.189 (8)0.162 (7)0.051 (4)0.146 (7)0.018 (5)0.016 (4)
C590.165 (6)0.092 (4)0.050 (3)0.087 (4)0.028 (4)0.020 (3)
Geometric parameters (Å, º) top
Cu1—P22.2595 (9)C24—H24A0.9300
Cu1—P12.2849 (10)C25—C301.389 (5)
Cu1—S22.3946 (11)C25—C261.393 (5)
Cu1—S12.4287 (10)C26—C271.386 (5)
S1—C371.702 (4)C26—H26A0.9300
S2—C371.710 (4)C27—C281.365 (6)
P1—C131.830 (4)C27—H27A0.9300
P1—C71.830 (4)C28—C291.362 (6)
P1—C11.840 (3)C28—H28A0.9300
P2—C191.831 (4)C29—C301.390 (5)
P2—C311.834 (4)C29—H29A0.9300
P2—C251.841 (4)C30—H30A0.9300
P3—C541.801 (5)C31—C361.385 (5)
P3—C421.808 (5)C31—C321.386 (5)
P3—C481.849 (5)C32—C331.393 (6)
O1A—C391.360 (10)C32—H32A0.9300
O1A—H1A0.8200C33—C341.359 (6)
O1A—H39C0.6264C33—H33A0.9300
O1B—C391.362 (10)C34—C351.389 (6)
O1B—H1B0.8200C34—H34A0.9300
O1B—H39B0.6113C35—C361.371 (6)
O2—C411.414 (8)C35—H35A0.9300
O2—H2A0.8200C36—H36A0.9300
N1—C371.360 (5)C38—C391.475 (8)
N1—C401.463 (6)C38—H38A0.9700
N1—C381.465 (6)C38—H38B0.9700
C1—C61.387 (5)C39—H39A0.9601
C1—C21.391 (5)C39—H39B0.9600
C2—C31.393 (5)C39—H39C0.9600
C2—H2B0.9300C39—H39D0.9600
C3—C41.375 (6)C40—C411.520 (8)
C3—H3A0.9300C40—H40A0.9700
C4—C51.362 (6)C40—H40B0.9700
C4—H4A0.9300C41—H41A0.9700
C5—C61.390 (5)C41—H41B0.9700
C5—H5A0.9300C42—C471.374 (7)
C6—H6A0.9300C42—C431.404 (7)
C7—C81.384 (5)C43—C441.358 (7)
C7—C121.390 (4)C43—H43A0.9300
C8—C91.368 (5)C44—C451.350 (8)
C8—H8A0.9300C44—H44A0.9300
C9—C101.383 (5)C45—C461.364 (9)
C9—H9A0.9300C45—H45A0.9300
C10—C111.381 (5)C46—C471.394 (7)
C10—H10A0.9300C46—H46A0.9300
C11—C121.372 (5)C47—H47A0.9300
C11—H11A0.9300C48—C531.368 (7)
C12—H12A0.9300C48—C491.385 (6)
C13—C181.389 (5)C49—C501.359 (7)
C13—C141.391 (5)C49—H49A0.9300
C14—C151.389 (5)C50—C511.370 (8)
C14—H14A0.9300C50—H50A0.9300
C15—C161.363 (5)C51—C521.361 (8)
C15—H15A0.9300C51—H51A0.9300
C16—C171.370 (6)C52—C531.405 (7)
C16—H16A0.9300C52—H52A0.9300
C17—C181.389 (5)C53—H53A0.9300
C17—H17A0.9300C54—C591.396 (6)
C18—H18A0.9300C54—C551.400 (6)
C19—C241.383 (5)C55—C561.355 (7)
C19—C201.397 (5)C55—H55A0.9300
C20—C211.380 (5)C56—C571.346 (8)
C20—H20A0.9300C56—H56A0.9300
C21—C221.356 (6)C57—C581.353 (8)
C21—H21A0.9300C57—H57A0.9300
C22—C231.368 (6)C58—C591.379 (8)
C22—H22A0.9300C58—H58A0.9300
C23—C241.388 (5)C59—H59A0.9300
C23—H23A0.9300
P2—Cu1—P1124.51 (4)C30—C29—H29A120.0
P2—Cu1—S2112.35 (4)C25—C30—C29120.5 (4)
P1—Cu1—S2109.85 (4)C25—C30—H30A119.8
P2—Cu1—S1122.04 (4)C29—C30—H30A119.8
P1—Cu1—S1102.49 (4)C36—C31—C32118.5 (4)
S2—Cu1—S174.77 (4)C36—C31—P2119.3 (3)
C37—S1—Cu182.63 (13)C32—C31—P2122.2 (3)
C37—S2—Cu183.54 (13)C31—C32—C33120.2 (4)
C13—P1—C7104.59 (16)C31—C32—H32A119.9
C13—P1—C1102.02 (15)C33—C32—H32A119.9
C7—P1—C1101.92 (15)C34—C33—C32120.5 (4)
C13—P1—Cu1113.80 (11)C34—C33—H33A119.7
C7—P1—Cu1116.68 (12)C32—C33—H33A119.7
C1—P1—Cu1115.96 (12)C33—C34—C35119.8 (5)
C19—P2—C31101.80 (16)C33—C34—H34A120.1
C19—P2—C25103.13 (16)C35—C34—H34A120.1
C31—P2—C25103.43 (17)C36—C35—C34119.9 (5)
C19—P2—Cu1111.55 (11)C36—C35—H35A120.0
C31—P2—Cu1116.40 (12)C34—C35—H35A120.0
C25—P2—Cu1118.46 (12)C35—C36—C31121.2 (4)
C54—P3—C42102.2 (2)C35—C36—H36A119.4
C54—P3—C48103.9 (2)C31—C36—H36A119.4
C42—P3—C48102.2 (2)N1—C37—S1121.0 (3)
C39—O1A—H1A109.5N1—C37—S2120.7 (3)
C39—O1A—H39C39.2S1—C37—S2118.3 (2)
H1A—O1A—H39C125.0N1—C38—C39114.7 (6)
C39—O1B—H1B109.5N1—C38—H38A108.6
C39—O1B—H39B38.3C39—C38—H38A108.6
H1B—O1B—H39B131.0N1—C38—H38B108.6
C41—O2—H2A109.5C39—C38—H38B108.6
C37—N1—C40121.4 (4)H38A—C38—H38B107.6
C37—N1—C38120.9 (4)O1A—C39—O1B84.7 (11)
C40—N1—C38117.2 (4)O1A—C39—C38122.0 (10)
C6—C1—C2118.5 (3)O1B—C39—C38116.5 (9)
C6—C1—P1123.9 (3)O1A—C39—H39A106.8
C2—C1—P1117.6 (3)O1B—C39—H39A120.8
C1—C2—C3120.3 (4)C38—C39—H39A105.6
C1—C2—H2B119.9O1A—C39—H39B107.1
C3—C2—H2B119.9O1B—C39—H39B23.3
C4—C3—C2120.0 (4)C38—C39—H39B107.7
C4—C3—H3A120.0H39A—C39—H39B106.9
C2—C3—H3A120.0O1A—C39—H39C24.4
C5—C4—C3120.5 (4)O1B—C39—H39C109.1
C5—C4—H4A119.7C38—C39—H39C108.6
C3—C4—H4A119.7H39A—C39—H39C93.4
C4—C5—C6119.9 (4)H39B—C39—H39C131.2
C4—C5—H5A120.0O1A—C39—H39D117.0
C6—C5—H5A120.0O1B—C39—H39D108.8
C1—C6—C5120.9 (4)C38—C39—H39D106.2
C1—C6—H6A119.6H39A—C39—H39D15.3
C5—C6—H6A119.6H39B—C39—H39D92.5
C8—C7—C12117.4 (3)H39C—C39—H39D107.2
C8—C7—P1123.8 (3)N1—C40—C41114.6 (5)
C12—C7—P1118.8 (3)N1—C40—H40A108.6
C9—C8—C7121.7 (3)C41—C40—H40A108.6
C9—C8—H8A119.1N1—C40—H40B108.6
C7—C8—H8A119.1C41—C40—H40B108.6
C8—C9—C10120.7 (4)H40A—C40—H40B107.6
C8—C9—H9A119.6O2—C41—C40113.8 (7)
C10—C9—H9A119.6O2—C41—H41A108.8
C11—C10—C9117.9 (4)C40—C41—H41A108.8
C11—C10—H10A121.1O2—C41—H41B108.8
C9—C10—H10A121.1C40—C41—H41B108.8
C12—C11—C10121.4 (4)H41A—C41—H41B107.7
C12—C11—H11A119.3C47—C42—C43116.6 (5)
C10—C11—H11A119.3C47—C42—P3126.1 (4)
C11—C12—C7120.8 (4)C43—C42—P3117.3 (4)
C11—C12—H12A119.6C44—C43—C42121.9 (6)
C7—C12—H12A119.6C44—C43—H43A119.1
C18—C13—C14118.3 (3)C42—C43—H43A119.1
C18—C13—P1118.0 (3)C45—C44—C43120.7 (6)
C14—C13—P1123.7 (3)C45—C44—H44A119.7
C15—C14—C13120.2 (4)C43—C44—H44A119.7
C15—C14—H14A119.9C44—C45—C46119.6 (6)
C13—C14—H14A119.9C44—C45—H45A120.2
C16—C15—C14120.5 (4)C46—C45—H45A120.2
C16—C15—H15A119.8C45—C46—C47120.5 (7)
C14—C15—H15A119.8C45—C46—H46A119.7
C15—C16—C17120.4 (4)C47—C46—H46A119.7
C15—C16—H16A119.8C42—C47—C46120.7 (6)
C17—C16—H16A119.8C42—C47—H47A119.7
C16—C17—C18119.7 (4)C46—C47—H47A119.7
C16—C17—H17A120.2C53—C48—C49117.5 (5)
C18—C17—H17A120.2C53—C48—P3125.1 (4)
C17—C18—C13120.9 (4)C49—C48—P3117.3 (4)
C17—C18—H18A119.5C50—C49—C48122.1 (6)
C13—C18—H18A119.5C50—C49—H49A118.9
C24—C19—C20117.9 (3)C48—C49—H49A118.9
C24—C19—P2123.8 (3)C49—C50—C51119.7 (6)
C20—C19—P2118.1 (3)C49—C50—H50A120.1
C21—C20—C19120.8 (4)C51—C50—H50A120.1
C21—C20—H20A119.6C52—C51—C50120.2 (6)
C19—C20—H20A119.6C52—C51—H51A119.9
C22—C21—C20119.8 (4)C50—C51—H51A119.9
C22—C21—H21A120.1C51—C52—C53119.5 (6)
C20—C21—H21A120.1C51—C52—H52A120.3
C21—C22—C23121.0 (4)C53—C52—H52A120.3
C21—C22—H22A119.5C48—C53—C52120.9 (5)
C23—C22—H22A119.5C48—C53—H53A119.5
C22—C23—C24119.6 (4)C52—C53—H53A119.5
C22—C23—H23A120.2C59—C54—C55114.7 (5)
C24—C23—H23A120.2C59—C54—P3118.6 (5)
C19—C24—C23120.8 (4)C55—C54—P3126.5 (4)
C19—C24—H24A119.6C56—C55—C54122.7 (5)
C23—C24—H24A119.6C56—C55—H55A118.6
C30—C25—C26118.2 (4)C54—C55—H55A118.6
C30—C25—P2123.5 (3)C57—C56—C55120.5 (7)
C26—C25—P2118.3 (3)C57—C56—H56A119.8
C27—C26—C25120.8 (4)C55—C56—H56A119.8
C27—C26—H26A119.6C56—C57—C58120.2 (7)
C25—C26—H26A119.6C56—C57—H57A119.9
C28—C27—C26119.6 (4)C58—C57—H57A119.9
C28—C27—H27A120.2C57—C58—C59120.0 (7)
C26—C27—H27A120.2C57—C58—H58A120.0
C29—C28—C27121.0 (4)C59—C58—H58A120.0
C29—C28—H28A119.5C58—C59—C54121.9 (6)
C27—C28—H28A119.5C58—C59—H59A119.0
C28—C29—C30119.9 (4)C54—C59—H59A119.0
C28—C29—H29A120.0
P2—Cu1—S1—C37112.58 (13)C19—P2—C25—C3094.1 (3)
P1—Cu1—S1—C37102.00 (13)C31—P2—C25—C3011.7 (3)
S2—Cu1—S1—C375.46 (13)Cu1—P2—C25—C30142.2 (3)
P2—Cu1—S2—C37124.27 (13)C19—P2—C25—C2688.3 (3)
P1—Cu1—S2—C3792.63 (13)C31—P2—C25—C26166.0 (3)
S1—Cu1—S2—C375.43 (13)Cu1—P2—C25—C2635.5 (3)
P2—Cu1—P1—C1358.55 (13)C30—C25—C26—C270.7 (5)
S2—Cu1—P1—C13163.82 (12)P2—C25—C26—C27178.5 (3)
S1—Cu1—P1—C1385.72 (12)C25—C26—C27—C281.3 (6)
P2—Cu1—P1—C763.43 (13)C26—C27—C28—C291.3 (6)
S2—Cu1—P1—C774.19 (13)C27—C28—C29—C300.7 (6)
S1—Cu1—P1—C7152.30 (13)C26—C25—C30—C290.0 (5)
P2—Cu1—P1—C1176.45 (13)P2—C25—C30—C29177.7 (3)
S2—Cu1—P1—C145.93 (13)C28—C29—C30—C250.0 (6)
S1—Cu1—P1—C132.18 (13)C19—P2—C31—C36149.9 (3)
P1—Cu1—P2—C1959.84 (14)C25—P2—C31—C36103.3 (3)
S2—Cu1—P2—C1976.89 (14)Cu1—P2—C31—C3628.4 (3)
S1—Cu1—P2—C19162.43 (13)C19—P2—C31—C3231.9 (3)
P1—Cu1—P2—C31176.04 (13)C25—P2—C31—C3274.9 (3)
S2—Cu1—P2—C3139.30 (14)Cu1—P2—C31—C32153.4 (3)
S1—Cu1—P2—C3146.23 (14)C36—C31—C32—C330.7 (6)
P1—Cu1—P2—C2559.62 (14)P2—C31—C32—C33177.5 (3)
S2—Cu1—P2—C25163.64 (14)C31—C32—C33—C340.0 (6)
S1—Cu1—P2—C2578.11 (14)C32—C33—C34—C350.1 (7)
C13—P1—C1—C61.8 (3)C33—C34—C35—C360.5 (8)
C7—P1—C1—C6106.2 (3)C34—C35—C36—C311.3 (7)
Cu1—P1—C1—C6126.0 (3)C32—C31—C36—C351.4 (6)
C13—P1—C1—C2177.6 (3)P2—C31—C36—C35176.9 (4)
C7—P1—C1—C274.5 (3)C40—N1—C37—S1177.9 (3)
Cu1—P1—C1—C253.3 (3)C38—N1—C37—S15.9 (6)
C6—C1—C2—C31.4 (6)C40—N1—C37—S22.2 (6)
P1—C1—C2—C3179.3 (3)C38—N1—C37—S2174.1 (3)
C1—C2—C3—C41.6 (7)Cu1—S1—C37—N1171.6 (3)
C2—C3—C4—C51.0 (7)Cu1—S1—C37—S28.4 (2)
C3—C4—C5—C60.2 (7)Cu1—S2—C37—N1171.4 (3)
C2—C1—C6—C50.6 (6)Cu1—S2—C37—S18.5 (2)
P1—C1—C6—C5179.9 (3)C37—N1—C38—C3992.1 (8)
C4—C5—C6—C10.0 (6)C40—N1—C38—C3995.6 (7)
C13—P1—C7—C877.3 (3)N1—C38—C39—O1A25.7 (16)
C1—P1—C7—C828.6 (4)N1—C38—C39—O1B75.3 (12)
Cu1—P1—C7—C8156.0 (3)C37—N1—C40—C4181.5 (6)
C13—P1—C7—C12102.4 (3)C38—N1—C40—C41106.2 (6)
C1—P1—C7—C12151.6 (3)N1—C40—C41—O272.0 (6)
Cu1—P1—C7—C1224.2 (3)C54—P3—C42—C4788.3 (5)
C12—C7—C8—C90.7 (6)C48—P3—C42—C4719.1 (6)
P1—C7—C8—C9179.5 (3)C54—P3—C42—C4391.1 (4)
C7—C8—C9—C101.3 (7)C48—P3—C42—C43161.5 (4)
C8—C9—C10—C111.1 (7)C47—C42—C43—C440.6 (8)
C9—C10—C11—C120.4 (7)P3—C42—C43—C44178.9 (4)
C10—C11—C12—C70.1 (6)C42—C43—C44—C451.7 (10)
C8—C7—C12—C110.0 (6)C43—C44—C45—C460.7 (11)
P1—C7—C12—C11179.8 (3)C44—C45—C46—C471.2 (12)
C7—P1—C13—C18171.9 (3)C43—C42—C47—C461.4 (9)
C1—P1—C13—C1882.2 (3)P3—C42—C47—C46179.2 (5)
Cu1—P1—C13—C1843.4 (3)C45—C46—C47—C422.3 (12)
C7—P1—C13—C146.0 (3)C54—P3—C48—C539.9 (5)
C1—P1—C13—C1499.9 (3)C42—P3—C48—C5396.1 (5)
Cu1—P1—C13—C14134.5 (3)C54—P3—C48—C49166.3 (4)
C18—C13—C14—C150.3 (5)C42—P3—C48—C4987.7 (4)
P1—C13—C14—C15178.2 (3)C53—C48—C49—C500.2 (8)
C13—C14—C15—C160.4 (6)P3—C48—C49—C50176.7 (4)
C14—C15—C16—C170.6 (6)C48—C49—C50—C511.1 (9)
C15—C16—C17—C180.7 (6)C49—C50—C51—C521.6 (9)
C16—C17—C18—C130.6 (6)C50—C51—C52—C531.3 (9)
C14—C13—C18—C170.4 (5)C49—C48—C53—C520.1 (8)
P1—C13—C18—C17178.4 (3)P3—C48—C53—C52176.1 (4)
C31—P2—C19—C24120.3 (3)C51—C52—C53—C480.4 (8)
C25—P2—C19—C2413.3 (3)C42—P3—C54—C59163.7 (4)
Cu1—P2—C19—C24114.9 (3)C48—P3—C54—C5990.2 (4)
C31—P2—C19—C2064.9 (3)C42—P3—C54—C5511.2 (5)
C25—P2—C19—C20171.9 (3)C48—P3—C54—C5594.8 (4)
Cu1—P2—C19—C2059.9 (3)C59—C54—C55—C560.3 (8)
C24—C19—C20—C210.1 (5)P3—C54—C55—C56175.5 (5)
P2—C19—C20—C21175.0 (3)C54—C55—C56—C570.7 (10)
C19—C20—C21—C220.2 (6)C55—C56—C57—C580.9 (10)
C20—C21—C22—C230.1 (7)C56—C57—C58—C590.1 (10)
C21—C22—C23—C240.0 (7)C57—C58—C59—C541.0 (9)
C20—C19—C24—C230.0 (5)C55—C54—C59—C581.1 (7)
P2—C19—C24—C23174.8 (3)P3—C54—C59—C58176.7 (4)
C22—C23—C24—C190.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg10.932.843.633144
C44—H44A···Cg2i0.932.973.821153
Symmetry code: (i) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C5H10NO2S2)(C18H15P)2]·C18H15P
Mr1030.61
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)12.2892 (4), 13.1612 (5), 19.3696 (7)
α, β, γ (°)95.512 (1), 103.177 (1), 116.801 (1)
V3)2650.47 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.40 × 0.30 × 0.14
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.788, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
18118, 11791, 5663
Rint0.065
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.139, 0.86
No. of reflections11791
No. of parameters624
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.76

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Cu1—P22.2595 (9)S1—C371.702 (4)
Cu1—P12.2849 (10)S2—C371.710 (4)
Cu1—S22.3946 (11)N1—C371.360 (5)
Cu1—S12.4287 (10)
P2—Cu1—P1124.51 (4)P2—Cu1—S1122.04 (4)
P2—Cu1—S2112.35 (4)P1—Cu1—S1102.49 (4)
P1—Cu1—S2109.85 (4)S2—Cu1—S174.77 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg10.932.843.633144
C44—H44A···Cg2i0.932.973.821153
Symmetry code: (i) x1, y1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds