Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C11H12BrN5O2, the rings in the pterin moiety are planar. The carbonyl O atom is in a synperiplanar conformation, while the C-N-C(=O)-C linkage is antiperiplanar. N-H...N and N-H...O intermolecular hydrogen bonds transform the mol­ecules into infinite chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100007861/qa0311sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100007861/qa0311Isup2.hkl
Contains datablock I

CCDC reference: 147697

Comment top

Pterin exist in polymeric structures, and folates having pterin moieties also exist as cyclic hydrogen-bonded tetramer which also forms a liquid-crystal mesophase (Mariani et al., 1989; Bonazzi et al., 1991). Almost all naturally occurring pterins (e.g. biopterin, neopterin, folic acid etc.) possess a substituent at the 6-position of the pterin ring. The difficulty in getting a single-crystal of pterin molecule is due to its notorious insolubility in common organic solvents and also in water. Introduction of a tert-butyl group (e.g. pivaloyl pterin) enhances its solubility by breaking the stronger hydrogen-bonded polymeric network arrangement of the pterin molecule. We report here the hydrogen-bonding network in the crystal structure of 2-pivaloyl-6-bromopterin, (I), as an example of a 6-substituted soluble pterin derivative.

The bond lengths and angles observed in the pterin moiety are comparable to the reported values (Nasir et al., 1992). The fused rings in the pterin moiety are planar, with the Br1 and O1 atoms deviating from the mean plane by −0.082 (1) and 0.132 (4) Å, respectively. The carbonyl O2 atom is in a synperiplanar conformation with respect to C5, while the conformation observed across the C5—N5—C7—C8 linkage is antiperiplanar. The geometry and conformational features resemble those of the chlorpterin derivative (Goswami et al., 2000). In the crystal, the N3 and N5 atoms are involved in N3—H3A···N4(x, 3/2 − y, −1/2 + z) and N5—H5A···O1(x, 3/2 − y, 1/2 + z) intermolecular hydrogen bonds. These hydrogen bonds form eight-membered hydrogen-bonded rings at each side of the molecules, each of which has the graph-set motif of R22(8) (Bernstein et al., 1995). These rings link the molecules into infinite chains in the [001] direction.

Experimental top

2-Amino-6-bromopterin (100 mg, 41 mmol) and 4-dimethylaminopyridine (10 mg) in pivalic anhydride (3 ml) were stirred at 353 K for 12 h. The excess pivalic anhydride and pivalic acid were removed carefully through short-path distillation under reduced pressure. The brown product was washed well with sodium carbonate (5% solution) followed by water and extracted with chloroform. The organic layer was evaporated under reduced pressure. The product was prepared by silica gel (60–120 mesh) eluting with 1% methanol in chloroform with yielded pure 2-pivaloylamino-6-bromopterin (120 mg, 90%). The compound was recrystallized from methylene chloride and methanol mixture (3:2 v/v)

Refinement top

All the H atoms were fixed at calculated positions and allowed to ride on the parent atoms. The tert-butyl group was found to have rotational disorder with occupancy of 52:48.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

N-(6-Bromo-4-oxo-3,4-dihydropteridin-2-yl)-2,2-dimethylpropanamide top
Crystal data top
C11H12BrN5O2F(000) = 656
Mr = 326.17Dx = 1.578 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.4315 (1) ÅCell parameters from 4433 reflections
b = 10.3779 (2) Åθ = 1.6–28.3°
c = 10.2560 (2) ŵ = 3.00 mm1
β = 106.216 (1)°T = 293 K
V = 1372.72 (4) Å3Slab, yellow
Z = 40.36 × 0.26 × 0.22 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3332 independent reflections
Radiation source: fine-focus sealed tube1999 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 8.33 pixels mm-1θmax = 28.2°, θmin = 1.6°
ω scansh = 1717
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.381, Tmax = 0.517l = 1312
9400 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0873P)2]
where P = (Fo2 + 2Fc2)/3
3332 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
C11H12BrN5O2V = 1372.72 (4) Å3
Mr = 326.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4315 (1) ŵ = 3.00 mm1
b = 10.3779 (2) ÅT = 293 K
c = 10.2560 (2) Å0.36 × 0.26 × 0.22 mm
β = 106.216 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3332 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
1999 reflections with I > 2σ(I)
Tmin = 0.381, Tmax = 0.517Rint = 0.067
9400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 0.94Δρmax = 0.76 e Å3
3332 reflectionsΔρmin = 0.91 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.48346 (4)0.19108 (5)0.57471 (6)0.0681 (2)
O10.2784 (3)0.5192 (3)0.1540 (2)0.0566 (8)
O20.1154 (2)0.8877 (3)0.1507 (3)0.0544 (8)
N10.3595 (3)0.5396 (3)0.6380 (3)0.0462 (8)
N20.3757 (3)0.3971 (4)0.4093 (4)0.0568 (9)
N30.2455 (2)0.6974 (3)0.2649 (3)0.0331 (7)
H3A0.22300.73830.18940.040*
N40.2759 (2)0.7073 (3)0.5022 (3)0.0352 (7)
N50.2040 (2)0.8812 (3)0.3733 (3)0.0329 (6)
H5A0.22070.92590.44690.040*
C10.4061 (3)0.4259 (4)0.6502 (4)0.0472 (10)
H1A0.43420.39340.73730.057*
C20.4159 (3)0.3520 (4)0.5413 (4)0.0394 (9)
C30.3267 (3)0.5175 (3)0.3960 (3)0.0296 (7)
C40.2828 (3)0.5739 (3)0.2617 (3)0.0339 (8)
C50.2428 (2)0.7576 (3)0.3817 (3)0.0282 (7)
C60.3210 (3)0.5871 (3)0.5104 (3)0.0320 (7)
C70.1408 (3)0.9415 (4)0.2590 (4)0.0366 (8)
C80.1043 (3)1.0784 (4)0.2793 (4)0.0476 (10)
C9A0.0374 (8)1.0643 (9)0.3888 (11)0.069 (4)0.524 (12)
H9AA0.01701.00250.35620.103*0.524 (12)
H9AB0.00771.14620.40030.103*0.524 (12)
H9AC0.08201.03600.47430.103*0.524 (12)
C10A0.1933 (12)1.1656 (13)0.3428 (17)0.072 (4)0.524 (12)
H10A0.23721.12520.42240.108*0.524 (12)
H10B0.16741.24540.36770.108*0.524 (12)
H10C0.23231.18210.27920.108*0.524 (12)
C11A0.0315 (12)1.1274 (11)0.1565 (10)0.083 (5)0.524 (12)
H11A0.01921.06230.11880.124*0.524 (12)
H11B0.06821.14960.09160.124*0.524 (12)
H11C0.00261.20250.17800.124*0.524 (12)
C9B0.0072 (10)1.0720 (14)0.2468 (18)0.103 (6)0.476 (12)
H9BA0.03401.02900.16130.155*0.476 (12)
H9BB0.03501.15770.24100.155*0.476 (12)
H9BC0.02671.02510.31650.155*0.476 (12)
C10B0.1625 (18)1.1444 (15)0.4029 (17)0.099 (7)0.476 (12)
H10D0.23541.13740.41190.149*0.476 (12)
H10E0.14741.10550.48010.149*0.476 (12)
H10F0.14311.23370.39770.149*0.476 (12)
C11B0.1296 (18)1.1592 (11)0.1537 (16)0.105 (6)0.476 (12)
H11D0.20301.17330.17370.158*0.476 (12)
H11E0.09441.24070.14310.158*0.476 (12)
H11F0.10621.11060.07110.158*0.476 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0584 (3)0.0535 (3)0.0895 (5)0.0152 (2)0.0159 (3)0.0327 (2)
O10.106 (2)0.0400 (16)0.0206 (13)0.0180 (15)0.0121 (14)0.0003 (11)
O20.0705 (19)0.0516 (17)0.0274 (14)0.0188 (14)0.0088 (13)0.0049 (12)
N10.063 (2)0.049 (2)0.0204 (15)0.0008 (16)0.0022 (15)0.0081 (13)
N20.060 (2)0.048 (2)0.060 (2)0.0016 (17)0.0115 (19)0.0118 (17)
N30.0508 (18)0.0318 (16)0.0146 (14)0.0044 (12)0.0057 (12)0.0031 (11)
N40.0521 (18)0.0367 (17)0.0166 (14)0.0020 (13)0.0095 (13)0.0012 (11)
N50.0459 (17)0.0315 (16)0.0190 (14)0.0036 (13)0.0050 (12)0.0057 (11)
C10.052 (2)0.051 (2)0.029 (2)0.0004 (18)0.0040 (17)0.0139 (18)
C20.0335 (19)0.038 (2)0.043 (2)0.0010 (15)0.0034 (16)0.0170 (16)
C30.0355 (18)0.0314 (18)0.0210 (16)0.0010 (13)0.0064 (14)0.0019 (13)
C40.049 (2)0.0324 (18)0.0176 (16)0.0024 (15)0.0045 (14)0.0005 (13)
C50.0317 (17)0.0336 (18)0.0198 (17)0.0027 (14)0.0077 (13)0.0022 (13)
C60.0373 (18)0.0361 (19)0.0221 (16)0.0027 (14)0.0074 (14)0.0044 (14)
C70.039 (2)0.041 (2)0.0260 (18)0.0040 (15)0.0037 (15)0.0002 (15)
C80.051 (2)0.038 (2)0.045 (2)0.0102 (17)0.0005 (19)0.0035 (17)
C9A0.078 (7)0.059 (6)0.080 (8)0.020 (5)0.038 (6)0.008 (5)
C10A0.075 (7)0.036 (6)0.103 (13)0.008 (5)0.021 (8)0.012 (7)
C11A0.128 (12)0.055 (7)0.047 (6)0.045 (7)0.004 (7)0.000 (5)
C9B0.078 (9)0.092 (11)0.139 (19)0.028 (8)0.030 (10)0.006 (10)
C10B0.16 (2)0.035 (8)0.082 (12)0.028 (10)0.008 (10)0.015 (7)
C11B0.184 (18)0.048 (7)0.111 (11)0.033 (9)0.086 (12)0.038 (7)
Geometric parameters (Å, º) top
Br1—C21.886 (4)N5—C71.390 (4)
O1—C41.228 (4)C1—C21.391 (6)
O2—C71.204 (4)C3—C61.398 (4)
N1—C11.325 (5)C3—C41.461 (4)
N1—C61.358 (4)C7—C81.536 (5)
N2—C21.391 (5)C8—C9B1.441 (13)
N2—C31.401 (5)C8—C11A1.453 (9)
N3—C51.361 (4)C8—C10B1.461 (18)
N3—C41.379 (4)C8—C10A1.496 (15)
N4—C51.301 (4)C8—C9A1.629 (10)
N4—C61.380 (4)C8—C11B1.651 (12)
N5—C51.378 (4)
C1—N1—C6117.2 (3)N5—C7—C8116.4 (3)
C2—N2—C3116.0 (3)C9B—C8—C11A54.0 (8)
C5—N3—C4123.2 (3)C9B—C8—C10B119.5 (11)
C5—N4—C6116.7 (3)C11A—C8—C10B131.0 (8)
C5—N5—C7127.1 (3)C9B—C8—C10A141.3 (8)
N1—C1—C2124.2 (3)C11A—C8—C10A115.4 (9)
N2—C2—C1119.9 (3)C10B—C8—C10A33.8 (8)
N2—C2—Br1120.7 (3)C9B—C8—C7106.0 (6)
C1—C2—Br1119.4 (3)C11A—C8—C7111.6 (5)
C6—C3—N2120.9 (3)C10B—C8—C7115.9 (7)
C6—C3—C4118.8 (3)C10A—C8—C7111.8 (6)
N2—C3—C4120.3 (3)C9B—C8—C9A54.4 (7)
O1—C4—N3121.6 (3)C11A—C8—C9A105.2 (8)
O1—C4—C3124.6 (3)C10B—C8—C9A73.1 (10)
N3—C4—C3113.8 (3)C10A—C8—C9A106.4 (7)
N4—C5—N3124.5 (3)C7—C8—C9A105.6 (4)
N4—C5—N5117.1 (3)C9B—C8—C11B105.7 (11)
N3—C5—N5118.4 (3)C11A—C8—C11B51.8 (8)
N1—C6—N4115.4 (3)C10B—C8—C11B105.2 (10)
N1—C6—C3121.7 (3)C10A—C8—C11B73.7 (9)
N4—C6—C3122.8 (3)C7—C8—C11B102.8 (5)
O2—C7—N5121.2 (3)C9A—C8—C11B149.0 (7)
O2—C7—C8122.4 (3)
C6—N1—C1—C21.5 (6)C5—N4—C6—N1176.9 (3)
C3—N2—C2—C10.1 (5)C5—N4—C6—C33.5 (5)
C3—N2—C2—Br1179.8 (3)N2—C3—C6—N12.1 (5)
N1—C1—C2—N20.4 (6)C4—C3—C6—N1179.4 (3)
N1—C1—C2—Br1179.4 (3)N2—C3—C6—N4178.3 (3)
C2—N2—C3—C60.9 (5)C4—C3—C6—N40.2 (5)
C2—N2—C3—C4179.4 (3)C5—N5—C7—O21.9 (6)
C5—N3—C4—O1175.4 (3)C5—N5—C7—C8177.3 (3)
C5—N3—C4—C34.7 (5)O2—C7—C8—C9B61.3 (9)
C6—C3—C4—O1176.0 (4)N5—C7—C8—C9B117.8 (8)
N2—C3—C4—O15.5 (6)O2—C7—C8—C11A4.2 (9)
C6—C3—C4—N34.1 (5)N5—C7—C8—C11A174.8 (8)
N2—C3—C4—N3174.4 (3)O2—C7—C8—C10B163.5 (11)
C6—N4—C5—N33.2 (5)N5—C7—C8—C10B17.4 (11)
C6—N4—C5—N5175.7 (3)O2—C7—C8—C10A126.7 (7)
C4—N3—C5—N41.1 (5)N5—C7—C8—C10A54.2 (8)
C4—N3—C5—N5180.0 (3)O2—C7—C8—C9A118.0 (6)
C7—N5—C5—N4161.7 (3)N5—C7—C8—C9A61.1 (6)
C7—N5—C5—N319.4 (5)O2—C7—C8—C11B49.4 (9)
C1—N1—C6—N4178.1 (3)N5—C7—C8—C11B131.5 (9)
C1—N1—C6—C32.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O20.862.082.680 (4)126
N3—H3A···N4i0.862.303.003 (4)140
N5—H5A···O1ii0.862.132.958 (4)163
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H12BrN5O2
Mr326.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.4315 (1), 10.3779 (2), 10.2560 (2)
β (°) 106.216 (1)
V3)1372.72 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.00
Crystal size (mm)0.36 × 0.26 × 0.22
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.381, 0.517
No. of measured, independent and
observed [I > 2σ(I)] reflections
9400, 3332, 1999
Rint0.067
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.128, 0.94
No. of reflections3332
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.91

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Br1—C21.886 (4)N3—C51.361 (4)
O1—C41.228 (4)N3—C41.379 (4)
O2—C71.204 (4)N4—C51.301 (4)
N1—C11.325 (5)N4—C61.380 (4)
N1—C61.358 (4)N5—C51.378 (4)
N2—C21.391 (5)N5—C71.390 (4)
N2—C31.401 (5)
C5—N5—C7127.1 (3)O2—C7—C8122.4 (3)
O2—C7—N5121.2 (3)N5—C7—C8116.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O20.862.082.680 (4)126
N3—H3A···N4i0.862.303.003 (4)140
N5—H5A···O1ii0.862.132.958 (4)163
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds