Download citation
Download citation
link to html
We are very interested in characterizing ligands derived from salicyl­aldehyde and [alpha]-amino acids. These ligands form interesting complexes with different transition metals, which are very useful for understanding some biological systems. For Schiff bases derived from salicyl­aldehyde and different alkyl­amines or aryl­amines, the enol-imine form is predominant. The title compound, (I), shows bond distances which are clearly in agreement with the keto-amine form.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100007666/qa0306sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100007666/qa0306Isup2.hkl
Contains datablock I

CCDC reference: 147685

Comment top

No text

Experimental top

No text provided.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1997); program(s) used to refine structure: SHELXTL/PC; software used to prepare material for publication: SHELXTL/PC.

N-glicyl-2-hydroxibenzaldiminate potasium salt top
Crystal data top
K+·C9H8NO3F(000) = 896
Mr = 217.26Dx = 1.613 Mg m3
Orthorhombic, PccaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2acCell parameters from 18191 reflections
a = 13.8864 (2) Åθ = 2.9–27.5°
b = 18.4943 (7) ŵ = 0.57 mm1
c = 6.9664 (9) ÅT = 100 K
V = 1789.1 (2) Å3Plate, orange
Z = 80.30 × 0.30 × 0.10 mm
Data collection top
KappaCCD
diffractometer
2036 independent reflections
Radiation source: fine-focus sealed tube1580 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scans with κ offsetsθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1818
Tmin = 0.848, Tmax = 0.945k = 2424
18191 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.085P]
where P = (Fo2 + 2Fc2)/3
2036 reflections(Δ/σ)max = 0.001
131 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
K+·C9H8NO3V = 1789.1 (2) Å3
Mr = 217.26Z = 8
Orthorhombic, PccaMo Kα radiation
a = 13.8864 (2) ŵ = 0.57 mm1
b = 18.4943 (7) ÅT = 100 K
c = 6.9664 (9) Å0.30 × 0.30 × 0.10 mm
Data collection top
KappaCCD
diffractometer
2036 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
1580 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.945Rint = 0.065
18191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
2036 reflectionsΔρmin = 0.44 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.37216 (2)0.566063 (19)0.61305 (5)0.02087 (13)
O10.44004 (8)0.41710 (7)0.49912 (17)0.0243 (3)
O20.32160 (8)0.42719 (6)0.71803 (16)0.0231 (3)
O30.61865 (8)0.28272 (6)0.37158 (16)0.0242 (3)
N10.44982 (10)0.27315 (8)0.54113 (19)0.0214 (3)
C10.37832 (11)0.39230 (9)0.6127 (2)0.0198 (3)
C20.36668 (12)0.30998 (9)0.6223 (2)0.0226 (4)
H2A0.35840.29500.75770.027*
H2B0.30810.29560.55090.027*
C30.46524 (12)0.20415 (9)0.5471 (2)0.0208 (4)
H3A0.41850.17430.60760.025*
C40.54831 (12)0.17059 (9)0.4681 (2)0.0208 (4)
C50.55599 (12)0.09424 (10)0.4748 (2)0.0248 (4)
H5A0.50880.06720.54260.030*
C60.63001 (13)0.05864 (10)0.3855 (2)0.0274 (4)
H6A0.63530.00750.39360.033*
C70.69775 (12)0.09911 (10)0.2821 (2)0.0261 (4)
H7A0.74730.07450.21460.031*
C80.69451 (12)0.17329 (9)0.2756 (2)0.0236 (4)
H8A0.74230.19860.20470.028*
C90.62095 (12)0.21367 (9)0.3729 (2)0.0211 (4)
H1N0.4944 (16)0.3002 (11)0.479 (3)0.036 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0176 (2)0.0228 (2)0.0222 (2)0.00108 (14)0.00109 (13)0.00007 (14)
O10.0214 (6)0.0250 (7)0.0266 (6)0.0019 (5)0.0030 (5)0.0008 (5)
O20.0188 (6)0.0244 (6)0.0261 (6)0.0026 (5)0.0009 (5)0.0018 (5)
O30.0239 (6)0.0217 (6)0.0271 (6)0.0016 (5)0.0024 (5)0.0007 (5)
N10.0181 (7)0.0246 (8)0.0214 (7)0.0008 (6)0.0007 (6)0.0003 (6)
C10.0147 (8)0.0248 (9)0.0197 (8)0.0003 (7)0.0032 (6)0.0002 (6)
C20.0168 (8)0.0237 (9)0.0272 (9)0.0009 (7)0.0042 (7)0.0006 (7)
C30.0211 (9)0.0237 (9)0.0175 (8)0.0018 (7)0.0021 (6)0.0005 (6)
C40.0195 (8)0.0238 (9)0.0191 (8)0.0009 (7)0.0023 (6)0.0014 (6)
C50.0226 (8)0.0240 (9)0.0278 (9)0.0009 (7)0.0004 (7)0.0012 (7)
C60.0273 (10)0.0209 (9)0.0340 (10)0.0037 (7)0.0015 (7)0.0000 (7)
C70.0199 (9)0.0304 (10)0.0281 (9)0.0060 (8)0.0013 (7)0.0046 (7)
C80.0175 (8)0.0308 (10)0.0227 (8)0.0019 (7)0.0010 (6)0.0012 (7)
C90.0195 (8)0.0251 (9)0.0187 (8)0.0005 (7)0.0038 (6)0.0011 (6)
Geometric parameters (Å, º) top
K1—O1i2.7402 (12)O2—C11.2551 (19)
K1—O22.7612 (12)O2—K1ii2.7911 (12)
K1—O2ii2.7911 (12)O2—K1iv2.8427 (12)
K1—O3i2.8016 (12)O3—C91.277 (2)
K1—O2iii2.8427 (12)O3—K1i2.8016 (12)
K1—O1iv2.8669 (13)N1—C31.295 (2)
K1—O13.0180 (13)N1—C21.455 (2)
K1—C13.2147 (18)C1—C21.533 (2)
K1—K1v4.0308 (7)C3—C41.421 (2)
K1—K1ii4.1811 (7)C4—C51.417 (2)
K1—K1iii4.2549 (6)C4—C91.446 (2)
K1—K1iv4.2549 (6)C5—C61.370 (2)
O1—C11.2533 (19)C6—C71.401 (2)
O1—K1i2.7402 (12)C7—C81.373 (2)
O1—K1iii2.8669 (13)C8—C91.435 (2)
O1i—K1—O2115.04 (4)O2iii—K1—K1iii39.89 (2)
O1i—K1—O2ii170.80 (4)O1iv—K1—K1iii146.14 (3)
O2—K1—O2ii74.16 (4)O1—K1—K1iii42.31 (2)
O1i—K1—O3i81.61 (4)C1—K1—K1iii54.92 (3)
O2—K1—O3i158.43 (3)K1v—K1—K1iii112.802 (8)
O2ii—K1—O3i89.39 (3)K1ii—K1—K1iii70.388 (9)
O1i—K1—O2iii87.36 (3)O1i—K1—K1iv107.38 (3)
O2—K1—O2iii103.56 (3)O2—K1—K1iv41.32 (2)
O2ii—K1—O2iii90.78 (3)O2ii—K1—K1iv79.11 (2)
O3i—K1—O2iii90.26 (3)O3i—K1—K1iv122.82 (2)
O1i—K1—O1iv86.69 (4)O2iii—K1—K1iv144.85 (3)
O2—K1—O1iv86.34 (4)O1iv—K1—K1iv45.12 (3)
O2ii—K1—O1iv93.80 (3)O1—K1—K1iv72.00 (3)
O3i—K1—O1iv80.84 (3)C1—K1—K1iv55.01 (3)
O2iii—K1—O1iv169.93 (4)K1v—K1—K1iv67.198 (8)
O1i—K1—O174.43 (4)K1ii—K1—K1iv70.388 (9)
O2—K1—O145.57 (3)K1iii—K1—K1iv109.898 (17)
O2ii—K1—O1114.25 (3)C1—O1—K1i150.74 (11)
O3i—K1—O1155.10 (3)C1—O1—K1iii114.02 (10)
O2iii—K1—O182.10 (3)K1i—O1—K1iii91.89 (4)
O1iv—K1—O1104.07 (3)C1—O1—K187.39 (10)
O1i—K1—C195.05 (4)K1i—O1—K1105.58 (4)
O2—K1—C122.65 (3)K1iii—O1—K192.57 (3)
O2ii—K1—C194.04 (4)C1—O2—K199.43 (10)
O3i—K1—C1175.34 (4)C1—O2—K1ii118.34 (10)
O2iii—K1—C192.85 (4)K1—O2—K1ii97.71 (4)
O1iv—K1—C195.77 (4)C1—O2—K1iv115.70 (9)
O1—K1—C122.92 (3)K1—O2—K1iv98.79 (4)
O1i—K1—K1v45.31 (3)K1ii—O2—K1iv119.33 (4)
O2—K1—K1v95.66 (2)C9—O3—K1i175.20 (10)
O2ii—K1—K1v136.48 (3)C3—N1—C2125.47 (15)
O3i—K1—K1v86.66 (2)O1—C1—O2127.59 (16)
O2iii—K1—K1v132.52 (3)O1—C1—C2117.59 (14)
O1iv—K1—K1v42.80 (2)O2—C1—C2114.78 (14)
O1—K1—K1v81.34 (2)O1—C1—K169.69 (9)
C1—K1—K1v88.68 (3)O2—C1—K157.92 (9)
O1i—K1—K1ii147.00 (3)C2—C1—K1172.00 (10)
O2—K1—K1ii41.42 (2)N1—C2—C1111.38 (13)
O2ii—K1—K1ii40.88 (2)N1—C3—C4123.53 (15)
O3i—K1—K1ii128.34 (3)C5—C4—C3118.92 (15)
O2iii—K1—K1ii79.94 (2)C5—C4—C9120.77 (15)
O1iv—K1—K1ii109.28 (2)C3—C4—C9120.22 (15)
O1—K1—K1ii73.74 (2)C6—C5—C4121.36 (16)
C1—K1—K1ii55.76 (3)C5—C6—C7118.71 (17)
K1v—K1—K1ii135.623 (8)C8—C7—C6121.91 (16)
O1i—K1—K1iii80.32 (3)C7—C8—C9121.82 (15)
O2—K1—K1iii71.50 (3)O3—C9—C8122.31 (15)
O2ii—K1—K1iii103.90 (2)O3—C9—C4122.44 (15)
O3i—K1—K1iii127.20 (2)C8—C9—C4115.23 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1, z; (iii) x, y+1, z1/2; (iv) x, y+1, z+1/2; (v) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.91 (2)1.91 (2)2.6310 (19)135.4 (18)

Experimental details

Crystal data
Chemical formulaK+·C9H8NO3
Mr217.26
Crystal system, space groupOrthorhombic, Pcca
Temperature (K)100
a, b, c (Å)13.8864 (2), 18.4943 (7), 6.9664 (9)
V3)1789.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.848, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
18191, 2036, 1580
Rint0.065
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.05
No. of reflections2036
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.44

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXTL/PC (Sheldrick, 1997), SHELXTL/PC.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.91 (2)1.91 (2)2.6310 (19)135.4 (18)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds