Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Compounds (I), C14H20N2O4S, and (II), C12H14N2O3S2, are two minor products of the same reaction. Both structures contain identical ester functionalities in similar orientations. Both independent mol­ecules of (I) contain an ethoxy­carbo­thio­yl­amine moiety, whilst (II) possesses a novel exocyclic thione system fused with a pyridine ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100005667/qa0270sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100005667/qa0270Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100005667/qa0270IIsup3.hkl
Contains datablock II

CCDC references: 145661; 145662

Comment top

An alternative approach to the resolution of racemates involves the development of enantioselective receptors capable of strongly binding substrates (Webb & Wilcox, 1993). The title compounds were synthesized during an on-going scheme of research investigating the preparation of thiourea derivatives as binding sites for the separation of racemic mixtures of carboxylic acid derivatives. Attempts to prepare substituted N,N'-bis(2-pyridyl) thioureas resulted in the formation of a mixture of products which were separated by column chromatography, concentrated and recrystallized. Two compounds were identified, i.e. (I) and (II), providing unexpected results.

Compound (I) crystallizes with two independent molecules in the asymmetric unit which are bound together via intermolecular hydrogen bonding [D···A separations of N1A—H1A···N2B and N1B—H1B···O3A = 2.920 (3) and 2.9737 (18) Å, respectively]. The two independent molecules possess expected geometries that are similar, but exhibit slight torsional differences in the pendant arms [N1—C1—O1—C2 = −175.15 (14) and −174.11 (13)°, whilst C9—C10—O4—C11 = −174.72 (14) and −179.23 (14)° for A and B, respectively]. The formation of the ethoxy group in (I) is attributed to the reaction between the isothiocyanate formed and the ethanol present in the chloroform (0.5–1.0% by volume as a stabilizing agent), which is more reactive than the free amine.

The second minor fraction produces the structure of (II), which contains a novel heteroatomic fused-ring system. Both (I) and (II) contain the same ester functionalities which are geometrically virtually identical, including their orientations with respect to the ring systems [O2—C8—C7—C6 = −179.25 (4) and −177.09 (4)° for A and B in (I), and O1—C4—C3—C2 = 178.28 (2)° in (II)]. The ring system is composed of a pyridine ring fused in the 3 and 4 positions to cyclic thiadiazolo and thione moieties. Inspection of the bond lengths shows a breakdown in the aromaticity of the pyridyl ring to alternating single and double bonds, apart from N1—C5 [1.394 (3) Å compared to 1.329 (3) and 1.330 (3) Å in (I)] which is disturbed by the electronic structure of the five-membered ring. The fused rings approximate planarity, exhibiting an angle from one ring plane normal to the other of 1.72 (5)°. The imine nature of N2 is confirmed by the lack of any peaks in the difference map corresponding to a proton. The five-membered ring system in (II) has not been observed in the solid state before and a search of the Cambridge Structural Database (Allen & Kennard, 1993) shows the structure of 2,4-dimethyl-1,2,4-thiazolidine-3,5-dithione (Raston et al., 1974) to be the closest for comparison, with similar bond lengths and angles for both compounds.

Experimental top

Thiophosgene (0.23 ml, 3.0 mmol) was added slowly to a mixture of tert-butyl 2-(2-amino-3-pyridyloxy)acetate (1.34 g, 6.0 mmol) in chloroform (40 ml) and 0.4 M aqueous potassium carbonate (15 ml, 6.0 mmol). The mixture was heated under reflux for 5 d. After allowing to cool to room temperature, the mixture was transferred into a separating funnel, the organic layer separated and the aqueous layer extracted with chloroform (30 ml). The organic layer was dried over magnesium sulfate and concentrated in vacuo to afford a brown oil. The crude product was purified by column chromatography on silica gel, eluting with ethyl acetate–petroleum ether (30:70, v/v), to produce three fractions. Two of these fractions were recrystallized from methanol where fraction 1 corresponds to compound (II) (60.4 mg, 5%), Rf = 0.28 and fraction 3 corresponds to compound (I) (208.4 mg, 16%), Rf = 0.1. The fractions were additionally characterized by 1H NMR, 13C NMR and mass spectroscopy: (I) 1 NMR (300 MHz, CDCl3) δ 8.88 (1H, s, NH), 8.10 (1H, dd, J = 1.8, 4.4 Hz, Hpyr), 7.05 (2H, m, Hpyr), 4.63 (2H, q, J = 21.3 Hz, CH2), 4.60 (2H, s, CH2), 1.49 [9H, s, (CH3)3], 1.39 (3H, t, J = 14.3 Hz, CH3). 13C NMR (300 MHz, CDCl3) δ 189.0 (0), 167.2 (0), 144.5 (0), 141.6 (0), 140.9 (1), 120.9 (1), 120.4 (1), 83.4 (0), 68.1 (2), 66.9 (2), 28.1 (3), 14.1 (3). LRMS (ESIPOS) m/z 313 (M+H)+. (II) 1 NMR (400 MHz, CDCl3) δ 8.14 (1H, dd, J = 1, 7.2 Hz, Hpyr), 6.57 (1H, t, J = 14.5 Hz, Hpyr), 6.49 (1H, dd, J = 0.7, 7.5 Hz, Hpyr), 4.69 (2H, s, CH2), 1.41 [9H, s, (CH3)3]. 13C NMR (400 MHz, CDCl3) δ 192.4 (0), 165.1 (0), 148.4 (0), 147.1 (0), 119.1 (0), 112.1 (1), 106.9 (1), 82.3 (0), 65.9 (2), 27.9 (3). LRMS (ESIPOS) m/z 299 (M+H)+, 337 (M+K)+, 339 (M+CH3CN)+.

Refinement top

H atoms were observed in the difference map, but were refined in calculated positions (C—H = 0.93–0.97 Å) using a riding model. No constraints or restraints were applied to the structural models, however, (I) was corrected for extinction effects using a refineable parameter where Fc is multiplied by a modified form of the overall scale factor.

Computing details top

For both compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990).

(I) top
Crystal data top
C14H20N2O4SZ = 4
Mr = 312.38F(000) = 664
Triclinic, P1Dx = 1.317 Mg m3
a = 10.661 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.852 (2) ÅCell parameters from 20603 reflections
c = 13.501 (3) Åθ = 1.8–26.0°
α = 76.85 (3)°µ = 0.22 mm1
β = 81.35 (3)°T = 150 K
γ = 72.12 (3)°Block, colourless
V = 1575.1 (5) Å30.2 × 0.1 × 0.1 mm
Data collection top
KappaCCD
diffractometer
4949 reflections with I > 2σ(I)
Radiation source: Nonius FR591 rotating anodeRint = 0.047
ϕ and ω scansθmax = 26°, θmin = 1.8°
Absorption correction: multi-scan (blessing, 1995)
?
h = 1313
Tmin = 0.879, Tmax = 0.986k = 1414
20603 measured reflectionsl = 1616
6191 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.039(Δ/σ)max = 0.001
wR(F2) = 0.123Δρmax = 0.39 e Å3
S = 0.88Δρmin = 0.39 e Å3
6191 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
388 parametersExtinction coefficient: 0.0076 (18)
0 restraints
Crystal data top
C14H20N2O4Sγ = 72.12 (3)°
Mr = 312.38V = 1575.1 (5) Å3
Triclinic, P1Z = 4
a = 10.661 (2) ÅMo Kα radiation
b = 11.852 (2) ŵ = 0.22 mm1
c = 13.501 (3) ÅT = 150 K
α = 76.85 (3)°0.2 × 0.1 × 0.1 mm
β = 81.35 (3)°
Data collection top
KappaCCD
diffractometer
6191 independent reflections
Absorption correction: multi-scan (blessing, 1995)
?
4949 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.986Rint = 0.047
20603 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 0.88Δρmax = 0.39 e Å3
6191 reflectionsΔρmin = 0.39 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.26282 (4)0.26435 (4)0.36040 (3)0.02799 (14)
S1B0.58599 (4)0.23713 (4)0.77618 (3)0.02847 (14)
O1A0.32965 (10)0.06801 (9)0.50713 (8)0.0239 (3)
O1B0.38328 (10)0.43746 (9)0.76875 (9)0.0234 (3)
O2A0.04968 (10)0.34599 (9)0.62645 (9)0.0244 (3)
O2B0.33234 (10)0.15085 (9)1.00742 (8)0.0228 (3)
O3A0.03568 (10)0.38645 (10)0.82010 (9)0.0278 (3)
O3B0.08654 (11)0.12373 (11)1.06446 (9)0.0325 (3)
O4A0.18703 (10)0.46372 (10)0.82076 (8)0.0244 (3)
O4B0.14651 (10)0.02371 (10)1.22213 (8)0.0249 (3)
N1A0.29680 (12)0.23825 (11)0.55713 (10)0.0215 (3)
H1A0.32130.19090.61360.026*
N1B0.32589 (12)0.26904 (11)0.80962 (10)0.0214 (3)
H1B0.24670.31680.81060.026*
N2A0.34798 (13)0.42435 (12)0.51756 (10)0.0252 (3)
N2B0.35819 (12)0.08633 (12)0.75662 (10)0.0229 (3)
C1A0.29712 (14)0.18859 (13)0.47771 (12)0.0201 (3)
C1B0.42800 (14)0.31711 (13)0.78493 (11)0.0200 (3)
C2A0.34673 (16)0.00644 (14)0.43138 (13)0.0253 (4)
H21A0.42700.00500.38700.03*
H22A0.27230.02330.38980.03*
C2B0.47752 (16)0.50710 (14)0.73142 (13)0.0261 (4)
H21B0.51040.50030.66140.031*
H22B0.55200.47750.77300.031*
C3A0.35520 (17)0.13199 (15)0.48847 (14)0.0306 (4)
H31A0.42460.15780.53340.046*
H32A0.37390.18540.44100.046*
H33A0.27250.13340.52770.046*
C3B0.40651 (17)0.63581 (15)0.73757 (14)0.0315 (4)
H31B0.33270.66380.69670.047*
H32B0.46590.68470.71270.047*
H33B0.37530.64160.80730.047*
C4A0.25820 (15)0.36511 (14)0.55357 (12)0.0207 (3)
C4B0.34395 (14)0.14213 (13)0.83424 (12)0.0194 (3)
C5A0.31143 (16)0.54335 (15)0.51687 (13)0.0257 (4)
H5A0.37300.58620.49130.031*
C5B0.37458 (15)0.03340 (14)0.77746 (13)0.0248 (4)
H5B0.38640.07360.72360.03*
C6A0.18694 (16)0.60499 (15)0.55228 (13)0.0260 (4)
H6A0.16550.68770.54990.031*
C6B0.37442 (15)0.09857 (14)0.87570 (13)0.0254 (4)
H6B0.38540.18130.88750.03*
C7A0.09403 (16)0.54294 (14)0.59144 (12)0.0244 (4)
H7A0.00980.58270.61670.029*
C7B0.35788 (14)0.04091 (14)0.95695 (13)0.0229 (4)
H7B0.35630.08361.02380.027*
C8A0.12956 (14)0.42042 (14)0.59205 (12)0.0204 (3)
C8B0.34375 (14)0.08233 (14)0.93614 (12)0.0205 (3)
C9A0.07692 (14)0.39695 (14)0.67501 (12)0.0233 (4)
H91A0.13240.34430.67970.028*
H92A0.11860.47440.63390.028*
C9B0.30422 (15)0.09750 (14)1.11084 (12)0.0223 (3)
H91B0.31310.14751.15560.027*
H92B0.36730.01861.12760.027*
C10A0.06643 (14)0.41389 (13)0.78027 (12)0.0213 (3)
C10B0.16483 (15)0.08458 (14)1.12756 (12)0.0228 (3)
C11A0.20658 (16)0.50094 (17)0.92125 (13)0.0293 (4)
C11B0.01804 (15)0.00309 (16)1.25824 (14)0.0288 (4)
C12A0.17135 (19)0.38823 (19)1.00402 (14)0.0400 (5)
H12A0.22420.33651.00140.06*
H12B0.18820.41101.06970.06*
H12C0.07940.34600.99320.06*
C12B0.00694 (17)0.07926 (17)1.19122 (15)0.0355 (4)
H12D0.03270.02941.12670.053*
H12E0.07630.11421.22410.053*
H12F0.07240.14251.18040.053*
C13A0.35321 (17)0.5654 (2)0.93023 (16)0.0455 (5)
H13A0.37430.62960.87210.068*
H13B0.37570.59820.99150.068*
H13C0.40260.50920.93280.068*
C13B0.08973 (17)0.11519 (18)1.26010 (17)0.0424 (5)
H13D0.06100.16551.29310.064*
H13E0.16870.09911.2970.064*
H13F0.10770.15581.19140.064*
C14A0.12757 (17)0.58830 (16)0.91726 (15)0.0337 (4)
H14A0.03490.54620.91370.051*
H14B0.15150.62300.97750.051*
H14C0.14610.65130.85800.051*
C14B0.04239 (19)0.07507 (19)1.36487 (15)0.0428 (5)
H14D0.12090.14161.36220.064*
H14E0.03180.10531.39330.064*
H14F0.05350.02401.40680.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0367 (3)0.0227 (2)0.0210 (2)0.00307 (18)0.00597 (17)0.00228 (17)
S1B0.0206 (2)0.0217 (2)0.0384 (3)0.00324 (16)0.00142 (17)0.00098 (18)
O1A0.0302 (6)0.0181 (6)0.0217 (6)0.0040 (4)0.0024 (5)0.0044 (4)
O1B0.0226 (5)0.0165 (6)0.0294 (6)0.0053 (4)0.0007 (4)0.0030 (4)
O2A0.0248 (6)0.0201 (6)0.0276 (6)0.0070 (4)0.0057 (4)0.0075 (5)
O2B0.0296 (6)0.0203 (6)0.0187 (6)0.0088 (4)0.0009 (4)0.0035 (4)
O3A0.0211 (6)0.0315 (7)0.0283 (7)0.0041 (5)0.0039 (5)0.0042 (5)
O3B0.0266 (6)0.0370 (7)0.0298 (7)0.0062 (5)0.0082 (5)0.0017 (5)
O4A0.0196 (5)0.0312 (6)0.0225 (6)0.0048 (5)0.0010 (4)0.0091 (5)
O4B0.0222 (6)0.0292 (6)0.0228 (6)0.0094 (5)0.0004 (4)0.0023 (5)
N1A0.0256 (7)0.0179 (7)0.0175 (7)0.0025 (5)0.0021 (5)0.0013 (5)
N1B0.0189 (6)0.0164 (7)0.0245 (7)0.0024 (5)0.0005 (5)0.0000 (5)
N2A0.0283 (7)0.0233 (7)0.0233 (7)0.0074 (6)0.0003 (5)0.0043 (6)
N2B0.0226 (7)0.0239 (7)0.0219 (7)0.0073 (5)0.0014 (5)0.0035 (6)
C1A0.0167 (7)0.0192 (8)0.0228 (8)0.0034 (6)0.0003 (6)0.0045 (6)
C1B0.0248 (8)0.0186 (8)0.0159 (8)0.0057 (6)0.0029 (6)0.0017 (6)
C2A0.0316 (9)0.0235 (9)0.0234 (9)0.0099 (7)0.0019 (6)0.0097 (7)
C2B0.0287 (8)0.0233 (9)0.0288 (9)0.0131 (7)0.0001 (7)0.0035 (7)
C3A0.0367 (9)0.0222 (9)0.0327 (10)0.0079 (7)0.0004 (7)0.0072 (7)
C3B0.0351 (9)0.0232 (9)0.0377 (11)0.0112 (7)0.0041 (7)0.0039 (7)
C4A0.0244 (8)0.0194 (8)0.0172 (8)0.0044 (6)0.0030 (6)0.0032 (6)
C4B0.0156 (7)0.0190 (8)0.0223 (8)0.0046 (6)0.0002 (6)0.0027 (6)
C5A0.0298 (9)0.0253 (9)0.0242 (9)0.0123 (7)0.0001 (7)0.0042 (7)
C5B0.0245 (8)0.0245 (9)0.0276 (9)0.0084 (7)0.0007 (6)0.0085 (7)
C6A0.0349 (9)0.0179 (8)0.0250 (9)0.0061 (7)0.0054 (7)0.0038 (6)
C6B0.0251 (8)0.0176 (8)0.0331 (10)0.0069 (6)0.0020 (7)0.0032 (7)
C7A0.0255 (8)0.0231 (8)0.0222 (9)0.0044 (6)0.0003 (6)0.0044 (6)
C7B0.0222 (8)0.0212 (8)0.0235 (9)0.0066 (6)0.0021 (6)0.0000 (6)
C8A0.0243 (8)0.0200 (8)0.0170 (8)0.0066 (6)0.0019 (6)0.0031 (6)
C8B0.0170 (7)0.0212 (8)0.0224 (8)0.0050 (6)0.0002 (6)0.0044 (6)
C9A0.0189 (7)0.0236 (8)0.0269 (9)0.0059 (6)0.0024 (6)0.0067 (7)
C9B0.0246 (8)0.0227 (8)0.0181 (8)0.0058 (6)0.0015 (6)0.0026 (6)
C10A0.0195 (8)0.0178 (8)0.0249 (9)0.0054 (6)0.0001 (6)0.0020 (6)
C10B0.0250 (8)0.0192 (8)0.0227 (9)0.0039 (6)0.0012 (6)0.0045 (6)
C11A0.0244 (8)0.0412 (10)0.0214 (9)0.0049 (7)0.0015 (6)0.0108 (7)
C11B0.0213 (8)0.0357 (10)0.0313 (10)0.0141 (7)0.0034 (7)0.0059 (7)
C12A0.0414 (10)0.0550 (13)0.0253 (10)0.0216 (9)0.0015 (8)0.0010 (9)
C12B0.0337 (9)0.0368 (11)0.0400 (11)0.0159 (8)0.0028 (8)0.0076 (8)
C13A0.0258 (9)0.0738 (15)0.0356 (11)0.0018 (9)0.0016 (8)0.0278 (10)
C13B0.0270 (9)0.0491 (12)0.0525 (13)0.0097 (8)0.0087 (8)0.0219 (10)
C14A0.0355 (9)0.0317 (10)0.0340 (10)0.0017 (8)0.0099 (8)0.0124 (8)
C14B0.0436 (11)0.0595 (14)0.0299 (11)0.0291 (10)0.0036 (8)0.0019 (9)
Geometric parameters (Å, º) top
S1A—C1A1.6656 (17)C5A—H5A0.93
S1B—C1B1.6614 (16)C5B—C6B1.375 (2)
O1A—C1A1.3414 (19)C5B—H5B0.93
O1A—C2A1.454 (2)C6A—C7A1.384 (2)
O1B—C1B1.3347 (19)C6A—H6A0.93
O1B—C2B1.4535 (19)C6B—C7B1.382 (2)
O2A—C8A1.3693 (19)C6B—H6B0.93
O2A—C9A1.4247 (19)C7A—C8A1.382 (2)
O2B—C8B1.3640 (19)C7A—H7A0.93
O2B—C9B1.4242 (19)C7B—C8B1.388 (2)
O3A—C10A1.2079 (19)C7B—H7B0.93
O3B—C10B1.1975 (19)C9A—C10A1.505 (2)
O4A—C10A1.3304 (19)C9A—H91A0.97
O4A—C11A1.487 (2)C9A—H92A0.97
O4B—C10B1.335 (2)C9B—C10B1.519 (2)
O4B—C11B1.4868 (19)C9B—H91B0.97
N1A—C1A1.335 (2)C9B—H92B0.97
N1A—C4A1.423 (2)C11A—C14A1.510 (3)
N1A—H1A0.86C11A—C13A1.515 (2)
N1B—C1B1.344 (2)C11A—C12A1.521 (3)
N1B—C4B1.423 (2)C11B—C14B1.512 (3)
N1B—H1B0.86C11B—C12B1.515 (3)
N2A—C4A1.328 (2)C11B—C13B1.518 (3)
N2A—C5A1.341 (2)C12A—H12A0.96
N2B—C4B1.328 (2)C12A—H12B0.96
N2B—C5B1.343 (2)C12A—H12C0.96
C2A—C3A1.494 (2)C12B—H12D0.96
C2A—H21A0.97C12B—H12E0.96
C2A—H22A0.97C12B—H12F0.96
C2B—C3B1.496 (2)C13A—H13A0.96
C2B—H21B0.97C13A—H13B0.96
C2B—H22B0.97C13A—H13C0.96
C3A—H31A0.96C13B—H13D0.96
C3A—H32A0.96C13B—H13E0.96
C3A—H33A0.96C13B—H13F0.96
C3B—H31B0.96C14A—H14A0.96
C3B—H32B0.96C14A—H14B0.96
C3B—H33B0.96C14A—H14C0.96
C4A—C8A1.403 (2)C14B—H14D0.96
C4B—C8B1.397 (2)C14B—H14E0.96
C5A—C6A1.377 (2)C14B—H14F0.96
C1A—O1A—C2A119.30 (12)C7A—C8A—C4A118.38 (14)
C1B—O1B—C2B118.52 (12)O2B—C8B—C7B125.28 (14)
C8A—O2A—C9A116.91 (12)O2B—C8B—C4B116.43 (14)
C8B—O2B—C9B116.49 (12)C7B—C8B—C4B118.28 (15)
C10A—O4A—C11A120.91 (12)O2A—C9A—C10A111.55 (13)
C10B—O4B—C11B120.00 (12)O2A—C9A—H91A109.3
C1A—N1A—C4A123.66 (13)C10A—C9A—H91A109.3
C1A—N1A—H1A118.2O2A—C9A—H92A109.3
C4A—N1A—H1A118.2C10A—C9A—H92A109.3
C1B—N1B—C4B122.44 (12)H91A—C9A—H92A108
C1B—N1B—H1B118.8O2B—C9B—C10B110.48 (13)
C4B—N1B—H1B118.8O2B—C9B—H91B109.6
C4A—N2A—C5A117.49 (14)C10B—C9B—H91B109.6
C4B—N2B—C5B118.20 (14)O2B—C9B—H92B109.6
N1A—C1A—O1A109.31 (13)C10B—C9B—H92B109.6
N1A—C1A—S1A125.37 (12)H91B—C9B—H92B108.1
O1A—C1A—S1A125.32 (12)O3A—C10A—O4A126.45 (15)
O1B—C1B—N1B109.94 (12)O3A—C10A—C9A124.82 (14)
O1B—C1B—S1B125.60 (12)O4A—C10A—C9A108.74 (13)
N1B—C1B—S1B124.46 (12)O3B—C10B—O4B127.06 (15)
O1A—C2A—C3A106.91 (13)O3B—C10B—C9B124.12 (15)
O1A—C2A—H21A110.3O4B—C10B—C9B108.82 (13)
C3A—C2A—H21A110.3O4A—C11A—C14A109.35 (14)
O1A—C2A—H22A110.3O4A—C11A—C13A102.61 (13)
C3A—C2A—H22A110.3C14A—C11A—C13A110.07 (16)
H21A—C2A—H22A108.6O4A—C11A—C12A108.74 (15)
O1B—C2B—C3B107.29 (13)C14A—C11A—C12A114.02 (15)
O1B—C2B—H21B110.3C13A—C11A—C12A111.42 (16)
C3B—C2B—H21B110.3O4B—C11B—C14B102.19 (13)
O1B—C2B—H22B110.3O4B—C11B—C12B109.39 (14)
C3B—C2B—H22B110.3C14B—C11B—C12B110.89 (16)
H21B—C2B—H22B108.5O4B—C11B—C13B108.80 (14)
C2A—C3A—H31A109.5C14B—C11B—C13B111.44 (17)
C2A—C3A—H32A109.5C12B—C11B—C13B113.49 (15)
H31A—C3A—H32A109.5C11A—C12A—H12A109.5
C2A—C3A—H33A109.5C11A—C12A—H12B109.5
H31A—C3A—H33A109.5H12A—C12A—H12B109.5
H32A—C3A—H33A109.5C11A—C12A—H12C109.5
C2B—C3B—H31B109.5H12A—C12A—H12C109.5
C2B—C3B—H32B109.5H12B—C12A—H12C109.5
H31B—C3B—H32B109.5C11B—C12B—H12D109.5
C2B—C3B—H33B109.5C11B—C12B—H12E109.5
H31B—C3B—H33B109.5H12D—C12B—H12E109.5
H32B—C3B—H33B109.5C11B—C12B—H12F109.5
N2A—C4A—C8A123.29 (14)H12D—C12B—H12F109.5
N2A—C4A—N1A118.01 (13)H12E—C12B—H12F109.5
C8A—C4A—N1A118.64 (14)C11A—C13A—H13A109.5
N2B—C4B—C8B123.06 (14)C11A—C13A—H13B109.5
N2B—C4B—N1B116.81 (14)H13A—C13A—H13B109.5
C8B—C4B—N1B120.13 (15)C11A—C13A—H13C109.5
N2A—C5A—C6A123.03 (16)H13A—C13A—H13C109.5
N2A—C5A—H5A118.5H13B—C13A—H13C109.5
C6A—C5A—H5A118.5C11B—C13B—H13D109.5
N2B—C5B—C6B122.26 (16)C11B—C13B—H13E109.5
N2B—C5B—H5B118.9H13D—C13B—H13E109.5
C6B—C5B—H5B118.9C11B—C13B—H13F109.5
C5A—C6A—C7A119.52 (15)H13D—C13B—H13F109.5
C5A—C6A—H6A120.2H13E—C13B—H13F109.5
C7A—C6A—H6A120.2C11A—C14A—H14A109.5
C5B—C6B—C7B119.89 (15)C11A—C14A—H14B109.5
C5B—C6B—H6B120.1H14A—C14A—H14B109.5
C7B—C6B—H6B120.1C11A—C14A—H14C109.5
C8A—C7A—C6A118.29 (15)H14A—C14A—H14C109.5
C8A—C7A—H7A120.9H14B—C14A—H14C109.5
C6A—C7A—H7A120.9C11B—C14B—H14D109.5
C6B—C7B—C8B118.29 (15)C11B—C14B—H14E109.5
C6B—C7B—H7B120.9H14D—C14B—H14E109.5
C8B—C7B—H7B120.9C11B—C14B—H14F109.5
O2A—C8A—C7A125.90 (14)H14D—C14B—H14F109.5
O2A—C8A—C4A115.71 (13)H14E—C14B—H14F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···N2B0.862.062.920 (2)173
N1B—H1B···O3A0.862.142.9737 (18)163
(II) top
Crystal data top
C12H14N2O3S2F(000) = 624
Mr = 298.37Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.521 (3) ÅCell parameters from 12963 reflections
b = 6.827 (1) Åθ = 2.7–27.4°
c = 13.574 (3) ŵ = 0.38 mm1
β = 100.06 (3)°T = 150 K
V = 1416.2 (5) Å3Plate, light brown
Z = 40.18 × 0.15 × 0.03 mm
Data collection top
KappaCCD
diffractometer
2304 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.058
Absorption correction: multi-scan (blessing, 1995)
?
θmax = 27.4°, θmin = 2.7°
Tmin = 0.888, Tmax = 0.998h = 1919
12963 measured reflectionsk = 88
3159 independent reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max = 0.005
S = 0.81Δρmax = 0.28 e Å3
3159 reflectionsΔρmin = 0.29 e Å3
175 parameters
Crystal data top
C12H14N2O3S2V = 1416.2 (5) Å3
Mr = 298.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.521 (3) ŵ = 0.38 mm1
b = 6.827 (1) ÅT = 150 K
c = 13.574 (3) Å0.18 × 0.15 × 0.03 mm
β = 100.06 (3)°
Data collection top
KappaCCD
diffractometer
3159 independent reflections
Absorption correction: multi-scan (blessing, 1995)
?
2304 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.998Rint = 0.058
12963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 0.81Δρmax = 0.28 e Å3
3159 reflectionsΔρmin = 0.29 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17975 (3)0.16465 (7)0.38132 (4)0.02727 (17)
S20.26781 (3)0.21694 (8)0.59705 (4)0.03121 (18)
O10.10406 (9)0.23694 (19)0.33327 (10)0.0245 (3)
O20.20851 (9)0.1316 (2)0.16325 (11)0.0328 (4)
O30.32551 (9)0.2608 (2)0.21808 (12)0.0332 (4)
N10.09447 (10)0.2276 (2)0.51582 (12)0.0191 (4)
N20.07236 (11)0.1847 (2)0.34494 (12)0.0239 (4)
C10.06582 (13)0.2565 (3)0.60604 (15)0.0228 (4)
H10.10540.25670.6660.0270*
C20.01982 (13)0.2841 (3)0.60526 (14)0.0232 (4)
H2A0.03960.30480.66530.028*
C30.08142 (13)0.2824 (3)0.51326 (15)0.0227 (4)
H30.14040.30490.51390.027*
C40.05394 (13)0.2480 (3)0.42546 (14)0.0206 (4)
C50.03748 (13)0.2175 (2)0.42444 (14)0.0195 (4)
C60.19561 (13)0.2667 (3)0.32871 (15)0.0245 (4)
H6A0.20710.40300.34190.029*
H6B0.21650.18680.37870.029*
C70.24207 (13)0.2105 (3)0.22550 (15)0.0241 (5)
C80.39160 (14)0.2016 (3)0.13089 (17)0.0338 (5)
C90.39432 (14)0.0180 (3)0.12423 (19)0.0449 (6)
H9A0.34150.06490.10460.067*
H9B0.44380.05760.07550.067*
H9C0.39940.07180.18830.067*
C100.47550 (17)0.2806 (5)0.1576 (3)0.0649 (9)
H10A0.48510.22250.21920.097*
H10B0.52360.24920.10530.097*
H10C0.47110.42020.16540.097*
C110.37139 (18)0.2968 (5)0.0371 (2)0.0693 (10)
H11A0.36260.43480.04830.104*
H11B0.41940.27640.01690.104*
H11C0.31930.23970.02030.104*
C120.18184 (13)0.2046 (3)0.50625 (15)0.0230 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0207 (3)0.0381 (3)0.0234 (3)0.0016 (2)0.0049 (2)0.0009 (2)
S20.0223 (3)0.0384 (3)0.0300 (3)0.0012 (2)0.0035 (2)0.0020 (2)
O10.0160 (7)0.0381 (8)0.0185 (7)0.0013 (6)0.0008 (6)0.0021 (6)
O20.0209 (8)0.0512 (9)0.0269 (8)0.0050 (7)0.0058 (6)0.0082 (7)
O30.0180 (8)0.0437 (9)0.0348 (9)0.0037 (6)0.0034 (7)0.0087 (7)
N10.0178 (9)0.0203 (7)0.0184 (8)0.0013 (6)0.0010 (6)0.0004 (6)
N20.0210 (9)0.0320 (9)0.0187 (8)0.0004 (7)0.0038 (7)0.0003 (7)
C10.0268 (12)0.0244 (10)0.0166 (10)0.0012 (8)0.0018 (8)0.0003 (8)
C20.0297 (12)0.0246 (9)0.0159 (10)0.0020 (8)0.0055 (8)0.0013 (7)
C30.0194 (10)0.0250 (9)0.0240 (11)0.0015 (8)0.0045 (8)0.0004 (8)
C40.0212 (10)0.0202 (9)0.0193 (10)0.0021 (7)0.0006 (8)0.0019 (7)
C50.0218 (10)0.0182 (8)0.0174 (10)0.0012 (7)0.0004 (8)0.0012 (7)
C60.0186 (11)0.0303 (10)0.0244 (11)0.0002 (8)0.0038 (8)0.0004 (8)
C70.0182 (10)0.0266 (10)0.0269 (11)0.0043 (8)0.0020 (9)0.0032 (8)
C80.0151 (11)0.0488 (13)0.0341 (13)0.0034 (9)0.0049 (9)0.0015 (10)
C90.0260 (12)0.0529 (15)0.0518 (15)0.0067 (11)0.0041 (11)0.0058 (12)
C100.0259 (15)0.085 (2)0.077 (2)0.0144 (13)0.0101 (14)0.0205 (17)
C110.0430 (17)0.106 (2)0.0497 (18)0.0268 (16)0.0176 (14)0.0365 (17)
C120.0215 (11)0.0215 (9)0.0258 (11)0.0005 (7)0.0037 (8)0.0016 (8)
Geometric parameters (Å, º) top
S1—N21.6593 (17)C3—H30.93
S1—C121.712 (2)C4—C51.437 (3)
S2—C121.653 (2)C6—C71.509 (3)
O1—C41.355 (2)C6—H6A0.97
O1—C61.426 (2)C6—H6B0.97
O2—C71.196 (2)C8—C91.502 (3)
O3—C71.326 (3)C8—C111.510 (4)
O3—C81.481 (3)C8—C101.511 (4)
N1—C11.388 (3)C9—H9A0.96
N1—C51.394 (3)C9—H9B0.96
N1—C121.393 (3)C9—H9C0.96
N2—C51.308 (3)C10—H10A0.96
C1—C21.341 (3)C10—H10B0.96
C1—H10.93C10—H10C0.96
C2—C31.434 (3)C11—H11A0.96
C2—H2A0.93C11—H11B0.96
C3—C41.355 (3)C11—H11C0.96
N2—S1—C1297.23 (9)O2—C7—C6125.05 (19)
C4—O1—C6116.05 (15)O3—C7—C6107.85 (17)
C7—O3—C8121.40 (17)O3—C8—C9109.19 (18)
C1—N1—C5122.74 (17)O3—C8—C11109.85 (19)
C1—N1—C12124.42 (17)C9—C8—C11112.7 (2)
C5—N1—C12112.84 (16)O3—C8—C10102.50 (19)
C5—N2—S1107.91 (14)C9—C8—C10110.7 (2)
C2—C1—N1118.88 (18)C11—C8—C10111.3 (2)
C2—C1—H1120.6C8—C9—H9A109.5
N1—C1—H1120.6C8—C9—H9B109.5
C1—C2—C3120.99 (19)H9A—C9—H9B109.5
C1—C2—H2A119.5C8—C9—H9C109.5
C3—C2—H2A119.5H9A—C9—H9C109.5
C4—C3—C2120.21 (19)H9B—C9—H9C109.5
C4—C3—H3119.9C8—C10—H10A109.5
C2—C3—H3119.9C8—C10—H10B109.5
C3—C4—O1127.14 (18)H10A—C10—H10B109.5
C3—C4—C5119.79 (18)C8—C10—H10C109.5
O1—C4—C5113.06 (17)H10A—C10—H10C109.5
N2—C5—N1116.92 (17)H10B—C10—H10C109.5
N2—C5—C4125.76 (18)C8—C11—H11A109.5
N1—C5—C4117.30 (17)C8—C11—H11B109.5
O1—C6—C7108.36 (16)H11A—C11—H11B109.5
O1—C6—H6A110C8—C11—H11C109.5
C7—C6—H6A110H11A—C11—H11C109.5
O1—C6—H6B110H11B—C11—H11C109.5
C7—C6—H6B110N1—C12—S2126.63 (16)
H6A—C6—H6B108.4N1—C12—S1105.06 (14)
O2—C7—O3127.09 (19)S2—C12—S1128.30 (13)

Experimental details

(I)(II)
Crystal data
Chemical formulaC14H20N2O4SC12H14N2O3S2
Mr312.38298.37
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)150150
a, b, c (Å)10.661 (2), 11.852 (2), 13.501 (3)15.521 (3), 6.827 (1), 13.574 (3)
α, β, γ (°)76.85 (3), 81.35 (3), 72.12 (3)90, 100.06 (3), 90
V3)1575.1 (5)1416.2 (5)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.220.38
Crystal size (mm)0.2 × 0.1 × 0.10.18 × 0.15 × 0.03
Data collection
DiffractometerKappaCCD
diffractometer
KappaCCD
diffractometer
Absorption correctionMulti-scan (Blessing, 1995)Multi-scan (Blessing, 1995)
Tmin, Tmax0.879, 0.9860.888, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
20603, 6191, 4949 12963, 3159, 2304
Rint0.0470.058
(sin θ/λ)max1)0.6170.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.123, 0.88 0.039, 0.122, 0.81
No. of reflections61913159
No. of parameters388175
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.390.28, 0.29

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990).

Selected geometric parameters (Å, º) for (I) top
S1A—C1A1.6656 (17)O2B—C8B1.3640 (19)
S1B—C1B1.6614 (16)O2B—C9B1.4242 (19)
O1A—C1A1.3414 (19)O3A—C10A1.2079 (19)
O1A—C2A1.454 (2)O3B—C10B1.1975 (19)
O1B—C1B1.3347 (19)O4A—C10A1.3304 (19)
O1B—C2B1.4535 (19)O4A—C11A1.487 (2)
O2A—C8A1.3693 (19)O4B—C10B1.335 (2)
O2A—C9A1.4247 (19)O4B—C11B1.4868 (19)
C1A—O1A—C2A119.30 (12)O1A—C1A—S1A125.32 (12)
C1B—O1B—C2B118.52 (12)O1B—C1B—N1B109.94 (12)
C8A—O2A—C9A116.91 (12)O1B—C1B—S1B125.60 (12)
C8B—O2B—C9B116.49 (12)N1B—C1B—S1B124.46 (12)
C10A—O4A—C11A120.91 (12)O3A—C10A—O4A126.45 (15)
C10B—O4B—C11B120.00 (12)O3A—C10A—C9A124.82 (14)
C1A—N1A—C4A123.66 (13)O4A—C10A—C9A108.74 (13)
C1B—N1B—C4B122.44 (12)O3B—C10B—O4B127.06 (15)
N1A—C1A—O1A109.31 (13)O3B—C10B—C9B124.12 (15)
N1A—C1A—S1A125.37 (12)O4B—C10B—C9B108.82 (13)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···N2B0.862.062.920 (2)173.3
N1B—H1B···O3A0.862.142.9737 (18)163.2
Selected geometric parameters (Å, º) for (II) top
S1—N21.6593 (17)N1—C11.388 (3)
S1—C121.712 (2)N1—C51.394 (3)
S2—C121.653 (2)N1—C121.393 (3)
O1—C41.355 (2)N2—C51.308 (3)
O1—C61.426 (2)C1—C21.341 (3)
O2—C71.196 (2)C2—C31.434 (3)
O3—C71.326 (3)C3—C41.355 (3)
O3—C81.481 (3)C4—C51.437 (3)
N2—S1—C1297.23 (9)C3—C4—O1127.14 (18)
C4—O1—C6116.05 (15)C3—C4—C5119.79 (18)
C7—O3—C8121.40 (17)O1—C4—C5113.06 (17)
C1—N1—C5122.74 (17)N2—C5—N1116.92 (17)
C1—N1—C12124.42 (17)N2—C5—C4125.76 (18)
C5—N1—C12112.84 (16)N1—C5—C4117.30 (17)
C5—N2—S1107.91 (14)N1—C12—S2126.63 (16)
C2—C1—N1118.88 (18)N1—C12—S1105.06 (14)
C1—C2—C3120.99 (19)S2—C12—S1128.30 (13)
C4—C3—C2120.21 (19)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds