Download citation
Download citation
link to html
In the title compound, [SnCl3(CH3)(C6H5SOCH2)2]n, the octahedral SnIV centres are bridged by meso-1,2-bis­(phenyl­sulfinyl)­ethane ligands forming infinite chains along the [100] direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010000473X/qa0265sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010000473X/qa0265Isup2.hkl
Contains datablock I

CCDC reference: 145626

Comment top

This study is a part of structural studies on adducts of halide–organotin compounds with sulfoxide derivatives.

The meso-1,2-bis(phenylsulfinyl)ethane ligand, meso-(C6H5SOCH2)2, crystallizes with a centre of symmetry at the middle of the ethane C—C bond (Cattalini et al., 1979). The occurrence of this centre of symmetry was also observed here, (I), and in the structures of [SnCl2(CH3)2{meso-(C6H5SOCH2)2}] (Carvalho at al., 1996a), [SnCl2(CH3)2{meso-(C3H7SOCH2)2}] (Carvalho at al., 1996b) and cis-{PtCl2{P(C2H5)3}{meso-(C6H5SOCH2)2}]2 (Francisco at al., 1995), where the SnIV and PtII cations have octahedral and square-planar geometries, respectively.

In the title structure, the SnIV atom is hexacoordinate in a distorted octahedral geometry. The Cl atoms trans to the O atoms form Sn—Cl bonds [Sn—Cl2 2.4585 (8) and Sn—Cl3 2.4401 (8) Å] longer than the Cl atom trans to the C atom [Sn—Cl1 2.3774 (9) Å]. Completing the coordination, there are two equivalent sulfoxide groups in a cis orientation [both with an Sn—O distance of 2.227 (2) Å] and a methyl group at a Sn—C distance of 2.114 (3) Å. Each sulfoxide is bound to two Sn atoms in an infinite chain along the [100] direction.

Similar cis-O2Sn geometries have been observed previously in the structures of [SnCl2(CH3)2{meso-(C6H5SOCH2)2}] and [SnCl2(CH3)2{meso-(C3H7SOCH2)2}]. The average Sn—O bond distances (2.359 Å) in these structures compared with Sn—O [2.227 (2) Å] in the title complex, follow the expected trends in the lower Lewis acidity of (CH3)2SnCl2 with respect to CH3SnCl3.

The crystal structures of the related adducts mer-[SnCl3(CH3)(C5H4NSOC3H7)] (Sousa et al., 1992), fac-[SnCl3{(C6H5)CH2}(C12H8N2)] (Hall & Tiekink, 1996), and fac- and mer-[SnCl3(C3H7)(C4H7NO)2] (Reuter & Puff, 1992) have been determined. All these examples, and also the results observed for the title compound, agree with the proposal of Reuter & Puff (1992) that the predominant formation of only a special stereoisomer, which is often observed in octahedral 1:1 and/or 1:2 adducts of monoorganotin trihalides, is caused by reaction conditions more than steric and/or electronic effects of the several complex ligands.

Experimental top

Suitable single crystals of (I) were obtained by the 1:1 reaction of meso-(C6H5SOCH2)2 with CH3SnCl3 in CH2Cl2.

Refinement top

H atoms were positioned geometrically and a riding model was used during the refinement process, with Uiso amounting to 1.5 (for methyl H atoms) or 1.2 (for the remaining) of the value of the Ueq of the atom to which they are attached. The C—H distances range is 0.93–0.97 Å.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: WinGX (Farrugia, 1998).

(I) top
Crystal data top
[SnCl3(CH3)(C7H7OS)2]F(000) = 1024
Mr = 518.45Dx = 1.739 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.942 (1) ÅCell parameters from 25 reflections
b = 6.3738 (4) Åθ = 11.3–18.1°
c = 20.895 (2) ŵ = 1.91 mm1
β = 111.129 (7)°T = 293 K
V = 1980.4 (3) Å3Prism, white
Z = 40.3 × 0.15 × 0.15 mm
Data collection top
Enraf Nonius Turbo-CAD4
diffractometer
Rint = 0.030
non–profiled ω/2θ scansθmax = 30.0°, θmin = 2.7°
Absorption correction: ψ scan
(North et al., 1968)
h = 220
Tmin = 0.670, Tmax = 0.762k = 08
5933 measured reflectionsl = 2729
5748 independent reflections3 standard reflections every 120 min
4177 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: fullCalculated w = 1/[σ2(Fo2) + (0.0409P)2 + 0.0144P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.031(Δ/σ)max = 0.002
wR(F2) = 0.087Δρmax = 0.65 e Å3
S = 1.05Δρmin = 0.54 e Å3
5748 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
210 parametersExtinction coefficient: 0.0017 (2)
0 restraints
Crystal data top
[SnCl3(CH3)(C7H7OS)2]V = 1980.4 (3) Å3
Mr = 518.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.942 (1) ŵ = 1.91 mm1
b = 6.3738 (4) ÅT = 293 K
c = 20.895 (2) Å0.3 × 0.15 × 0.15 mm
β = 111.129 (7)°
Data collection top
Enraf Nonius Turbo-CAD4
diffractometer
4177 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.030
Tmin = 0.670, Tmax = 0.7623 standard reflections every 120 min
5933 measured reflections intensity decay: 2%
5748 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.05Δρmax = 0.65 e Å3
5748 reflectionsΔρmin = 0.54 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.758342 (12)0.21426 (3)0.521210 (10)0.03277 (7)
Cl10.71887 (6)0.02450 (16)0.42758 (5)0.0620 (3)
Cl20.90046 (5)0.02542 (14)0.57752 (4)0.0484 (2)
Cl30.66978 (6)0.02035 (14)0.57538 (5)0.0571 (2)
S10.89687 (5)0.27851 (12)0.43718 (4)0.03497 (15)
S20.53944 (5)0.30484 (12)0.42835 (4)0.03723 (16)
O10.82688 (13)0.3854 (3)0.46097 (11)0.0399 (5)
O20.63579 (13)0.3895 (4)0.45767 (11)0.0430 (5)
C0.7896 (2)0.4756 (5)0.58798 (17)0.0499 (8)
HA0.76580.60070.56230.075*
HB0.85370.48810.60960.075*
HC0.76360.45670.62240.075*
C10.88585 (19)0.4101 (5)0.35948 (15)0.0389 (7)
C20.9219 (3)0.3144 (6)0.31627 (18)0.0567 (10)
H20.95080.18550.32790.068*
C30.9147 (3)0.4116 (8)0.25533 (18)0.0688 (12)
H30.93910.34730.2260.083*
C40.8729 (3)0.5988 (8)0.2378 (2)0.0744 (13)
H40.86860.66330.19690.089*
C50.8368 (3)0.6925 (7)0.2809 (2)0.0794 (14)
H50.80790.82110.26860.095*
C60.8421 (3)0.6010 (6)0.34254 (18)0.0609 (10)
H60.81720.66570.37140.073*
C70.4836 (2)0.4833 (5)0.36072 (15)0.0415 (7)
C80.5274 (2)0.6618 (6)0.35142 (18)0.0518 (8)
H80.58660.68740.37970.062*
C90.4826 (3)0.8016 (7)0.3000 (2)0.0669 (11)
H90.51180.92120.29330.08*
C100.3961 (3)0.7646 (8)0.2592 (2)0.0772 (14)
H100.36530.86090.22540.093*
C110.3542 (3)0.5857 (10)0.2678 (2)0.097 (2)
H110.29550.55920.23840.117*
C120.3968 (3)0.4430 (8)0.3190 (2)0.0735 (13)
H120.36720.32290.32490.088*
C131.00234 (19)0.3835 (5)0.49421 (15)0.0354 (6)
H1311.01960.31150.5380.042*
H1321.04850.35670.47510.042*
C140.48998 (19)0.3866 (5)0.48954 (15)0.0376 (6)
H1410.42540.36710.46970.045*
H1420.51290.29850.530.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02844 (10)0.03014 (11)0.04192 (12)0.00200 (8)0.01530 (8)0.00532 (8)
Cl10.0507 (5)0.0620 (6)0.0733 (6)0.0143 (4)0.0225 (4)0.0373 (5)
Cl20.0441 (4)0.0499 (5)0.0523 (4)0.0150 (4)0.0189 (4)0.0084 (4)
Cl30.0530 (5)0.0462 (5)0.0819 (6)0.0052 (4)0.0363 (5)0.0113 (4)
S10.0309 (3)0.0366 (4)0.0389 (4)0.0000 (3)0.0144 (3)0.0034 (3)
S20.0315 (3)0.0371 (4)0.0454 (4)0.0044 (3)0.0166 (3)0.0059 (3)
O10.0348 (10)0.0383 (12)0.0533 (12)0.0023 (9)0.0239 (9)0.0005 (10)
O20.0277 (10)0.0438 (13)0.0571 (13)0.0006 (9)0.0149 (9)0.0037 (10)
C0.0488 (18)0.0447 (19)0.057 (2)0.0038 (15)0.0193 (16)0.0158 (16)
C10.0338 (14)0.0446 (18)0.0346 (14)0.0032 (13)0.0081 (12)0.0014 (12)
C20.067 (2)0.062 (2)0.0434 (18)0.0200 (19)0.0228 (17)0.0043 (16)
C30.079 (3)0.090 (3)0.0411 (19)0.020 (3)0.0257 (19)0.009 (2)
C40.088 (3)0.091 (3)0.042 (2)0.014 (3)0.020 (2)0.017 (2)
C50.095 (3)0.072 (3)0.063 (3)0.037 (3)0.019 (2)0.026 (2)
C60.069 (2)0.065 (3)0.0479 (19)0.028 (2)0.0196 (18)0.0058 (18)
C70.0370 (15)0.0513 (19)0.0384 (15)0.0025 (14)0.0161 (13)0.0021 (14)
C80.0490 (19)0.054 (2)0.0499 (19)0.0143 (16)0.0148 (15)0.0001 (16)
C90.087 (3)0.058 (3)0.058 (2)0.010 (2)0.029 (2)0.0094 (19)
C100.071 (3)0.091 (4)0.068 (3)0.008 (3)0.023 (2)0.032 (2)
C110.048 (2)0.143 (5)0.081 (3)0.020 (3)0.001 (2)0.043 (3)
C120.047 (2)0.097 (3)0.068 (3)0.027 (2)0.0103 (18)0.020 (2)
C130.0317 (13)0.0407 (17)0.0345 (14)0.0027 (12)0.0128 (11)0.0024 (12)
C140.0320 (14)0.0395 (17)0.0437 (16)0.0034 (12)0.0166 (12)0.0011 (13)
Geometric parameters (Å, º) top
Sn—C2.114 (3)C4—H40.93
Sn—O22.227 (2)C5—C61.388 (5)
Sn—O12.227 (2)C5—H50.93
Sn—Cl12.3774 (9)C6—H60.93
Sn—Cl32.4401 (8)C7—C121.369 (5)
Sn—Cl22.4585 (8)C7—C81.384 (5)
S1—O11.535 (2)C8—C91.380 (5)
S1—C11.779 (3)C8—H80.93
S1—C131.803 (3)C9—C101.356 (6)
S2—O21.532 (2)C9—H90.93
S2—C71.782 (3)C10—C111.366 (7)
S2—C141.804 (3)C10—H100.93
C—HA0.96C11—C121.381 (6)
C—HB0.96C11—H110.93
C—HC0.96C12—H120.93
C1—C21.375 (5)C13—C13i1.511 (6)
C1—C61.383 (5)C13—H1310.97
C2—C31.383 (5)C13—H1320.97
C2—H20.93C14—C14ii1.511 (6)
C3—C41.352 (6)C14—H1410.97
C3—H30.93C14—H1420.97
C4—C51.369 (6)
C—Sn—O286.89 (11)C3—C4—H4120.3
C—Sn—O186.56 (11)C5—C4—H4120.3
O2—Sn—O185.47 (8)C4—C5—C6121.8 (4)
C—Sn—Cl1167.70 (10)C4—C5—H5119.1
O2—Sn—Cl185.14 (6)C6—C5—H5119.1
O1—Sn—Cl183.49 (6)C1—C6—C5117.6 (4)
C—Sn—Cl397.55 (10)C1—C6—H6121.2
O2—Sn—Cl390.04 (6)C5—C6—H6121.2
O1—Sn—Cl3173.76 (6)C12—C7—C8120.7 (3)
Cl1—Sn—Cl391.82 (4)C12—C7—S2119.1 (3)
C—Sn—Cl296.46 (10)C8—C7—S2120.2 (2)
O2—Sn—Cl2171.95 (6)C9—C8—C7119.7 (4)
O1—Sn—Cl287.42 (6)C9—C8—H8120.2
Cl1—Sn—Cl290.31 (3)C7—C8—H8120.2
Cl3—Sn—Cl296.75 (3)C10—C9—C8120.0 (4)
O1—S1—C1104.02 (13)C10—C9—H9120
O1—S1—C13103.59 (12)C8—C9—H9120
C1—S1—C13100.96 (14)C9—C10—C11119.8 (4)
O2—S2—C7103.54 (14)C9—C10—H10120.1
O2—S2—C14104.26 (13)C11—C10—H10120.1
C7—S2—C1499.03 (14)C10—C11—C12121.6 (4)
S1—O1—Sn121.86 (12)C10—C11—H11119.2
S2—O2—Sn126.83 (13)C12—C11—H11119.2
Sn—C—HA109.5C7—C12—C11118.2 (4)
Sn—C—HB109.5C7—C12—H12120.9
HA—C—HB109.5C11—C12—H12120.9
Sn—C—HC109.5C13i—C13—S1112.5 (3)
HA—C—HC109.5C13i—C13—H131109.1
HB—C—HC109.5S1—C13—H131109.1
C2—C1—C6120.9 (3)C13i—C13—H132109.1
C2—C1—S1117.6 (3)S1—C13—H132109.1
C6—C1—S1121.5 (3)H131—C13—H132107.8
C1—C2—C3119.4 (4)C14ii—C14—S2112.4 (3)
C1—C2—H2120.3C14ii—C14—H141109.1
C3—C2—H2120.3S2—C14—H141109.1
C4—C3—C2120.9 (4)C14ii—C14—H142109.1
C4—C3—H3119.6S2—C14—H142109.1
C2—C3—H3119.6H141—C14—H142107.9
C3—C4—C5119.4 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[SnCl3(CH3)(C7H7OS)2]
Mr518.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.942 (1), 6.3738 (4), 20.895 (2)
β (°) 111.129 (7)
V3)1980.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.91
Crystal size (mm)0.3 × 0.15 × 0.15
Data collection
DiffractometerEnraf Nonius Turbo-CAD4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.670, 0.762
No. of measured, independent and
observed [I > 2σ(I)] reflections
5933, 5748, 4177
Rint0.030
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.087, 1.05
No. of reflections5748
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.54

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), WinGX (Farrugia, 1998).

Selected geometric parameters (Å, º) top
Sn—C2.114 (3)S1—C11.779 (3)
Sn—O22.227 (2)S1—C131.803 (3)
Sn—O12.227 (2)S2—O21.532 (2)
Sn—Cl12.3774 (9)S2—C71.782 (3)
Sn—Cl32.4401 (8)S2—C141.804 (3)
Sn—Cl22.4585 (8)C13—C13i1.511 (6)
S1—O11.535 (2)C14—C14ii1.511 (6)
C—Sn—O286.89 (11)O1—Sn—Cl287.42 (6)
C—Sn—O186.56 (11)Cl1—Sn—Cl290.31 (3)
O2—Sn—O185.47 (8)Cl3—Sn—Cl296.75 (3)
C—Sn—Cl1167.70 (10)O1—S1—C1104.02 (13)
O2—Sn—Cl185.14 (6)O1—S1—C13103.59 (12)
O1—Sn—Cl183.49 (6)C1—S1—C13100.96 (14)
C—Sn—Cl397.55 (10)O2—S2—C7103.54 (14)
O2—Sn—Cl390.04 (6)O2—S2—C14104.26 (13)
O1—Sn—Cl3173.76 (6)C7—S2—C1499.03 (14)
Cl1—Sn—Cl391.82 (4)S1—O1—Sn121.86 (12)
C—Sn—Cl296.46 (10)S2—O2—Sn126.83 (13)
O2—Sn—Cl2171.95 (6)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds