Download citation
Download citation
link to html
In the crystal of the title complex, [Co(C9H6NO)3]·C2H5OH, the central Co atom has a distorted octahedral coordination comprised of three N atoms and three O atoms from the three 8-quinolinolato ligands. The three Co-O bond distances are in the range 1.887 (2)-1.910 (2) Å, while the three Co-N bond distances range from 1.919 (2) to 1.934 (2) Å. The solvent ethanol mol­ecule forms an intermolecular O-H...O hydrogen bonding with a quinolinolato ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100003516/qa0241sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100003516/qa0241Isup2.hkl
Contains datablock I

CCDC reference: 144693

Comment top

8-Quinolinol has been widely used as an extracting agent for transition metals and for the fluorescence analysis of group 3 A elements as well as in the preparation of non-linear optical materials with second harmonic generation at high intensity and stability at room temperature (Sanz-Medel et al., 1987; Sugiyama et al., 1991; Kato et al., 1988). Its complexes with transition metals have also found extensive applications. For example, bis(8-quinolinolato-N,O)nickel(II) [NiQ2] has been used as a free-resistant additive for olefin polymers and as a fungicide for leather (Uma & Krishnamurthi, 1984). Also, tri(8-quinolinolato)cobalt(III) has been synthesized and used to assist in the metal–ligand assignments which are further based on Zn labeling of the Zn complex and on the effects of metal ion substitution in relation to expectations based on crystal field theory (Nakamoto & Ohkaku, 1971). Although the synthesis and characterization of the title complex, (I), have been discussed previously (Hollingshead, 1954; Engelter et al., 1989; Cheng, 1983), its crystal structure, to our knowledge, has not been reported.

In the 8-quinolinato ligands, the absence of any unusually long bonds and the marginally longer carbonyl bonds (C1—O1 = 1.325 (4) Å; C10—O2 = 1.337 (3) Å and C19—O3 = 1.313 (4) Å versus 1.28 Å), shorter than the normal single bond in ether and alcohols (>1.4 Å), suggest that the delocalization extends over the entire molecule and will therefore withdraw more negative charge from the cation (Barton et al., 1983). The three 8-quinolinol ligands are coordinated to the central Co atom by their O and N atoms, forming five-membered chelate rings. The CoIII atom has a slightly distorted octahedral coordination.

The structure of the title complex is very similar to that of tris(8-quinolinolate)chromium(III) (CrQ3; Folting et al., 1968) and tris(8-quinolinolate)manganese(III) (MnQ3; Xiong & You, 1995). The Co—O bond distances in CoQ3 [1.887 (2), 1.903 (2) and 1.910 (2) Å] are normal, slighty shorter than those in Co(C5H4NOS)3 [1.943 (7) Å; Xu et al., 1995], and are in agreement with those of [Co(salpron)(py)]3 [1.890 (4) Å; Zhu et al., 1996]. Similarly, the Co—N bond distances [1.919 (2), 1.931 (2) and 1.934 (2) Å] are somewhat shorter than those in [Co(phen)(pro)2]+ [1.948 (3) Å; Ye et al., 1994] and [Co(C4H9(salen)(py)] [1.967 (5) Å; Zhu et al., 1996].

The mean chelate angles Co—O—C and Co—N—C [111.5 (2) and 110.3 (2)°, respectively] and the mean bite angle O—Co—N of 85.7 (1)° are close to those metal complexes of 8-hydroxyquinoline reported (Xiong & You, 1995; Xiong et al., 1995; Folting et al., 1968). The three chelate rings, Co1/O1/C1/C9/N1, Co1/O2/C10/C18/N2 and Co1/O3/C19/C27/N3 make dihedral angles of 87.1 (1), 86.9 (1) and 88.1 (1)°, respectively, with each other. Sterochemistry explains that this cis geometry of the ligands minimizes the stereochemical interference between the H atoms in the 2 and 4 positions of different ring systems.

The ethanol molecules do not take part in the coordination but invloves in an O—H···O intermolecular hydrogen bond with one of the ligands; the donor and acceptor distance, O4···O2, is 2.777 (4) Å. The molecular packing is stabilized by C—H···O and C—H···π(Cg) interactions (Table 2).

Experimental top

The title complex was prepared by mixing an aqueous solution of cobalt(II) acetate and 8-hydroxyquinoline with heating. The complex was collected by filtration, washed with water and dried over a night. The deep red single crystals suitable for X-ray analysis were obtained by recrystalization from anhydrous ethanol solution.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

tris(8-quinolinolato-N,O)Cobalt(III) Ethanol Solvate top
Crystal data top
[Co(C9H6NO)3]·C2H6OF(000) = 1112
Mr = 537.44Dx = 1.459 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.2649 (1) ÅCell parameters from 6862 reflections
b = 13.1101 (2) Åθ = 2.0–28.3°
c = 16.6181 (3) ŵ = 0.74 mm1
β = 94.2249 (3)°T = 293 K
V = 2447.56 (6) Å3Slab, black
Z = 40.38 × 0.22 × 0.12 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
5957 independent reflections
Radiation source: fine-focus sealed tube3727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 2.0°
ω scansh = 149
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1717
Tmin = 0.765, Tmax = 0.916l = 2221
16823 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0709P)2]
where P = (Fo2 + 2Fc2)/3
5957 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Co(C9H6NO)3]·C2H6OV = 2447.56 (6) Å3
Mr = 537.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.2649 (1) ŵ = 0.74 mm1
b = 13.1101 (2) ÅT = 293 K
c = 16.6181 (3) Å0.38 × 0.22 × 0.12 mm
β = 94.2249 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5957 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3727 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.916Rint = 0.069
16823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 0.97Δρmax = 0.56 e Å3
5957 reflectionsΔρmin = 0.77 e Å3
334 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Coverage of the unique set is over 99% complete. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.43457 (4)0.48233 (3)0.24446 (2)0.02880 (14)
O10.60063 (19)0.48624 (15)0.23028 (12)0.0341 (5)
O20.26970 (19)0.48312 (16)0.26418 (12)0.0355 (5)
O30.4288 (2)0.34339 (15)0.21476 (12)0.0384 (5)
N10.4524 (2)0.62417 (19)0.27415 (14)0.0297 (5)
N20.4612 (2)0.43695 (19)0.35408 (14)0.0334 (6)
N30.3944 (2)0.51022 (19)0.13143 (14)0.0314 (6)
C10.6477 (3)0.5763 (2)0.24959 (17)0.0325 (7)
C20.7673 (3)0.6014 (3)0.2492 (2)0.0430 (8)
H2A0.82220.55200.23650.052*
C30.8059 (3)0.7008 (3)0.2676 (2)0.0503 (9)
H3A0.88650.71600.26690.060*
C40.7285 (3)0.7765 (3)0.2868 (2)0.0505 (9)
H4A0.75670.84210.29750.061*
C50.6072 (3)0.7548 (2)0.29042 (18)0.0384 (8)
C60.5181 (3)0.8238 (3)0.3100 (2)0.0485 (9)
H6A0.53820.89130.32180.058*
C70.4030 (3)0.7933 (3)0.3121 (2)0.0483 (9)
H7A0.34520.83950.32590.058*
C80.3715 (3)0.6919 (2)0.29323 (18)0.0379 (7)
H8A0.29240.67180.29420.046*
C90.5689 (3)0.6542 (2)0.27146 (16)0.0300 (7)
C100.2528 (3)0.4524 (2)0.33918 (18)0.0349 (7)
C110.1441 (3)0.4455 (3)0.3718 (2)0.0488 (9)
H11A0.07470.46290.34110.059*
C120.1387 (4)0.4121 (3)0.4516 (2)0.0617 (11)
H12A0.06470.40890.47280.074*
C130.2368 (4)0.3842 (3)0.4995 (2)0.0599 (11)
H13A0.22900.36160.55190.072*
C140.3507 (3)0.3898 (3)0.46889 (19)0.0445 (9)
C150.4598 (4)0.3634 (3)0.5099 (2)0.0529 (10)
H15A0.46130.33970.56270.064*
C160.5623 (4)0.3720 (3)0.4735 (2)0.0571 (10)
H16A0.63350.35260.50110.069*
C170.5630 (3)0.4098 (3)0.39475 (19)0.0447 (9)
H17A0.63460.41600.37070.054*
C180.3558 (3)0.4260 (2)0.38872 (18)0.0347 (7)
C190.4038 (3)0.3311 (2)0.13693 (18)0.0340 (7)
C200.3965 (3)0.2376 (3)0.0978 (2)0.0423 (8)
H20A0.41160.17760.12660.051*
C210.3663 (3)0.2342 (3)0.0145 (2)0.0501 (9)
H21A0.36170.17100.01090.060*
C220.3433 (3)0.3197 (3)0.0309 (2)0.0524 (10)
H22A0.32210.31410.08590.063*
C230.3518 (3)0.4166 (3)0.00591 (19)0.0397 (8)
C240.3355 (3)0.5116 (3)0.0341 (2)0.0471 (9)
H24A0.31570.51360.08940.057*
C250.3491 (3)0.6003 (3)0.0087 (2)0.0469 (9)
H25A0.33850.66270.01750.056*
C260.3788 (3)0.5975 (3)0.09151 (18)0.0376 (7)
H26A0.38790.65860.11970.045*
C270.3821 (3)0.4202 (2)0.08965 (17)0.0312 (7)
O40.0598 (3)0.5801 (3)0.2098 (2)0.0969 (12)
H4B0.09710.52720.20420.145*
C280.0661 (5)0.6411 (5)0.1414 (4)0.108 (2)
H28A0.14890.65700.13480.130*
H28B0.02490.70480.14970.130*
C290.0159 (8)0.5944 (5)0.0696 (4)0.172 (4)
H29A0.02230.64000.02490.258*
H29B0.06650.57940.07540.258*
H29C0.05780.53230.06010.258*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0303 (2)0.0293 (2)0.0264 (2)0.00100 (18)0.00034 (16)0.00050 (17)
O10.0324 (11)0.0346 (11)0.0356 (11)0.0024 (10)0.0038 (10)0.0029 (9)
O20.0323 (11)0.0439 (12)0.0298 (11)0.0045 (10)0.0000 (9)0.0055 (9)
O30.0515 (14)0.0308 (12)0.0320 (11)0.0029 (10)0.0022 (10)0.0018 (9)
N10.0295 (13)0.0340 (14)0.0255 (12)0.0009 (11)0.0008 (10)0.0030 (11)
N20.0394 (15)0.0299 (14)0.0301 (13)0.0012 (12)0.0027 (12)0.0009 (11)
N30.0289 (13)0.0367 (14)0.0284 (13)0.0003 (11)0.0015 (11)0.0006 (11)
C10.0330 (16)0.0371 (18)0.0272 (15)0.0030 (14)0.0008 (13)0.0023 (13)
C20.0291 (17)0.060 (2)0.0407 (19)0.0028 (16)0.0046 (15)0.0005 (16)
C30.0339 (19)0.067 (3)0.049 (2)0.0175 (19)0.0011 (17)0.0040 (19)
C40.053 (2)0.050 (2)0.048 (2)0.0205 (19)0.0019 (18)0.0012 (17)
C50.045 (2)0.0378 (18)0.0313 (17)0.0075 (15)0.0024 (15)0.0030 (14)
C60.065 (3)0.0282 (18)0.052 (2)0.0002 (17)0.0021 (19)0.0007 (15)
C70.056 (2)0.0371 (19)0.053 (2)0.0123 (17)0.0085 (19)0.0032 (16)
C80.0333 (17)0.0410 (19)0.0393 (18)0.0067 (15)0.0012 (15)0.0003 (14)
C90.0316 (16)0.0332 (16)0.0251 (15)0.0021 (13)0.0023 (13)0.0032 (12)
C100.0409 (18)0.0315 (16)0.0325 (16)0.0079 (14)0.0043 (14)0.0011 (13)
C110.0366 (19)0.056 (2)0.055 (2)0.0062 (17)0.0103 (17)0.0029 (18)
C120.060 (3)0.072 (3)0.057 (3)0.021 (2)0.028 (2)0.005 (2)
C130.085 (3)0.059 (2)0.038 (2)0.016 (2)0.020 (2)0.0045 (18)
C140.066 (2)0.0376 (18)0.0306 (17)0.0074 (17)0.0065 (17)0.0000 (14)
C150.075 (3)0.051 (2)0.0307 (19)0.002 (2)0.0072 (19)0.0077 (16)
C160.073 (3)0.055 (2)0.040 (2)0.015 (2)0.020 (2)0.0047 (18)
C170.048 (2)0.047 (2)0.0374 (19)0.0065 (16)0.0113 (16)0.0021 (15)
C180.0460 (19)0.0303 (17)0.0276 (15)0.0039 (14)0.0013 (14)0.0008 (12)
C190.0287 (16)0.0385 (18)0.0346 (17)0.0027 (14)0.0012 (14)0.0045 (14)
C200.0402 (19)0.0387 (19)0.048 (2)0.0009 (15)0.0010 (16)0.0097 (15)
C210.044 (2)0.050 (2)0.056 (2)0.0000 (17)0.0018 (18)0.0232 (18)
C220.050 (2)0.071 (3)0.0354 (19)0.000 (2)0.0021 (17)0.0189 (18)
C230.0326 (17)0.054 (2)0.0318 (17)0.0014 (15)0.0001 (14)0.0054 (15)
C240.048 (2)0.066 (2)0.0263 (16)0.0032 (18)0.0036 (15)0.0051 (16)
C250.049 (2)0.055 (2)0.0355 (19)0.0046 (18)0.0018 (17)0.0136 (16)
C260.0415 (19)0.0387 (18)0.0325 (17)0.0005 (15)0.0019 (15)0.0048 (14)
C270.0274 (15)0.0400 (18)0.0261 (15)0.0015 (13)0.0009 (13)0.0048 (13)
O40.074 (2)0.103 (3)0.115 (3)0.020 (2)0.013 (2)0.043 (2)
C280.095 (4)0.103 (5)0.129 (5)0.015 (3)0.027 (4)0.056 (4)
C290.313 (12)0.117 (6)0.083 (5)0.057 (6)0.007 (6)0.008 (4)
Geometric parameters (Å, º) top
Co1—O31.887 (2)C6—C71.360 (5)
Co1—O11.903 (2)C7—C81.406 (5)
Co1—O21.910 (2)C10—C111.378 (4)
Co1—N21.919 (2)C10—C181.415 (4)
Co1—N11.931 (2)C11—C121.401 (5)
Co1—N31.934 (2)C12—C131.364 (6)
O1—C11.325 (4)C13—C141.416 (5)
O2—C101.337 (3)C14—C151.404 (5)
O3—C191.313 (4)C14—C181.419 (4)
N1—C81.327 (4)C15—C161.347 (6)
N1—C91.374 (4)C16—C171.400 (5)
N2—C171.336 (4)C19—C201.388 (4)
N2—C181.365 (4)C19—C271.418 (4)
N3—C261.328 (4)C20—C211.400 (5)
N3—C271.372 (4)C21—C221.366 (5)
C1—C21.387 (4)C22—C231.410 (5)
C1—C91.418 (4)C23—C271.409 (4)
C2—C31.400 (5)C23—C241.418 (5)
C3—C41.374 (5)C24—C251.366 (5)
C4—C51.402 (5)C25—C261.393 (4)
C5—C61.407 (5)O4—C281.396 (5)
C5—C91.416 (4)C28—C291.421 (8)
O3—Co1—O190.51 (9)C6—C7—C8119.9 (3)
O3—Co1—O291.99 (9)N1—C8—C7121.3 (3)
O1—Co1—O2176.68 (9)N1—C9—C5122.4 (3)
O3—Co1—N287.07 (10)N1—C9—C1114.8 (3)
O1—Co1—N292.27 (10)C5—C9—C1122.7 (3)
O2—Co1—N285.68 (10)O2—C10—C11125.3 (3)
O3—Co1—N1175.98 (10)O2—C10—C18116.7 (3)
O1—Co1—N185.47 (9)C11—C10—C18118.0 (3)
O2—Co1—N192.02 (10)C10—C11—C12119.6 (4)
N2—Co1—N192.87 (10)C13—C12—C11123.1 (4)
O3—Co1—N385.83 (10)C12—C13—C14119.6 (3)
O1—Co1—N392.09 (10)C15—C14—C13126.6 (3)
O2—Co1—N390.27 (9)C15—C14—C18116.4 (3)
N2—Co1—N3171.70 (10)C13—C14—C18117.0 (3)
N1—Co1—N394.51 (10)C16—C15—C14120.6 (3)
C1—O1—Co1111.96 (18)C15—C16—C17120.9 (4)
C10—O2—Co1111.45 (19)N2—C17—C16120.2 (3)
C19—O3—Co1112.13 (18)N2—C18—C10115.5 (3)
C8—N1—C9119.4 (3)N2—C18—C14121.8 (3)
C8—N1—Co1130.2 (2)C10—C18—C14122.7 (3)
C9—N1—Co1110.45 (19)O3—C19—C20124.8 (3)
C17—N2—C18120.0 (3)O3—C19—C27117.4 (3)
C17—N2—Co1129.1 (2)C20—C19—C27117.7 (3)
C18—N2—Co1110.7 (2)C19—C20—C21119.5 (3)
C26—N3—C27119.0 (3)C22—C21—C20122.9 (3)
C26—N3—Co1131.4 (2)C21—C22—C23119.7 (3)
C27—N3—Co1109.67 (19)C27—C23—C22117.5 (3)
O1—C1—C2125.6 (3)C27—C23—C24116.6 (3)
O1—C1—C9117.2 (3)C22—C23—C24125.8 (3)
C2—C1—C9117.2 (3)C25—C24—C23119.9 (3)
C1—C2—C3120.4 (3)C24—C25—C26120.1 (3)
C4—C3—C2122.1 (3)N3—C26—C25122.0 (3)
C3—C4—C5120.1 (3)N3—C27—C23122.4 (3)
C4—C5—C6126.5 (3)N3—C27—C19114.9 (3)
C4—C5—C9117.5 (3)C23—C27—C19122.6 (3)
C6—C5—C9116.1 (3)O4—C28—C29113.3 (6)
C7—C6—C5121.0 (3)
O3—Co1—O1—C1177.09 (19)Co1—N1—C9—C11.0 (3)
O2—Co1—O1—C138.2 (16)C4—C5—C9—N1179.0 (3)
N2—Co1—O1—C190.0 (2)C6—C5—C9—N11.8 (4)
N1—Co1—O1—C12.70 (19)C4—C5—C9—C10.1 (4)
N3—Co1—O1—C197.1 (2)C6—C5—C9—C1179.2 (3)
O3—Co1—O2—C1086.1 (2)O1—C1—C9—N13.4 (4)
O1—Co1—O2—C1052.8 (16)C2—C1—C9—N1177.4 (3)
N2—Co1—O2—C100.8 (2)O1—C1—C9—C5177.6 (3)
N1—Co1—O2—C1093.6 (2)C2—C1—C9—C51.6 (4)
N3—Co1—O2—C10171.9 (2)Co1—O2—C10—C11179.5 (3)
O1—Co1—O3—C1991.2 (2)Co1—O2—C10—C180.1 (3)
O2—Co1—O3—C1991.0 (2)O2—C10—C11—C12180.0 (3)
N2—Co1—O3—C19176.6 (2)C18—C10—C11—C120.6 (5)
N1—Co1—O3—C1994.2 (13)C10—C11—C12—C130.9 (6)
N3—Co1—O3—C190.9 (2)C11—C12—C13—C140.9 (6)
O3—Co1—N1—C8180 (100)C12—C13—C14—C15179.6 (4)
O1—Co1—N1—C8177.2 (3)C12—C13—C14—C180.7 (5)
O2—Co1—N1—C85.0 (3)C13—C14—C15—C16179.8 (4)
N2—Co1—N1—C890.8 (3)C18—C14—C15—C160.5 (5)
N3—Co1—N1—C885.4 (3)C14—C15—C16—C171.6 (6)
O3—Co1—N1—C92.1 (14)C18—N2—C17—C161.3 (5)
O1—Co1—N1—C90.86 (18)Co1—N2—C17—C16175.6 (3)
O2—Co1—N1—C9176.97 (18)C15—C16—C17—N20.7 (6)
N2—Co1—N1—C991.19 (19)C17—N2—C18—C10177.1 (3)
N3—Co1—N1—C992.61 (19)Co1—N2—C18—C101.8 (3)
O3—Co1—N2—C1784.0 (3)C17—N2—C18—C142.4 (5)
O1—Co1—N2—C176.4 (3)Co1—N2—C18—C14177.8 (2)
O2—Co1—N2—C17176.2 (3)O2—C10—C18—N21.2 (4)
N1—Co1—N2—C1792.0 (3)C11—C10—C18—N2178.3 (3)
N3—Co1—N2—C17115.3 (7)O2—C10—C18—C14178.4 (3)
O3—Co1—N2—C1890.8 (2)C11—C10—C18—C142.2 (5)
O1—Co1—N2—C18178.8 (2)C15—C14—C18—N21.5 (5)
O2—Co1—N2—C181.4 (2)C13—C14—C18—N2178.3 (3)
N1—Co1—N2—C1893.3 (2)C15—C14—C18—C10178.0 (3)
N3—Co1—N2—C1859.5 (8)C13—C14—C18—C102.2 (5)
O3—Co1—N3—C26179.3 (3)Co1—O3—C19—C20178.4 (3)
O1—Co1—N3—C2688.9 (3)Co1—O3—C19—C272.0 (3)
O2—Co1—N3—C2688.7 (3)O3—C19—C20—C21178.5 (3)
N2—Co1—N3—C26149.4 (7)C27—C19—C20—C211.2 (5)
N1—Co1—N3—C263.3 (3)C19—C20—C21—C220.1 (5)
O3—Co1—N3—C270.36 (19)C20—C21—C22—C231.1 (6)
O1—Co1—N3—C2790.7 (2)C21—C22—C23—C271.1 (5)
O2—Co1—N3—C2791.6 (2)C21—C22—C23—C24177.1 (3)
N2—Co1—N3—C2730.9 (8)C27—C23—C24—C250.2 (5)
N1—Co1—N3—C27176.34 (19)C22—C23—C24—C25178.5 (3)
Co1—O1—C1—C2176.9 (2)C23—C24—C25—C260.0 (5)
Co1—O1—C1—C94.0 (3)C27—N3—C26—C250.7 (5)
O1—C1—C2—C3177.4 (3)Co1—N3—C26—C25179.7 (2)
C9—C1—C2—C31.7 (5)C24—C25—C26—N30.2 (5)
C1—C2—C3—C40.1 (5)C26—N3—C27—C230.9 (4)
C2—C3—C4—C51.6 (5)Co1—N3—C27—C23179.4 (2)
C3—C4—C5—C6179.3 (3)C26—N3—C27—C19178.2 (3)
C3—C4—C5—C91.7 (5)Co1—N3—C27—C191.5 (3)
C4—C5—C6—C7179.5 (3)C22—C23—C27—N3179.1 (3)
C9—C5—C6—C71.5 (5)C24—C23—C27—N30.6 (4)
C5—C6—C7—C81.0 (5)C22—C23—C27—C190.0 (5)
C9—N1—C8—C71.1 (4)C24—C23—C27—C19178.4 (3)
Co1—N1—C8—C7179.0 (2)O3—C19—C27—N32.3 (4)
C6—C7—C8—N10.7 (5)C20—C19—C27—N3178.0 (3)
C8—N1—C9—C51.7 (4)O3—C19—C27—C23178.5 (3)
Co1—N1—C9—C5180.0 (2)C20—C19—C27—C231.1 (5)
C8—N1—C9—C1179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O20.822.202.777 (4)128
C4—H4A···O1i0.932.543.380 (4)150
C24—H24A···O1ii0.932.593.390 (4)145
C15—H15A···Cg1iii0.932.583.496 (4)168
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(C9H6NO)3]·C2H6O
Mr537.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.2649 (1), 13.1101 (2), 16.6181 (3)
β (°) 94.2249 (3)
V3)2447.56 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.38 × 0.22 × 0.12
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.765, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
16823, 5957, 3727
Rint0.069
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.147, 0.97
No. of reflections5957
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.77

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected bond angles (º) top
O1—C1—C9117.2 (3)N2—C18—C10115.5 (3)
N1—C9—C1114.8 (3)O3—C19—C27117.4 (3)
O2—C10—C18116.7 (3)N3—C27—C19114.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O20.822.202.777 (4)128
C4—H4A···O1i0.932.543.380 (4)150
C24—H24A···O1ii0.932.593.390 (4)145
C15—H15A···Cg1iii0.932.583.496 (4)168
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds