Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [{[eta]5-CpCo[P(O)(OMe)2]3}Nd(O2CCH3)2]2, with a centrosymmetric mol­ecule, each Nd atom has an eight-coordination environment, surrounded by a tripodal {LOMe = CpCo[P(O)(OMe)2]3} and four bridging acetato ligands. The coordination geometry around each Nd centre is described as a distorted square-antiprism and the two different types of acetato ligands have [mu]-O:O'- and [mu]-O,O':O'-acetato coordination modes. The Nd-O distances are in the range 2.378 (4)-2.594 (5) Å and the Nd...Nd distance is 3.9913 (6) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100003243/qa0226sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100003243/qa0226Isup2.hkl
Contains datablock I

CCDC reference: 144685

Comment top

Lanthanide complexes are of considerable interest for their potential application as luminescent probes in systems of biological relevance and as resonance-contrasting agents (Bunzli, 1989). In general, coordination numbers for lanthanide complexes are greater than for transition metal complexes, usually eight or more. The change in coordination number of lanthanoid(III) complexes in solution is of interest in connection with the anomalous behaviour (a double series or S-shaped) in their thermodynamic and physicochemical properties (Lauffer, 1987). Early transition metal and lanthanide complexes containing the O-donor tripodal ligand, LOMe = CpCo[P(O)(OMe)2]3, having stability and high π-donor ability, in comparison with cyclopentadienyl or polytris(pyrazol-1-yl)borate have not been reported extensively yet. In our recent investigation, we have synthesized various compounds such as (LOMe)2ML1–2, (LOMe)YL2 and [(LOMe)YL2]2 (Cho et al., 1995a,b; Kim et al., 1996; Han et al., 1999). The various coordination modes of carboxylate ligands binding to metals, such as anti or syn monodentate, symmetrical or asymmetrical bidentate chelating and monodentate or bidentate bridging, are of considerable interest in inorganic and organometallic chemistry (Rardin et al., 1991). [Y{HB(Pz)3}(O2CCH3)2]2 containing bidentate bridging carboxylate and hydrotris(pyrazol-1-yl)borate ligands has been reported (Reger et al., 1988). [Zn(C10H13N4S)(O2CCH3)]2 (Bresolin et al., 1997) and [Nd(Phen)(ONO)(O2CCH3)2]2 (Niu et al., 1997) having bridging and chelating acetato ligands were recently reported. More recently, we have reported [(LOMe)Y(O2CCH3)2]2 having µ-O:O'- and µ-O,O':O'-acetato coordination modes (Han et al., 1999). [Nd2(Acc6)6(H2O)6](ClO4)6·6H2O (Acc6 = 1-aminocyclohexane-1-carboxylic acid) containing both the monodentate carboxylato and the bridging carboxylato O atoms has been determined by X-ray diffraction (Aparna et al., 1997). [{NdL2(H2O)}n][ClO4]3n.xH2O complexes (L = N,N'-dicarboxymethyl- N,N,N',N'-tetramethyl-1,4-butanediammonium; x = 0, n) have been characterized by X-ray crystallograpy and their structures have a centrosymmetric paddle-wheel-like dimeric subunits and a distorted square antiprismatic geometry (Wei et al., 1997). However, the lack of structural studies in new early lanthanide(III) complexes prompted us to the synthesis and structure of new neodymium(III) complexes containing strongly π-donor tripod and acetate ligands.

We discuss herein the structure of [η5-CpCo{P(O)(OMe)2}3Nd(O2CCH3)2]2, (I). This molecule possesses an inversion centre. Each Nd atom is surrounded by O1, O2 and O3 of LOMe and O10, O11, O12, O13 and O11i of acetato having two different coordination modes, µ-O:O' and µ-O,O':O', and the coordination geometry of Nd at the centre is a distorted square antiprism eight coordination [sysmmetry code: (i) -x, -y, -z]. The average of Nd—O [2.443 (5) Å] is ca 0.1 Å longer than that [2.345 (5) Å] of isomorphous [(LOMe)Y(O2CCH3)2]2 (Han et al., 1999). The difference between Nd—O11 and Ndi—O11 [2.438 (5) and 2.594 (5) Å, respectively] at the µ2-bridging acetato ligand of the title compound is smaller than those [2.370 (5) and 2.707 (3) Å] of [Nd(Phen)(ONO)(O2CCH3)2]2 (Niu et al., 1997), but the distance of Nd···Nd [3.9913 (6) Å] is similar to that [3.974 (1) Å] found in the above Nd complex. O12—C12—O11i [121.8 (7)°] at the µ-O:O'-acetato ligand and O10—C10—O13i [126.9 (6)°] at the µ-O,O':O'-acetato ligand are comparable to the bond angles found in yttrium [120.6 (6) and 126.4 (7)°] and neodymium [120.8 (7) and 129 (2)°] acetato complexes (Han et al., 1999; Niu et al., 1997).

Experimental top

All materials used were of reagent grade. NdCl3 and sodium acetate were purchased from Aldrich, and the NaLOMe ligand was prepared according to the literature procedure of Klaüi (1979). 1H NMR spectra were recorded on a Varian 300-NMR spectrometer at ambient temperature and chemical shifts were referenced to the internal standard tetramethylsilane. Elemental analyses were performed in the Chemical Analysis Laboratory of the Korea Basic Science Institute at Kyungpook National University. A mixture of NdCl3 (0.16 g, 0.64 mmol), NaLOMe (0.30 g, 0.64 mmol) and NaAc (0.10 g, 1.29 mmol) in 25 ml of dry THF was stirred for 2 d at room temperature. The resulting yellow suspension was dried in vacuo and extracted with methanol. The yellow solution was slowly evaporated to afford a crop of X-ray quality yellow crystals (0.24 g, 53% based on Nd). Analysis calculated for C30H58O26P6Co2Nd2: C 25.25, H 4.10%; found: C 25.10, H 4.11%. 1H NMR (CDCl3): δ 8.84 (br, Cp), 3.76 (br, OCH3), -0.62 (br, OOCCH3), -1.12 (br, OOCCH3).

Refinement top

The methoxy O5 and O7 atoms and the methyl C13 atom of the µ-O,O':O' acetato ligand were disordered and refined on Uiso with an occupancy factor of 0.5. The Cp ring was constrained as a regular pentagon on Uiso. H atoms were constrained using a riding model and with U(H) fixed at 1.5 (Me) or 1.2 (Cp) times Ueq of the parent atoms.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

Bis[(µ-κO:O'-acetato)(µ-κO:µ-κ2O'-acetato){(cyclopentadienyl)tris (dimethylphosphito-P)cobalt-O,O',O"}neodymium(III)] top
Crystal data top
[Co2Nd2(C5H5)2(C2H3O2)4(C2H6O3P)6]F(000) = 1420
Mr = 1426.96Dx = 1.820 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
a = 14.0685 (9) ÅCell parameters from 25 reflections
b = 11.9199 (9) Åθ = 11–13°
c = 15.7428 (7) ŵ = 2.85 mm1
β = 99.541 (4)°T = 293 K
V = 2603.5 (3) Å3Tetragonal rod, yellow
Z = 20.50 × 0.50 × 0.40 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
4212 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 26.0°, θmin = 1.3°
ω/2θ scansh = 017
Absorption correction: ψ scan
(MolEN; Fair, 1990)
k = 014
Tmin = 0.273, Tmax = 0.320l = 1919
5598 measured reflections2 standard reflections every 60 min
4744 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0677P)2 + 14.444P]
where P = (Fo2 + 2Fc2)/3
4744 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 2.46 e Å3
0 restraintsΔρmin = 1.00 e Å3
Crystal data top
[Co2Nd2(C5H5)2(C2H3O2)4(C2H6O3P)6]V = 2603.5 (3) Å3
Mr = 1426.96Z = 2
Monoclinic, P21/aMo Kα radiation
a = 14.0685 (9) ŵ = 2.85 mm1
b = 11.9199 (9) ÅT = 293 K
c = 15.7428 (7) Å0.50 × 0.50 × 0.40 mm
β = 99.541 (4)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
4212 reflections with I > 2σ(I)
Absorption correction: ψ scan
(MolEN; Fair, 1990)
Rint = 0.013
Tmin = 0.273, Tmax = 0.3202 standard reflections every 60 min
5598 measured reflections intensity decay: 0.1%
4744 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0677P)2 + 14.444P]
where P = (Fo2 + 2Fc2)/3
4744 reflectionsΔρmax = 2.46 e Å3
261 parametersΔρmin = 1.00 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd0.05978 (2)0.01046 (2)0.123883 (17)0.02682 (12)
Co0.25044 (6)0.01019 (6)0.37413 (5)0.0318 (2)
P10.29866 (12)0.02220 (18)0.25050 (11)0.0457 (4)
P20.12888 (14)0.11986 (15)0.33473 (10)0.0429 (4)
P30.16400 (13)0.13490 (13)0.32970 (10)0.0393 (4)
O10.2281 (3)0.0176 (4)0.1676 (3)0.0418 (10)
O20.0653 (3)0.1019 (4)0.2502 (3)0.0455 (11)
O30.1034 (4)0.1366 (4)0.2428 (3)0.0476 (12)
O40.3745 (5)0.0806 (7)0.2519 (4)0.090 (2)
C40.4131 (9)0.1086 (12)0.1800 (7)0.107 (4)
H4A0.45940.05290.17040.161*
H4B0.44410.18040.18860.161*
H4C0.36260.11210.13090.161*
O5A0.3763 (7)0.1110 (8)0.2410 (6)0.039 (2)*0.50
O5B0.3470 (11)0.1517 (14)0.2529 (9)0.082 (4)*0.50
C50.3388 (8)0.2243 (9)0.1961 (7)0.089 (3)
H5A0.30910.27900.22770.133*
H5B0.39540.25480.17890.133*
H5C0.29360.20350.14500.133*
O60.1706 (5)0.2455 (5)0.3384 (4)0.087 (2)
C60.1171 (8)0.3333 (8)0.2949 (7)0.090 (3)
H6A0.07050.35940.32860.135*
H6B0.15950.39380.28620.135*
H6C0.08450.30710.24010.135*
O7A0.0553 (10)0.0975 (12)0.4097 (8)0.067 (3)*0.50
O7B0.0666 (7)0.1474 (9)0.4035 (6)0.042 (2)*0.50
C70.0358 (8)0.0935 (12)0.3924 (7)0.099 (4)
H7A0.05350.06570.33510.149*
H7B0.04400.03440.43280.149*
H7C0.07540.15580.40180.149*
O80.0957 (5)0.1564 (6)0.4007 (4)0.078 (2)
C80.0125 (7)0.2215 (10)0.3802 (7)0.090 (3)
H8A0.03000.29690.36790.136*
H8B0.02190.22190.42800.136*
H8C0.02780.19050.33060.136*
O90.2286 (5)0.2443 (5)0.3397 (4)0.082 (2)
C90.2317 (9)0.3242 (9)0.2750 (7)0.096 (4)
H9A0.25480.28970.22720.144*
H9B0.27420.38420.29720.144*
H9C0.16810.35350.25610.144*
O100.0390 (5)0.1808 (4)0.0766 (3)0.0710 (18)
O110.1032 (3)0.0030 (4)0.0196 (3)0.0491 (12)
O120.1090 (4)0.0374 (6)0.1535 (3)0.0719 (18)
O130.0317 (5)0.1951 (4)0.0609 (3)0.0596 (15)
C100.0031 (5)0.2346 (5)0.0111 (4)0.0452 (16)
C110.0004 (7)0.3595 (6)0.0212 (5)0.063 (2)
H11A0.05580.38340.06110.094*
H11B0.00080.39460.03360.094*
H11C0.05710.38040.04270.094*
C120.1492 (5)0.0246 (9)0.0774 (5)0.062 (2)
C13A0.2510 (12)0.0708 (15)0.0476 (11)0.060 (4)*0.50
H13A0.24730.14930.03480.090*0.50
H13B0.28880.06060.09250.090*0.50
H13C0.28060.03150.00310.090*0.50
C13B0.2570 (17)0.0022 (18)0.0615 (15)0.081 (6)*0.50
H13D0.28270.01610.00200.122*0.50
H13E0.28790.05090.09720.122*0.50
H13F0.26870.07450.07530.122*0.50
C1R0.3947 (5)0.0111 (6)0.4346 (5)0.085 (3)*
H1R0.44800.00510.40700.102*
C2R0.3459 (5)0.0793 (4)0.4675 (4)0.067 (2)*
H2R0.36180.15490.46530.081*
C3R0.2688 (5)0.0340 (6)0.5044 (5)0.077 (3)*
H3R0.22520.07470.53050.093*
C4R0.2698 (5)0.0844 (5)0.4942 (5)0.089 (3)*
H4R0.22700.13480.51260.107*
C5R0.3476 (6)0.1122 (4)0.4511 (5)0.090 (3)*
H5R0.36480.18410.43630.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd0.0300 (2)0.0282 (2)0.0198 (2)0.0012 (1)0.0032 (1)0.0011 (1)
Co0.0347 (4)0.0346 (4)0.0222 (4)0.0002 (3)0.0064 (3)0.0023 (3)
P10.0309 (8)0.072 (1)0.0317 (8)0.0084 (8)0.0021 (7)0.0050 (8)
P20.050 (1)0.0468 (9)0.0280 (8)0.0133 (8)0.0046 (7)0.0118 (7)
P30.054 (1)0.0340 (8)0.0251 (7)0.0064 (7)0.0081 (7)0.0060 (6)
O10.030 (2)0.066 (3)0.028 (2)0.006 (2)0.0012 (17)0.0007 (19)
O20.046 (3)0.052 (3)0.034 (2)0.018 (2)0.0054 (19)0.008 (2)
O30.063 (3)0.040 (2)0.032 (2)0.015 (2)0.014 (2)0.0090 (19)
O40.069 (4)0.152 (7)0.051 (3)0.051 (5)0.011 (3)0.014 (4)
C40.101 (9)0.14 (1)0.091 (8)0.052 (8)0.041 (7)0.026 (8)
C50.106 (8)0.063 (6)0.095 (8)0.032 (6)0.010 (6)0.006 (5)
O60.108 (5)0.039 (3)0.093 (5)0.012 (3)0.044 (4)0.014 (3)
C60.111 (8)0.055 (5)0.090 (7)0.009 (5)0.027 (6)0.004 (5)
C70.081 (7)0.14 (1)0.090 (8)0.021 (7)0.044 (6)0.015 (7)
O80.082 (4)0.103 (5)0.046 (3)0.050 (4)0.003 (3)0.013 (3)
C80.077 (7)0.106 (8)0.088 (7)0.047 (6)0.012 (5)0.000 (6)
O90.124 (6)0.039 (3)0.067 (4)0.020 (3)0.033 (4)0.006 (3)
C90.113 (9)0.071 (6)0.097 (8)0.021 (6)0.002 (7)0.031 (6)
O100.133 (6)0.031 (2)0.037 (3)0.000 (3)0.020 (3)0.001 (2)
O110.034 (2)0.082 (4)0.030 (2)0.002 (2)0.0013 (19)0.008 (2)
O120.044 (3)0.142 (6)0.030 (3)0.010 (3)0.006 (2)0.013 (3)
O130.106 (5)0.032 (2)0.034 (3)0.000 (3)0.008 (3)0.0033 (19)
C100.073 (5)0.027 (3)0.033 (3)0.000 (3)0.001 (3)0.000 (2)
C110.098 (7)0.028 (3)0.058 (5)0.002 (4)0.001 (4)0.002 (3)
C120.035 (4)0.118 (7)0.030 (4)0.003 (4)0.002 (3)0.006 (4)
Geometric parameters (Å, º) top
Nd—O12.378 (4)P3—O31.487 (4)
Nd—O22.388 (4)P3—O91.583 (6)
Nd—O32.400 (4)P3—O81.611 (6)
Nd—O102.400 (5)O4—C41.375 (11)
Nd—O132.419 (5)O5A—C51.574 (14)
Nd—O112.438 (5)O5B—C51.235 (17)
Nd—O122.515 (5)O6—C61.400 (10)
Nd—O11i2.594 (5)O7A—C71.267 (16)
Nd—C122.915 (7)O7B—C71.561 (16)
Nd—Ndi3.9913 (6)O8—C81.396 (10)
Co—C4R2.064 (8)O9—C91.400 (10)
Co—C5R2.066 (7)O10—C101.248 (8)
Co—C3R2.091 (7)O11—C12i1.244 (9)
Co—C1R2.093 (8)O11—Ndi2.594 (5)
Co—C2R2.109 (6)O12—C121.247 (9)
Co—P22.1603 (19)O13—C10i1.249 (8)
Co—P32.1628 (18)C10—O13i1.249 (8)
Co—P12.169 (2)C10—C111.499 (9)
P1—O11.503 (4)C12—O11i1.244 (9)
P1—O5A1.546 (9)C12—C13B1.52 (2)
P1—O41.622 (7)C12—C13A1.533 (18)
P1—O5B1.685 (16)C1R—C2R1.4200
P2—O21.491 (4)C1R—C5R1.4200
P2—O7B1.538 (10)C2R—C3R1.4200
P2—O61.606 (6)C3R—C4R1.4200
P2—O7A1.714 (13)C4R—C5R1.4200
O1—Nd—O277.67 (16)O1—P1—O5A108.4 (4)
O1—Nd—O375.43 (16)O1—P1—O4108.8 (3)
O2—Nd—O374.51 (16)O5A—P1—O492.6 (5)
O1—Nd—O1091.2 (2)O1—P1—O5B105.0 (5)
O2—Nd—O1073.23 (17)O5A—P1—O5B23.9 (5)
O3—Nd—O10147.03 (16)O4—P1—O5B115.5 (6)
O1—Nd—O13109.52 (19)O1—P1—Co121.10 (19)
O2—Nd—O13146.29 (17)O5A—P1—Co117.6 (4)
O3—Nd—O1375.70 (15)O4—P1—Co103.9 (2)
O10—Nd—O13137.18 (17)O5B—P1—Co103.0 (5)
O1—Nd—O1182.68 (15)O2—P2—O7B109.4 (4)
O2—Nd—O11140.59 (17)O2—P2—O6109.1 (3)
O3—Nd—O11132.43 (17)O7B—P2—O691.3 (5)
O10—Nd—O1173.38 (19)O2—P2—O7A104.5 (5)
O13—Nd—O1172.71 (18)O7B—P2—O7A21.4 (5)
O1—Nd—O12152.86 (16)O6—P2—O7A112.3 (6)
O2—Nd—O1279.57 (19)O2—P2—Co119.90 (19)
O3—Nd—O1284.42 (19)O7B—P2—Co116.3 (4)
O10—Nd—O1296.3 (2)O6—P2—Co106.7 (3)
O13—Nd—O1282.2 (2)O7A—P2—Co104.3 (5)
O11—Nd—O12124.45 (16)O3—P3—O9108.2 (3)
O1—Nd—O11i155.24 (15)O3—P3—O8108.6 (3)
O2—Nd—O11i113.31 (15)O9—P3—O8101.5 (4)
O3—Nd—O11i128.10 (15)O3—P3—Co120.94 (19)
O10—Nd—O11i72.30 (19)O9—P3—Co110.1 (3)
O13—Nd—O11i74.30 (18)O8—P3—Co105.7 (2)
O11—Nd—O11i75.08 (17)P1—O1—Nd137.6 (3)
O12—Nd—O11i50.38 (16)P2—O2—Nd139.1 (3)
O1—Nd—C12174.7 (2)P3—O3—Nd137.9 (3)
O2—Nd—C1297.7 (2)C4—O4—P1121.4 (7)
O3—Nd—C12106.1 (2)P1—O5A—C5116.2 (7)
O10—Nd—C1284.9 (3)C5—O5B—P1129.6 (12)
O13—Nd—C1275.8 (2)O5B—C5—O5A24.5 (8)
O11—Nd—C1299.59 (18)C6—O6—P2121.0 (6)
O12—Nd—C1225.19 (18)C7—O7A—P2124.3 (11)
O11i—Nd—C1225.25 (18)P2—O7B—C7117.2 (8)
O1—Nd—Ndi120.83 (11)O7A—C7—O7B22.7 (7)
O2—Nd—Ndi136.81 (11)C8—O8—P3120.1 (6)
O3—Nd—Ndi144.41 (11)C9—O9—P3125.1 (6)
O10—Nd—Ndi68.14 (12)C10—O10—Nd139.1 (4)
O13—Nd—Ndi69.06 (11)C12i—O11—Nd158.0 (5)
O11—Nd—Ndi38.91 (11)C12i—O11—Ndi91.9 (4)
O12—Nd—Ndi86.05 (12)Nd—O11—Ndi104.92 (17)
O11i—Nd—Ndi36.17 (10)C12—O12—Nd95.6 (4)
C12—Nd—Ndi60.92 (14)C10i—O13—Nd136.6 (4)
C4R—Co—C5R40.22 (13)O10—C10—O13i126.9 (6)
C4R—Co—C3R39.96 (14)O10—C10—C11115.8 (6)
C5R—Co—C3R67.11 (16)O13i—C10—C11117.3 (6)
C4R—Co—C1R67.09 (16)O11i—C12—O12121.8 (7)
C5R—Co—C1R39.92 (13)O11i—C12—C13B117.3 (11)
C3R—Co—C1R66.61 (15)O12—C12—C13B117.4 (11)
C4R—Co—C2R66.81 (16)O11i—C12—C13A116.4 (9)
C5R—Co—C2R66.78 (16)O12—C12—C13A120.1 (9)
C3R—Co—C2R39.52 (11)C13B—C12—C13A32.5 (9)
C1R—Co—C2R39.50 (12)O11i—C12—Nd62.8 (4)
C4R—Co—P288.96 (18)O12—C12—Nd59.2 (4)
C5R—Co—P2103.2 (2)C13B—C12—Nd165.7 (10)
C3R—Co—P2113.39 (19)C13A—C12—Nd161.7 (9)
C1R—Co—P2142.1 (2)C2R—C1R—C5R108.0
C2R—Co—P2152.71 (18)C2R—C1R—Co70.8 (3)
C4R—Co—P3128.4 (2)C5R—C1R—Co69.0 (3)
C5R—Co—P3160.47 (18)C1R—C2R—C3R108.0
C3R—Co—P394.99 (19)C1R—C2R—Co69.7 (3)
C1R—Co—P3127.0 (2)C3R—C2R—Co69.6 (3)
C2R—Co—P394.59 (17)C4R—C3R—C2R108.0
P2—Co—P390.86 (8)C4R—C3R—Co69.0 (3)
C4R—Co—P1141.3 (2)C2R—C3R—Co70.9 (3)
C5R—Co—P1102.3 (2)C5R—C4R—C3R108.0
C3R—Co—P1152.91 (19)C5R—C4R—Co70.0 (3)
C1R—Co—P189.07 (18)C3R—C4R—Co71.0 (3)
C2R—Co—P1113.63 (19)C4R—C5R—C1R108.0
P2—Co—P193.03 (7)C4R—C5R—Co69.8 (3)
P3—Co—P190.30 (7)C1R—C5R—Co71.1 (3)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Co2Nd2(C5H5)2(C2H3O2)4(C2H6O3P)6]
Mr1426.96
Crystal system, space groupMonoclinic, P21/a
Temperature (K)293
a, b, c (Å)14.0685 (9), 11.9199 (9), 15.7428 (7)
β (°) 99.541 (4)
V3)2603.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.85
Crystal size (mm)0.50 × 0.50 × 0.40
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(MolEN; Fair, 1990)
Tmin, Tmax0.273, 0.320
No. of measured, independent and
observed [I > 2σ(I)] reflections
5598, 4744, 4212
Rint0.013
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 1.03
No. of reflections4744
No. of parameters261
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0677P)2 + 14.444P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.46, 1.00

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Nd—O12.378 (4)P1—O11.503 (4)
Nd—O22.388 (4)P2—O21.491 (4)
Nd—O32.400 (4)P3—O31.487 (4)
Nd—O102.400 (5)O10—C101.248 (8)
Nd—O132.419 (5)O11—C12i1.244 (9)
Nd—O112.438 (5)O12—C121.247 (9)
Nd—O122.515 (5)O13—C10i1.249 (8)
Nd—O11i2.594 (5)C10—O13i1.249 (8)
Co—P22.1603 (19)C10—C111.499 (9)
Co—P32.1628 (18)C12—O11i1.244 (9)
Co—P12.169 (2)
O1—Nd—O277.67 (16)O3—Nd—O1284.42 (19)
O1—Nd—O375.43 (16)O10—Nd—O1296.3 (2)
O2—Nd—O374.51 (16)O13—Nd—O1282.2 (2)
O1—Nd—O1091.2 (2)O11—Nd—O12124.45 (16)
O2—Nd—O1073.23 (17)O1—Nd—O11i155.24 (15)
O3—Nd—O10147.03 (16)O2—Nd—O11i113.31 (15)
O1—Nd—O13109.52 (19)O3—Nd—O11i128.10 (15)
O2—Nd—O13146.29 (17)O10—Nd—O11i72.30 (19)
O3—Nd—O1375.70 (15)O13—Nd—O11i74.30 (18)
O10—Nd—O13137.18 (17)O11—Nd—O11i75.08 (17)
O1—Nd—O1182.68 (15)O12—Nd—O11i50.38 (16)
O2—Nd—O11140.59 (17)P2—Co—P390.86 (8)
O3—Nd—O11132.43 (17)P2—Co—P193.03 (7)
O10—Nd—O1173.38 (19)P3—Co—P190.30 (7)
O13—Nd—O1172.71 (18)O10—C10—O13i126.9 (6)
O1—Nd—O12152.86 (16)O11i—C12—O12121.8 (7)
O2—Nd—O1279.57 (19)
Symmetry code: (i) x, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds