Download citation
Download citation
link to html
The title complex, C14H20O4S8+.BF4-, is a charge-transfer complex with typical charges for the donor and anion of +1 and -1, respectively. Two centrosymmetrically related donors form a face-to-face [pi]-dimer with a strong intermolecular S...S interaction. These [pi]-dimers stack along the a axis to form a donor column. The structure is extensively hydrogen bonded.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100001219/qa0207sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001219/qa0207Isup2.hkl
Contains datablock I

CCDC reference: 143327

Comment top

The structures of many charge-transfer complexes with the donor containing a tetrathiafulvalene (TTF) unit have been reported (Endres, 1981; Bechgarrd et al., 1997; Katayama et al., 1985; Endres, 1987). Studies of the relationship between physical properties and structure have shown the co-existence of high electric conductivity and non-covalent interactions in complexes, such as hydrogen bonds and enhanced van der Waals forces. We have prepared a new charge-transfer complex, (I), with the possibility of hydrogen bonding between donor and acceptor components. The title complex is a charge-transfer complex with one donor and one BF4- anion in the asymmetric unit. In the donor, bond distances and angles at S are dependent on the hybridization state of the C atoms to which S is bonded, so S—Csp3 is longer that S—Csp2 and angles are wider in the case of an sp2-hydridized C atom. The S—Csp3 bond distance is longer than reported values on derivatives of TTF and S—Csp2 bond distances are similar (Saitoh et al., 1995; Katayama et al., 1985; Brunn et al., 1987; Endres, 1981). CC bond distances in the TTF core are in the same range as in TTF+ cores. C—C bond distances in the 2-hydroxyethyl groups are similar to C—C bond distances in the ethyl group in BEDT–TTF (Saitoh et al., 1995). C—O bond distances range from 1.385 (6) to 1.433 (7) Å. With the exception of the four 2-hydroxyethyl groups, all the atoms in the donor are close to coplanar with a deviation of 0.20 Å, owing to a charge-transfer interaction between donor and anion. All four 2-hydroxyethyl groups depart from this plane in the same direction and form a U-type structure not reported previously (Batsanov et al., 1995).

Parallel pairs of donors related by a centre of symmetry lie face-to-face and form an X-type donor dimer with a strong ππ interaction. Donor dimers stack along the a axis to form a donor column. The intermolecular S···S contacts in the π-dimer are significantly shorter than the sum of van der Waals radii, 3.7 Å, but no strong intermolecular contacts exist between dimers in a column. The anion is tetrahedral with bond distances and angles similar to reported values (Hursthouse et al., 1995; Saitoh et al., 1995). Owing to the –OH group in the donor and strongly electronegative element in the anion, a lot of hydrogen bonds of types O—H···F and O—H···O exist in the title complex. This phase is an insulator at room temperature, corresponding to the theory of Pierles distortion in low-dimensional conductors. Experiments on physical properties are in progress.

Experimental top

Crystals were obtained by electrocrystallization of 10 mg 2,3,4,5-tetrakis[(2-hydroxyethyl)thio]tetrathiafulvalene dissolved in 50 ml 1,1,2-trichloromethane with 4.96 mg KBF4 and 7.1 mg dibenzo-18-crown-6 in an H-shaped tube. A constant current of 1.0 µA was applied to the supernatant using platinum electrodes for two weeks.

Computing details top

Data collection: DENZO and SCALEPACK (Otwinowski & Minor, 1997); cell refinement: DENZO and SCALEPACK; data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

4,5-bis[(2-hydroxyethyl)thio]-2-{4,5-bis[(2-hydroxyethyl)thio]-1,3-dithiol-2- ylidene}-1,3-dithiole top
Crystal data top
C14H20O4S8+·BF4Z = 2
Mr = 595.59F(000) = 610
Triclinic, P1Dx = 1.671 Mg m3
a = 9.7070 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5750 (6) ÅCell parameters from 3980 reflections
c = 11.5920 (7) Åθ = 0.9–25.4°
α = 71.333 (3)°µ = 0.81 mm1
β = 85.678 (4)°T = 293 K
γ = 73.601 (3)°Block, dark green
V = 1183.58 (11) Å30.25 × 0.15 × 0.10 mm
Data collection top
MacScience DIP 2030K image-plate system
diffractometer
3623 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.4°, θmin = 2.5°
Detector resolution: 0.84 pixels mm-1h = 110
ω scansk = 1313
3980 measured reflectionsl = 1313
3980 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0676P)2 + 1.9465P]
where P = (Fo2 + 2Fc2)/3
3980 reflections(Δ/σ)max = 0.001
284 parametersΔρmax = 0.80 e Å3
21 restraintsΔρmin = 0.47 e Å3
Crystal data top
C14H20O4S8+·BF4γ = 73.601 (3)°
Mr = 595.59V = 1183.58 (11) Å3
Triclinic, P1Z = 2
a = 9.7070 (5) ÅMo Kα radiation
b = 11.5750 (6) ŵ = 0.81 mm1
c = 11.5920 (7) ÅT = 293 K
α = 71.333 (3)°0.25 × 0.15 × 0.10 mm
β = 85.678 (4)°
Data collection top
MacScience DIP 2030K image-plate system
diffractometer
3623 reflections with I > 2σ(I)
3980 measured reflectionsRint = 0.000
3980 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05521 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.08Δρmax = 0.80 e Å3
3980 reflectionsΔρmin = 0.47 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31412 (11)0.71973 (9)0.86598 (8)0.0440 (2)
S20.51616 (10)0.53811 (9)0.76734 (8)0.0433 (2)
S30.19900 (11)0.49342 (9)1.05265 (9)0.0463 (3)
S40.40813 (11)0.30952 (9)0.96116 (8)0.0450 (2)
S50.37452 (13)0.94793 (9)0.68362 (9)0.0529 (3)
S60.61704 (13)0.73837 (11)0.57268 (9)0.0550 (3)
S70.06311 (12)0.29691 (10)1.21829 (9)0.0531 (3)
S80.31853 (13)0.08637 (10)1.13017 (9)0.0551 (3)
F10.8136 (7)0.3574 (4)0.6852 (5)0.171 (2)
F20.8134 (5)0.2442 (4)0.8731 (3)0.1185 (14)
F30.8909 (4)0.1478 (4)0.7339 (4)0.1159 (14)
F40.6640 (4)0.2395 (5)0.7453 (6)0.172 (2)
O10.2341 (7)0.8653 (4)0.4824 (4)0.1145 (18)
H10.21850.86340.41450.172*
O20.7894 (4)0.7111 (4)0.3641 (3)0.0765 (10)
H20.81660.74170.29520.115*
O30.1941 (4)0.3611 (4)1.3698 (3)0.0819 (11)
H30.20050.29281.41680.123*
O40.1144 (4)0.2241 (4)0.8847 (3)0.0767 (10)
H40.02740.25200.87230.115*
B10.7951 (5)0.2473 (4)0.7570 (4)0.0591 (12)
C10.3818 (4)0.5646 (3)0.8699 (3)0.0404 (8)
C20.3337 (4)0.4655 (3)0.9513 (3)0.0400 (8)
C30.4056 (4)0.7827 (3)0.7373 (3)0.0414 (8)
C40.5021 (4)0.6984 (3)0.6914 (3)0.0399 (8)
C50.1955 (4)0.3362 (3)1.1154 (3)0.0411 (8)
C60.2942 (4)0.2501 (3)1.0732 (3)0.0427 (8)
C70.2022 (5)0.9987 (4)0.6063 (4)0.0640 (12)
H7A0.15651.08450.60420.080*
H7B0.14250.94710.65360.080*
C80.2087 (7)0.9902 (5)0.4798 (5)0.0791 (16)
H8A0.12001.03980.43790.080*
H8B0.28461.02410.43650.080*
C90.6041 (5)0.6376 (4)0.4832 (4)0.0547 (10)
H9A0.50700.63270.48290.080*
H9B0.66510.55360.51730.080*
C100.6517 (6)0.6946 (5)0.3574 (4)0.0664 (12)
H10A0.65480.64100.30830.080*
H10B0.58520.77530.32080.080*
C110.0099 (5)0.4286 (4)1.2806 (4)0.0551 (10)
H11A0.05260.50091.22490.080*
H11B0.09300.45151.29490.080*
C120.0675 (5)0.3859 (5)1.3979 (4)0.0608 (11)
H12A0.00650.31091.45180.080*
H12B0.09270.45061.43710.080*
C130.2945 (7)0.0442 (5)0.9961 (5)0.0771 (14)
H13A0.32500.04641.01650.080*
H13B0.35720.07740.93360.080*
C140.1493 (7)0.0900 (5)0.9450 (6)0.0829 (16)
H14A0.14300.04740.88770.080*
H14B0.08210.07081.00940.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0496 (5)0.0433 (5)0.0387 (5)0.0155 (4)0.0064 (4)0.0111 (4)
S20.0482 (5)0.0418 (5)0.0394 (5)0.0159 (4)0.0062 (4)0.0101 (4)
S30.0515 (6)0.0409 (5)0.0445 (5)0.0176 (5)0.0094 (4)0.0083 (4)
S40.0551 (6)0.0443 (5)0.0377 (5)0.0184 (5)0.0044 (4)0.0123 (4)
S50.0678 (7)0.0407 (5)0.0525 (6)0.0224 (5)0.0057 (5)0.0096 (4)
S60.0688 (7)0.0634 (7)0.0463 (5)0.0399 (6)0.0189 (5)0.0204 (5)
S70.0606 (6)0.0530 (6)0.0503 (6)0.0298 (5)0.0140 (5)0.0129 (4)
S80.0755 (8)0.0412 (5)0.0462 (5)0.0202 (5)0.0053 (5)0.0051 (4)
F10.223 (6)0.096 (3)0.163 (5)0.045 (4)0.093 (4)0.016 (3)
F20.139 (4)0.140 (3)0.088 (2)0.025 (3)0.007 (2)0.065 (2)
F30.117 (3)0.109 (3)0.123 (3)0.019 (2)0.019 (2)0.076 (2)
F40.085 (3)0.187 (5)0.280 (7)0.024 (3)0.042 (4)0.124 (5)
O10.208 (6)0.084 (3)0.071 (3)0.068 (3)0.030 (3)0.018 (2)
O20.080 (2)0.099 (3)0.064 (2)0.046 (2)0.0266 (18)0.0294 (19)
O30.063 (2)0.111 (3)0.071 (2)0.044 (2)0.0024 (17)0.011 (2)
O40.070 (2)0.088 (3)0.074 (2)0.032 (2)0.0093 (18)0.0163 (19)
B10.064 (3)0.054 (3)0.063 (3)0.013 (3)0.006 (2)0.027 (2)
C10.046 (2)0.0441 (19)0.0321 (17)0.0187 (17)0.0020 (14)0.0083 (14)
C20.047 (2)0.0424 (19)0.0308 (16)0.0186 (17)0.0018 (14)0.0071 (14)
C30.049 (2)0.0419 (19)0.0350 (17)0.0205 (17)0.0006 (15)0.0066 (14)
C40.046 (2)0.0424 (19)0.0343 (17)0.0211 (17)0.0026 (14)0.0084 (14)
C50.050 (2)0.0427 (19)0.0323 (17)0.0225 (17)0.0003 (14)0.0047 (14)
C60.052 (2)0.0411 (19)0.0368 (18)0.0202 (18)0.0002 (15)0.0080 (15)
C70.065 (3)0.048 (2)0.069 (3)0.008 (2)0.013 (2)0.008 (2)
C80.110 (5)0.064 (3)0.061 (3)0.037 (3)0.025 (3)0.002 (2)
C90.062 (3)0.063 (3)0.049 (2)0.028 (2)0.0101 (19)0.0232 (19)
C100.077 (3)0.088 (3)0.047 (2)0.036 (3)0.009 (2)0.027 (2)
C110.054 (2)0.051 (2)0.060 (2)0.020 (2)0.0089 (19)0.0139 (19)
C120.055 (3)0.071 (3)0.058 (3)0.022 (2)0.009 (2)0.020 (2)
C130.097 (4)0.060 (3)0.081 (3)0.025 (3)0.008 (3)0.028 (3)
C140.093 (4)0.075 (3)0.091 (4)0.039 (3)0.017 (3)0.022 (3)
Geometric parameters (Å, º) top
S1—C11.715 (4)O4—H40.8200
S1—C31.736 (4)C1—C21.403 (5)
S2—C11.727 (4)C3—C41.361 (5)
S2—C41.751 (4)C5—C61.361 (6)
S3—C21.722 (4)C7—C81.497 (7)
S3—C51.740 (4)C7—H7A0.9599
S4—C21.715 (4)C7—H7B0.9639
S4—C61.738 (4)C8—H8A0.9549
S5—C31.754 (4)C8—H8B0.9645
S5—C71.811 (5)C9—C101.494 (6)
S6—C41.734 (3)C9—H9A0.9600
S6—C91.825 (4)C9—H9B0.9572
S7—C51.742 (4)C10—H10A0.9602
S7—C111.821 (4)C10—H10B0.9567
S8—C61.748 (4)C11—C121.511 (6)
S8—C131.820 (5)C11—H11A0.9552
F1—B11.333 (5)C11—H11B0.9584
F2—B11.358 (5)C12—H12A0.9555
F3—B11.349 (5)C12—H12B0.9613
F4—B11.321 (5)C13—C141.456 (8)
O1—C81.387 (6)C13—H13A0.9592
O1—H10.8200C13—H13B0.9654
O2—C101.414 (6)C14—H14A0.9595
O2—H20.8200C14—H14B0.9659
O3—C121.421 (5)S4—S1i3.356 (1)
O3—H30.8200S3—S2i3.456 (1)
O4—C141.434 (6)
C1—S1—C395.98 (17)O1—C8—C7110.7 (4)
C1—S2—C495.67 (17)O1—C8—H8A109.7
C2—S3—C595.67 (18)C7—C8—H8A109.4
C2—S4—C695.78 (17)O1—C8—H8B109.5
C3—S5—C7102.11 (19)C7—C8—H8B109.3
C4—S6—C9101.87 (18)H8A—C8—H8B108.3
C5—S7—C11102.88 (18)C10—C9—S6107.3 (3)
C6—S8—C13103.4 (2)C10—C9—H9A111.3
C8—O1—H1109.5S6—C9—H9A109.8
C10—O2—H2109.5C10—C9—H9B109.4
C12—O3—H3109.5S6—C9—H9B110.6
C14—O4—H4109.5H9A—C9—H9B108.4
F4—B1—F1111.5 (5)O2—C10—C9109.0 (4)
F4—B1—F3109.0 (4)O2—C10—H10A109.9
F1—B1—F3111.7 (4)C9—C10—H10A110.6
F4—B1—F2108.4 (4)O2—C10—H10B109.4
F1—B1—F2106.2 (4)C9—C10—H10B109.1
F3—B1—F2109.9 (4)H10A—C10—H10B108.8
C2—C1—S1122.8 (3)C12—C11—S7107.4 (3)
C2—C1—S2122.0 (3)C12—C11—H11A109.8
S1—C1—S2115.18 (19)S7—C11—H11A110.5
C1—C2—S4122.9 (3)C12—C11—H11B111.0
C1—C2—S3121.5 (3)S7—C11—H11B109.9
S4—C2—S3115.59 (19)H11A—C11—H11B108.3
C4—C3—S1116.7 (3)O3—C12—C11108.3 (4)
C4—C3—S5125.7 (3)O3—C12—H12A110.2
S1—C3—S5117.5 (2)C11—C12—H12A109.6
C3—C4—S6124.9 (3)O3—C12—H12B109.7
C3—C4—S2115.9 (3)C11—C12—H12B110.5
S6—C4—S2119.1 (2)H12A—C12—H12B108.6
C6—C5—S3116.3 (3)C14—C13—S8115.8 (4)
C6—C5—S7123.2 (3)C14—C13—H13A108.9
S3—C5—S7120.3 (2)S8—C13—H13A108.3
C5—C6—S4116.5 (3)C14—C13—H13B108.0
C5—C6—S8124.2 (3)S8—C13—H13B108.3
S4—C6—S8119.2 (2)H13A—C13—H13B107.3
C8—C7—S5114.9 (4)O4—C14—C13110.3 (4)
C8—C7—H7A109.4O4—C14—H14A109.5
S5—C7—H7A108.4C13—C14—H14A109.2
C8—C7—H7B108.0O4—C14—H14B110.1
S5—C7—H7B108.6C13—C14—H14B109.5
H7A—C7—H7B107.3H14A—C14—H14B108.4
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4ii0.822.092.891 (5)166
O1—H1···F3ii0.822.152.930 (5)143
O1—H1···F4ii0.822.553.224 (7)153
O3—H3···O1iii0.821.932.748 (6)174
O4—H4···F2iv0.822.102.875 (6)157
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z+2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H20O4S8+·BF4
Mr595.59
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.7070 (5), 11.5750 (6), 11.5920 (7)
α, β, γ (°)71.333 (3), 85.678 (4), 73.601 (3)
V3)1183.58 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerMacScience DIP 2030K image-plate system
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3980, 3980, 3623
Rint0.000
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.149, 1.08
No. of reflections3980
No. of parameters284
No. of restraints21
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.47

Computer programs: DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
S1—C11.715 (4)F2—B11.358 (5)
S1—C31.736 (4)F3—B11.349 (5)
S2—C11.727 (4)F4—B11.321 (5)
S2—C41.751 (4)O1—C81.387 (6)
S3—C21.722 (4)O2—C101.414 (6)
S3—C51.740 (4)O3—C121.421 (5)
S4—C21.715 (4)O4—C141.434 (6)
S4—C61.738 (4)C1—C21.403 (5)
S5—C31.754 (4)C3—C41.361 (5)
S5—C71.811 (5)C5—C61.361 (6)
S6—C41.734 (3)C7—C81.497 (7)
S6—C91.825 (4)C9—C101.494 (6)
S7—C51.742 (4)C11—C121.511 (6)
S7—C111.821 (4)C13—C141.456 (8)
S8—C61.748 (4)S4—S1i3.356 (1)
S8—C131.820 (5)S3—S2i3.456 (1)
F1—B11.333 (5)
C1—S1—C395.98 (17)C4—C3—S1116.7 (3)
C1—S2—C495.67 (17)C4—C3—S5125.7 (3)
C2—S3—C595.67 (18)S1—C3—S5117.5 (2)
C2—S4—C695.78 (17)C3—C4—S6124.9 (3)
C3—S5—C7102.11 (19)C3—C4—S2115.9 (3)
C4—S6—C9101.87 (18)S6—C4—S2119.1 (2)
C5—S7—C11102.88 (18)C6—C5—S3116.3 (3)
C6—S8—C13103.4 (2)C6—C5—S7123.2 (3)
F4—B1—F1111.5 (5)S3—C5—S7120.3 (2)
F4—B1—F3109.0 (4)C5—C6—S4116.5 (3)
F1—B1—F3111.7 (4)C5—C6—S8124.2 (3)
F4—B1—F2108.4 (4)S4—C6—S8119.2 (2)
F1—B1—F2106.2 (4)C8—C7—S5114.9 (4)
F3—B1—F2109.9 (4)O1—C8—C7110.7 (4)
C2—C1—S1122.8 (3)C10—C9—S6107.3 (3)
C2—C1—S2122.0 (3)O2—C10—C9109.0 (4)
S1—C1—S2115.18 (19)C12—C11—S7107.4 (3)
C1—C2—S4122.9 (3)O3—C12—C11108.3 (4)
C1—C2—S3121.5 (3)C14—C13—S8115.8 (4)
S4—C2—S3115.59 (19)O4—C14—C13110.3 (4)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4ii0.8202.0892.891 (5)165.6
O1—H1···F3ii0.8202.1452.930 (5)142.6
O1—H1···F4ii0.8202.5463.224 (7)152.8
O3—H3···O1iii0.8201.9322.748 (6)173.8
O4—H4···F2iv0.8202.1042.875 (6)156.5
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z+2; (iv) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds