Download citation
Download citation
link to html
The Independent Atom Model (IAM) of electron density is used in routine X-ray data analysis. However, this model does not give a quantitative description of the electron-density distribution. A better model that allows for modelling of aspherical charge density deformations is introduced by the Hansen–Coppens variant of the multipole model of electron density. However, the application of this model requires crystals of excellent quality and high-resolution XRD data which are quite often difficult criteria to fulfil. Therefore, Mo Kα and Cu Kα data of three model com­pounds (tricyclic imide, xylitol and methyl­uracil) were refined using IAM and new methods which enabled the refinement and reconstruction of charge density based on the Cu Kα data. These methods were the Bond-Oriented Deformation Density (BODD) model, Hirshfeld Atom Refinement (HAR) and the Transferable Aspherical Atom Model (TAAM). The final results were compared to the model obtained from neutron diffraction experiments. Our results demonstrated not only that Cu Kα data may be refined using BODD, HAR and TAAM methods, but also revealed systematic errors arising from the use of Cu Kα data. These errors were a result of the limited information in the low-resolution data set that manifested as higher values for the anisotropic displacement parameters (ADPs) and smaller maxima and minima of the residual electron density for the Cu Kα data com­pared to the Mo Kα data. Notably, these systematic errors were much less significant than those found for the IAM. Therefore, the application of BODD, HAR and TAAM on Cu Kα data has a more significant influence on the final results of refinement than for the Mo Kα data.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520620014936/px5028sup1.cif
Contains datablocks 1Cu, 2Cu, 3Cu, 3Mo, 1Neu

zip

Zip compressed file https://doi.org/10.1107/S2052520620014936/px5028sup2.zip
ZIP file containing cifs and checkcif reports

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620014936/px50281Cusup3.hkl
Contains datablock 1Cu

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620014936/px50282Cusup4.hkl
Contains datablock 2Cu

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620014936/px50283Cusup5.hkl
Contains datablock 3Cu

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620014936/px50283Mosup6.hkl
Contains datablock 3Mo

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620014936/px50281Neusup7.hkl
Neutron data for P1

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520620014936/px5028sup8.pdf
Supporting Information

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2052520620014936/px50281Cusup9.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2052520620014936/px50282Cusup10.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2052520620014936/px50283Cusup11.cml
Supplementary material

CCDC references: 2008294; 2008303; 2047732; 2008180; 2008224

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014) for 1Cu, 2Cu, 3Cu, 3Mo; SXD2001 (Gutmann, 2005) for 1Neu. Cell refinement: CrysAlis PRO (Agilent, 2014) for 1Cu, 2Cu, 3Cu, 3Mo. Data reduction: CrysAlis PRO (Agilent, 2014) for 1Cu, 2Cu, 3Cu, 3Mo; SXD2001 (Gutmann, 2005) for 1Neu. Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for 1Cu, 2Cu, 3Cu, 3Mo. Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for 1Cu, 2Cu, 3Cu, 3Mo; SHELXL97 (Sheldrick, 2008) for 1Neu. Molecular graphics: OLEX2 (Dolomanov et al., 2009) for 1Cu, 2Cu, 3Cu, 3Mo. Software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) for 1Cu, 2Cu, 3Cu, 3Mo.

10-Oxa-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione (1Cu) top
Crystal data top
C10H11NO3F(000) = 408
Mr = 193.20Dx = 1.413 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 8.6896 (1) ÅCell parameters from 25673 reflections
b = 10.8910 (1) Åθ = 4.6–71.4°
c = 9.5960 (1) ŵ = 0.88 mm1
β = 90.075 (1)°T = 100 K
V = 908.15 (2) Å3Block
Z = 40.34 × 0.26 × 0.17 mm
Data collection top
Agilent SuperNova Dual four-circle
diffractometer with an Atlas detector
1767 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source1728 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 5.2195 pixels mm-1θmax = 71.5°, θmin = 5.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1313
Tmin = 0.700, Tmax = 1.000l = 1111
31209 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.509P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1767 reflectionsΔρmax = 0.27 e Å3
128 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36276 (10)0.47007 (8)0.14418 (9)0.0164 (2)
O30.16094 (9)0.19482 (7)0.03330 (8)0.0137 (2)
O20.57726 (10)0.16063 (8)0.10936 (9)0.0182 (2)
N10.48504 (11)0.33324 (9)0.00031 (10)0.0142 (2)
H1N0.5357170.3862820.0482340.017*
C90.03590 (13)0.34783 (11)0.11652 (12)0.0159 (3)
H9A0.0770650.4102640.0548720.019*
H9B0.0388780.3801200.2106890.019*
C60.38508 (13)0.36508 (11)0.10480 (12)0.0131 (2)
C10.49639 (13)0.20788 (11)0.02167 (12)0.0138 (2)
C30.14991 (13)0.02619 (11)0.11128 (12)0.0165 (3)
H30.1390930.0573730.1286580.020*
C50.13690 (13)0.23569 (10)0.10900 (12)0.0127 (2)
C40.08248 (13)0.11771 (11)0.17867 (12)0.0154 (3)
H40.0152530.1112230.2536430.018*
C20.24825 (13)0.08589 (10)0.00010 (12)0.0143 (3)
H20.2745860.0333900.0793080.017*
C100.13125 (14)0.32263 (12)0.07646 (14)0.0219 (3)
H10A0.1353050.2907380.0167320.033*
H10B0.1891110.3975970.0812150.033*
H10C0.1744160.2637100.1397260.033*
C80.30909 (13)0.24969 (10)0.15899 (12)0.0127 (2)
H80.3196970.2410680.2602070.015*
C70.38819 (13)0.14403 (10)0.07896 (12)0.0136 (3)
H70.4408620.0857210.1404610.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0192 (4)0.0116 (4)0.0183 (4)0.0013 (3)0.0033 (3)0.0014 (3)
O30.0160 (4)0.0131 (4)0.0120 (4)0.0007 (3)0.0017 (3)0.0014 (3)
O20.0160 (4)0.0166 (4)0.0220 (4)0.0012 (3)0.0057 (3)0.0021 (3)
N10.0143 (5)0.0117 (5)0.0166 (5)0.0017 (4)0.0042 (4)0.0009 (4)
C90.0154 (6)0.0136 (6)0.0187 (6)0.0009 (4)0.0023 (4)0.0008 (5)
C60.0126 (5)0.0137 (6)0.0131 (5)0.0007 (4)0.0011 (4)0.0005 (4)
C10.0122 (5)0.0135 (6)0.0156 (6)0.0003 (4)0.0010 (4)0.0006 (4)
C30.0173 (6)0.0121 (6)0.0200 (6)0.0035 (5)0.0025 (5)0.0010 (5)
C50.0139 (6)0.0129 (6)0.0114 (5)0.0011 (4)0.0025 (4)0.0010 (4)
C40.0150 (5)0.0153 (6)0.0159 (6)0.0026 (4)0.0035 (4)0.0014 (4)
C20.0160 (6)0.0107 (5)0.0163 (6)0.0003 (4)0.0029 (4)0.0017 (4)
C100.0166 (6)0.0207 (6)0.0284 (7)0.0015 (5)0.0000 (5)0.0003 (5)
C80.0147 (6)0.0113 (5)0.0121 (5)0.0002 (4)0.0013 (4)0.0007 (4)
C70.0145 (5)0.0110 (6)0.0152 (5)0.0005 (4)0.0018 (4)0.0012 (4)
Geometric parameters (Å, º) top
O1—C61.2198 (15)C6—C81.5122 (15)
O3—C51.4516 (13)C1—C71.5174 (15)
O3—C21.4440 (14)C3—C41.3252 (17)
O2—C11.2118 (14)C3—C21.5144 (15)
N1—C61.3764 (15)C5—C41.5240 (15)
N1—C11.3841 (15)C5—C81.5781 (15)
C9—C51.5057 (16)C2—C71.5652 (16)
C9—C101.5268 (16)C8—C71.5452 (15)
C2—O3—C596.85 (8)C9—C5—C4118.79 (10)
C6—N1—C1113.72 (9)C9—C5—C8117.36 (9)
C5—C9—C10113.36 (10)C4—C5—C8104.05 (9)
O1—C6—N1124.33 (10)C3—C4—C5106.41 (10)
O1—C6—C8127.07 (10)O3—C2—C3102.26 (9)
N1—C6—C8108.60 (9)O3—C2—C7100.52 (8)
O2—C1—N1124.28 (11)C3—C2—C7105.77 (9)
O2—C1—C7127.42 (11)C6—C8—C5112.95 (9)
N1—C1—C7108.27 (9)C6—C8—C7104.67 (9)
C4—C3—C2105.73 (10)C7—C8—C5101.49 (9)
O3—C5—C9112.24 (9)C1—C7—C2111.06 (9)
O3—C5—C4101.49 (9)C1—C7—C8104.56 (9)
O3—C5—C8100.26 (8)C8—C7—C2101.29 (9)
(2R,3R,4S)-Pentane-1,2,3,4,5-pentol (2Cu) top
Crystal data top
C5H12O5F(000) = 328
Mr = 152.15Dx = 1.538 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
a = 8.2707 (2) ÅCell parameters from 8709 reflections
b = 8.9022 (2) Åθ = 4.9–76.8°
c = 8.9217 (2) ŵ = 1.20 mm1
V = 656.88 (3) Å3T = 123 K
Z = 40.35 × 0.22 × 0.18 mm
Data collection top
Agilent SuperNova Dual four-circle
diffractometer with an Atlas detector
1383 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source1370 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.4391 pixels mm-1θmax = 76.8°, θmin = 7.0°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1011
Tmin = 0.383, Tmax = 1.000l = 1111
14853 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.0779P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.32 e Å3
1383 reflectionsΔρmin = 0.21 e Å3
99 parametersAbsolute structure: Flack x determined using 550 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.03 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.77119 (14)0.12974 (13)0.39217 (12)0.0196 (3)
H120.7313150.0586710.3468710.029*
O30.68182 (14)0.43057 (12)0.46015 (12)0.0195 (3)
H130.6731790.5223340.4596870.029*
O40.38520 (13)0.43642 (13)0.31715 (13)0.0200 (3)
O50.32133 (14)0.22866 (13)0.07769 (13)0.0198 (3)
H150.2628080.2367540.1514390.030*
O11.08879 (14)0.20493 (13)0.28331 (13)0.0212 (3)
H111.1186130.1660070.3618890.032*
C30.67256 (18)0.37517 (18)0.30950 (16)0.0175 (3)
H30.6989370.4577330.2410760.021*
C40.49923 (19)0.32248 (18)0.27568 (17)0.0170 (3)
H40.4764410.2302370.3317970.020*
C20.79918 (18)0.25174 (18)0.28953 (17)0.0174 (3)
H20.7921720.2131420.1868640.021*
C10.96814 (19)0.31470 (17)0.31456 (19)0.0195 (3)
H1A0.9843160.4011820.2501440.023*
H1B0.9784980.3477510.4177100.023*
C50.47587 (19)0.29389 (18)0.10928 (17)0.0194 (3)
H5A0.4859050.3880490.0553580.023*
H5B0.5602410.2270150.0739290.023*
H140.353 (3)0.414 (3)0.412 (3)0.040 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0239 (6)0.0160 (5)0.0189 (5)0.0029 (4)0.0020 (4)0.0017 (4)
O30.0249 (6)0.0179 (5)0.0157 (5)0.0003 (5)0.0001 (4)0.0010 (4)
O40.0209 (5)0.0207 (6)0.0185 (5)0.0039 (4)0.0010 (4)0.0007 (4)
O50.0187 (5)0.0242 (5)0.0165 (5)0.0020 (5)0.0001 (4)0.0011 (4)
O10.0192 (5)0.0249 (6)0.0197 (5)0.0031 (5)0.0008 (4)0.0022 (5)
C30.0193 (7)0.0186 (7)0.0145 (7)0.0007 (6)0.0002 (5)0.0014 (6)
C40.0177 (6)0.0171 (7)0.0163 (7)0.0017 (5)0.0004 (6)0.0016 (5)
C20.0196 (7)0.0185 (7)0.0139 (7)0.0002 (6)0.0003 (5)0.0020 (6)
C10.0189 (7)0.0177 (7)0.0218 (7)0.0010 (6)0.0003 (6)0.0019 (6)
C50.0182 (7)0.0226 (8)0.0174 (7)0.0011 (6)0.0002 (6)0.0003 (6)
Geometric parameters (Å, º) top
O2—H120.8200C3—C41.538 (2)
O2—C21.4394 (19)C3—C21.528 (2)
O3—H130.8200C4—H40.9800
O3—C31.4337 (17)C4—C51.519 (2)
O4—C41.4336 (19)C2—H20.9800
O4—H140.91 (3)C2—C11.522 (2)
O5—H150.8200C1—H1A0.9700
O5—C51.4319 (19)C1—H1B0.9700
O1—H110.8200C5—H5A0.9700
O1—C11.4242 (19)C5—H5B0.9700
C3—H30.9800
C2—O2—H12109.5O2—C2—H2108.7
C3—O3—H13109.5O2—C2—C1109.40 (12)
C4—O4—H14106.2 (16)C3—C2—H2108.7
C5—O5—H15109.5C1—C2—C3110.32 (13)
C1—O1—H11109.5C1—C2—H2108.7
O3—C3—H3108.3O1—C1—C2111.22 (13)
O3—C3—C4109.79 (12)O1—C1—H1A109.4
O3—C3—C2108.66 (12)O1—C1—H1B109.4
C4—C3—H3108.3C2—C1—H1A109.4
C2—C3—H3108.3C2—C1—H1B109.4
C2—C3—C4113.36 (13)H1A—C1—H1B108.0
O4—C4—C3110.28 (12)O5—C5—C4111.96 (13)
O4—C4—H4109.5O5—C5—H5A109.2
O4—C4—C5106.69 (13)O5—C5—H5B109.2
C3—C4—H4109.5C4—C5—H5A109.2
C5—C4—C3111.18 (12)C4—C5—H5B109.2
C5—C4—H4109.5H5A—C5—H5B107.9
O2—C2—C3110.98 (12)
1-Methylpyrimidine-2,4(1H,3H)-dione (3Cu) top
Crystal data top
C5H6N2O2Dx = 1.549 Mg m3
Mr = 126.12Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, IbamCell parameters from 13558 reflections
a = 13.17921 (17) Åθ = 4.7–75.3°
b = 13.20059 (19) ŵ = 1.04 mm1
c = 6.21502 (11) ÅT = 123 K
V = 1081.25 (3) Å3Needle, clear light colourless
Z = 80.31 × 0.07 × 0.04 mm
F(000) = 528
Data collection top
Agilent SuperNova Dual four-circle
diffractometer with an Atlas detector
627 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source599 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.047
Detector resolution: 5.2195 pixels mm-1θmax = 75.5°, θmin = 4.7°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1616
Tmin = 0.505, Tmax = 1.000l = 77
627 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.5188P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
627 reflectionsΔρmax = 0.31 e Å3
62 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.63511 (7)0.48095 (7)0.5000000.0192 (3)
O10.45425 (7)0.77438 (7)0.5000000.0210 (3)
N20.54736 (8)0.62905 (9)0.5000000.0161 (3)
H10.4921520.5943130.5000000.019*
N10.62700 (8)0.78643 (9)0.5000000.0163 (3)
C20.63704 (10)0.57489 (11)0.5000000.0156 (3)
C10.53713 (10)0.73314 (10)0.5000000.0163 (4)
C30.72749 (10)0.63638 (10)0.5000000.0171 (3)
H20.7912360.6061550.5000000.020*
C40.71868 (10)0.73803 (10)0.5000000.0160 (3)
H30.7774980.7769490.5000000.019*
C50.62025 (11)0.89691 (11)0.5000000.0236 (4)
H50.5834 (10)0.9191 (10)0.629 (2)0.030 (3)*
H40.6866 (14)0.9189 (14)0.5000000.022 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0169 (5)0.0142 (6)0.0265 (6)0.0004 (3)0.0000.000
O10.0142 (5)0.0188 (5)0.0300 (6)0.0018 (3)0.0000.000
N20.0122 (6)0.0146 (6)0.0214 (6)0.0017 (4)0.0000.000
N10.0149 (6)0.0131 (6)0.0208 (6)0.0007 (4)0.0000.000
C20.0161 (7)0.0163 (6)0.0145 (6)0.0011 (5)0.0000.000
C10.0143 (7)0.0179 (7)0.0166 (7)0.0010 (5)0.0000.000
C30.0122 (6)0.0178 (7)0.0213 (7)0.0006 (5)0.0000.000
C40.0124 (7)0.0189 (7)0.0166 (7)0.0025 (5)0.0000.000
C50.0182 (7)0.0137 (7)0.0389 (9)0.0005 (5)0.0000.000
Geometric parameters (Å, º) top
O2—C21.2403 (18)N1—C51.4611 (16)
O1—C11.2204 (16)C2—C31.4422 (18)
N2—H10.8600C3—H20.9300
N2—C21.3813 (17)C3—C41.3469 (19)
N2—C11.3807 (18)C4—H30.9300
N1—C11.3776 (17)C5—H50.980 (14)
N1—C41.3669 (17)C5—H40.921 (19)
C2—N2—H1116.6N1—C1—N2115.10 (11)
C1—N2—H1116.6C2—C3—H2120.3
C1—N2—C2126.78 (11)C4—C3—C2119.30 (12)
C1—N1—C5117.22 (11)C4—C3—H2120.3
C4—N1—C1121.42 (12)N1—C4—H3118.6
C4—N1—C5121.36 (11)C3—C4—N1122.82 (11)
O2—C2—N2120.00 (11)C3—C4—H3118.6
O2—C2—C3125.42 (12)N1—C5—H5109.1 (8)
N2—C2—C3114.58 (13)N1—C5—H4104.9 (12)
O1—C1—N2122.10 (11)H5—C5—H4112.1 (10)
O1—C1—N1122.79 (12)
1-Methylpyrimidine-2,4(1H,3H)-dione (3Mo) top
Crystal data top
C5H6N2O2Dx = 1.555 Mg m3
Mr = 126.12Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, IbamCell parameters from 14193 reflections
a = 13.1643 (1) Åθ = 2.2–52.0°
b = 13.1840 (2) ŵ = 0.12 mm1
c = 6.2067 (2) ÅT = 123 K
V = 1077.22 (4) Å3Block
Z = 80.41 × 0.23 × 0.14 mm
F(000) = 528
Data collection top
Agilent SuperNova Dual four-circle
diffractometer with an Atlas detector
3266 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2580 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.056
Detector resolution: 16.0026 pixels mm-1θmax = 52.2°, θmin = 2.2°
ω scansh = 3333
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 3333
Tmin = 0.517, Tmax = 1.000l = 1513
3266 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.0821P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3266 reflectionsΔρmax = 0.78 e Å3
62 parametersΔρmin = 0.29 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.63523 (3)0.51908 (3)0.5000000.01549 (8)
O10.45422 (3)0.22546 (3)0.5000000.01730 (8)
N20.54722 (3)0.37095 (3)0.5000000.01268 (7)
H10.4919170.4056720.5000000.015*
N10.62703 (3)0.21344 (3)0.5000000.01261 (7)
C10.53733 (3)0.26711 (4)0.5000000.01209 (7)
C30.72746 (3)0.36378 (4)0.5000000.01317 (8)
H20.7912390.3941130.5000000.016*
C40.71868 (3)0.26175 (3)0.5000000.01227 (7)
H30.7775660.2227770.5000000.015*
C20.63704 (3)0.42505 (3)0.5000000.01164 (7)
C50.62029 (4)0.10342 (4)0.5000000.02022 (11)
H40.6883 (10)0.0828 (10)0.5000000.020 (3)*
H50.5862 (7)0.0807 (7)0.6241 (16)0.028 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.01175 (12)0.01082 (11)0.0239 (2)0.00063 (8)0.0000.000
O10.00829 (10)0.01549 (13)0.0281 (2)0.00171 (9)0.0000.000
N20.00769 (10)0.01167 (12)0.01868 (19)0.00116 (8)0.0000.000
N10.00852 (11)0.01082 (11)0.01848 (18)0.00088 (8)0.0000.000
C10.00760 (12)0.01240 (13)0.01628 (19)0.00041 (9)0.0000.000
C30.00776 (12)0.01254 (13)0.0192 (2)0.00031 (9)0.0000.000
C40.00795 (11)0.01275 (14)0.01611 (19)0.00152 (9)0.0000.000
C20.00884 (12)0.01148 (13)0.01460 (18)0.00082 (9)0.0000.000
C50.01406 (17)0.01151 (15)0.0351 (4)0.00049 (12)0.0000.000
Geometric parameters (Å, º) top
O2—C21.2399 (6)N1—C51.4533 (6)
O1—C11.2242 (6)C3—H20.9300
N2—H10.8600C3—C41.3501 (7)
N2—C11.3752 (6)C3—C21.4385 (6)
N2—C21.3809 (6)C4—H30.9300
N1—C11.3765 (6)C5—H40.935 (13)
N1—C41.3643 (6)C5—H50.940 (10)
C1—N2—H1116.7C2—C3—H2120.4
C1—N2—C2126.53 (4)N1—C4—H3118.6
C2—N2—H1116.7C3—C4—N1122.74 (4)
C1—N1—C5117.43 (4)C3—C4—H3118.6
C4—N1—C1121.24 (4)O2—C2—N2120.01 (4)
C4—N1—C5121.33 (4)O2—C2—C3125.26 (4)
O1—C1—N2122.08 (4)N2—C2—C3114.74 (4)
O1—C1—N1122.42 (4)N1—C5—H4103.4 (8)
N2—C1—N1115.50 (4)N1—C5—H5110.3 (6)
C4—C3—H2120.4H4—C5—H5111.4 (7)
C4—C3—C2119.25 (4)
10-Oxa-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione (1Neu) top
Crystal data top
C10H11NO3Z = 4
Mr = 193.20F(000) = 208
Monoclinic, P21/cDx = 1.412 Mg m3
a = 8.6809 (6) ÅNeutron radiation, λ = 0.38- 8.8 Å
b = 10.8826 (7) ŵ = 4.23+ 0.0137 * lambda mm1
c = 9.6214 (8) ÅT = 100 K
β = 90.150 (9)°Block
V = 908.94 (11) Å35.00 × 2.00 × 1.00 mm
Data collection top
SXD
diffractometer
7034 independent reflections
Radiation source: ISIS spallation neutron source7034 reflections with I > 2σ(I)
time–of–flight LAUE diffraction scansθmax = 84.7°, θmin = 8.3°
Absorption correction: numerical
SXD2001 Gaussian numerical integration
h = 2622
Tmin = 0.530, Tmax = 0.566k = 2731
7034 measured reflectionsl = 1927
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.095H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.220 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.56(Δ/σ)max < 0.001
7034 reflectionsΔρmax = 2.46 e Å3
227 parametersΔρmin = 2.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0179 (6)
Special details top

Experimental. The range of wavelengths used was 0.48-7.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given instead the following limits are given _diffrn_reflns_sin(theta)/lambda_min 0.07 _diffrn_reflns_sin(theta)/lambda_max 2.09 _refine_diff_density_max/min is given in Fermi per per angstrom cubed not electrons per angstrom cubed. Another way to consider the _refine_diff_density_ is as a percentage of the diffracted intensity of a given atom: _refine_diff_density_max = 5% of Carbon _refine_diff_density_min = -4% of Carbon Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4962 (2)0.20805 (16)0.0216 (2)0.0083 (3)
C20.2480 (2)0.08601 (16)0.0004 (2)0.0090 (3)
H20.2756 (5)0.0332 (4)0.0938 (5)0.0237 (9)
C30.1503 (2)0.02552 (16)0.1110 (2)0.0107 (4)
C40.0818 (2)0.11778 (17)0.1793 (2)0.0100 (3)
C50.13709 (19)0.23578 (15)0.10855 (19)0.0067 (3)
C60.3853 (2)0.36527 (15)0.10469 (19)0.0079 (3)
C70.3881 (2)0.14395 (15)0.07906 (19)0.0076 (3)
H70.4500 (5)0.0769 (4)0.1423 (5)0.0217 (9)
C80.30904 (19)0.24944 (15)0.15894 (19)0.0066 (3)
H80.3154 (5)0.2463 (4)0.2723 (4)0.0212 (9)
C90.0361 (2)0.34814 (16)0.1160 (2)0.0102 (4)
H9A0.0834 (5)0.4199 (4)0.0496 (6)0.0300 (11)
H9B0.0433 (5)0.3833 (4)0.2229 (5)0.0275 (10)
C100.1313 (2)0.3226 (2)0.0765 (2)0.0165 (4)
H10A0.1406 (6)0.2884 (6)0.0295 (6)0.0442 (15)
H10B0.1991 (6)0.4063 (5)0.0827 (7)0.0405 (15)
H10C0.1847 (6)0.2554 (6)0.1442 (7)0.0442 (16)
N10.48544 (15)0.33352 (12)0.00041 (15)0.0092 (2)
O10.3631 (3)0.47004 (18)0.1440 (2)0.0106 (4)
O20.5774 (3)0.1604 (2)0.1094 (3)0.0129 (4)
O30.1609 (2)0.19477 (18)0.0329 (2)0.0084 (4)
H30.1500 (6)0.0715 (4)0.1332 (6)0.0317 (11)
H40.0117 (6)0.1149 (5)0.2723 (5)0.0287 (10)
H1N0.5480 (5)0.3978 (4)0.0566 (5)0.0218 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0058 (7)0.0086 (7)0.0104 (8)0.0017 (5)0.0011 (6)0.0017 (5)
C20.0085 (7)0.0075 (7)0.0109 (8)0.0021 (6)0.0024 (6)0.0015 (5)
H20.026 (2)0.023 (2)0.022 (2)0.0013 (16)0.0057 (18)0.0097 (15)
C30.0111 (8)0.0068 (7)0.0143 (9)0.0012 (6)0.0049 (7)0.0006 (6)
C40.0093 (7)0.0095 (7)0.0111 (8)0.0024 (6)0.0035 (7)0.0013 (6)
C50.0061 (6)0.0062 (6)0.0077 (7)0.0010 (5)0.0014 (6)0.0011 (5)
C60.0077 (7)0.0064 (6)0.0096 (8)0.0001 (5)0.0008 (6)0.0013 (5)
C70.0070 (7)0.0061 (6)0.0096 (8)0.0008 (5)0.0002 (6)0.0013 (5)
H70.0202 (18)0.0197 (18)0.025 (2)0.0050 (14)0.0011 (17)0.0075 (14)
C80.0052 (6)0.0077 (7)0.0068 (7)0.0014 (5)0.0007 (6)0.0005 (5)
H80.027 (2)0.0228 (19)0.0138 (18)0.0019 (15)0.0025 (17)0.0027 (14)
C90.0072 (7)0.0090 (7)0.0144 (9)0.0019 (5)0.0007 (7)0.0014 (6)
H9A0.023 (2)0.024 (2)0.042 (3)0.0005 (16)0.002 (2)0.0119 (19)
H9B0.025 (2)0.031 (2)0.026 (2)0.0049 (17)0.0022 (19)0.0140 (18)
C100.0066 (7)0.0200 (10)0.0228 (11)0.0018 (6)0.0020 (8)0.0009 (8)
H10A0.028 (3)0.066 (4)0.038 (3)0.002 (3)0.009 (2)0.017 (3)
H10B0.023 (2)0.039 (3)0.059 (4)0.014 (2)0.006 (3)0.006 (3)
H10C0.024 (2)0.053 (4)0.056 (4)0.009 (2)0.003 (3)0.023 (3)
N10.0074 (5)0.0085 (5)0.0117 (6)0.0014 (4)0.0035 (5)0.0003 (4)
O10.0119 (9)0.0070 (8)0.0129 (10)0.0018 (6)0.0048 (8)0.0011 (7)
O20.0115 (9)0.0113 (9)0.0160 (11)0.0007 (7)0.0049 (8)0.0012 (7)
O30.0079 (8)0.0115 (8)0.0056 (8)0.0004 (6)0.0000 (7)0.0003 (6)
H30.041 (3)0.0117 (18)0.042 (3)0.0014 (17)0.012 (2)0.0052 (16)
H40.033 (2)0.030 (2)0.023 (2)0.0030 (19)0.013 (2)0.0030 (17)
H1N0.0213 (18)0.0157 (17)0.028 (2)0.0038 (14)0.0083 (18)0.0040 (15)
Geometric parameters (Å, º) top
C1—O21.217 (3)C5—O31.448 (3)
C1—N11.384 (2)C5—C91.506 (2)
C1—C71.520 (3)C5—C81.575 (2)
C2—O31.440 (3)C6—O11.217 (3)
C2—C31.513 (3)C6—N11.379 (3)
C2—C71.564 (2)C6—C81.517 (3)
C3—C41.340 (3)C7—C81.544 (3)
C4—C51.531 (3)C9—C101.526 (2)
O2—C1—N1124.2 (2)C4—C5—C8103.92 (12)
O2—C1—C7127.33 (19)O1—C6—N1124.3 (2)
N1—C1—C7108.48 (16)O1—C6—C8127.0 (2)
O3—C2—C3102.64 (17)N1—C6—C8108.70 (14)
O3—C2—C7100.58 (13)C1—C7—C8104.59 (14)
C3—C2—C7105.75 (15)C1—C7—C2110.91 (15)
C4—C3—C2105.61 (16)C8—C7—C2101.22 (13)
C3—C4—C5105.69 (18)C6—C8—C7104.57 (16)
O3—C5—C9112.29 (14)C6—C8—C5112.75 (12)
O3—C5—C4101.82 (15)C7—C8—C5101.46 (12)
C9—C5—C4118.44 (17)C5—C9—C10113.21 (15)
O3—C5—C8100.44 (15)C6—N1—C1113.46 (15)
C9—C5—C8117.38 (13)C2—O3—C596.92 (15)
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds