Download citation
Download citation
link to html
A new 1:1 cocrystal (L-Asc–Pic) of L-ascorbic acid (vitamin C) with picolinic acid was prepared as a powder and as single crystals. The crystal structure was solved and refined from single-crystal X-ray diffraction (SCXRD) data collected at 293 (2) and 100 (2) K. The samples of the L-Asc–Pic cocrystal were characterized by elemental (HCNS) analysis and titrimetric methods, TG/DTG/DSC, and IR and Raman spectroscopy. The asymmetric unit comprises a picolinic acid zwitterion and an L-ascorbic acid molecule. The stabilization energy of intermolecular interactions involving hydrogen bonds, the vibrational spectrum and the energies of the frontier molecular orbitals were calculated using the GAUSSIAN09 and the CrystalExplorer17 programs. The charge distribution on the atoms of the L-Asc–Pic cocrystal, L-ascorbic acid itself and its 12 known cocrystals (structures from Version 5.40 of the Cambridge Structural Database) were calculated by the methods of Mulliken, Voronoi and Hirshfeld charge analyses (ADF) at the bp86/TZ2P+ level of theory. The total effective charges and con­formations of the L-ascorbic acid molecules in the new and previously reported cocrystals were compared with those of the two symmetry-independent molecules in the crystals of L-ascorbic acid. A correlation between molecular con­formation and its effective charge is discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520620012421/px5026sup1.cif
Contains datablocks picasc_293, picasc_100

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620012421/px5026picasc_293sup2.hkl
Contains datablock picasc_293

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620012421/px5026picasc_100sup3.hkl
Contains datablock picasc_100

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520620012421/px5026sup4.pdf
Additional tables and figures

txt

Text file https://doi.org/10.1107/S2052520620012421/px5026sup5.txt
IR data of L-Asc-Pic cocrystal

txt

Text file https://doi.org/10.1107/S2052520620012421/px5026sup6.txt
IR data of L-ascorbic acid

txt

Text file https://doi.org/10.1107/S2052520620012421/px5026sup7.txt
IR data of the picolinic acid

txt

Text file https://doi.org/10.1107/S2052520620012421/px5026sup8.txt
Data of the Raman spectroscopy of the L-Asc-Pic cocrystal

txt

Text file https://doi.org/10.1107/S2052520620012421/px5026sup9.txt
Data of the Raman spectroscopy of the L-ascorbic acid

txt

Text file https://doi.org/10.1107/S2052520620012421/px5026sup10.txt
Data of the Raman spectroscopy of the picolinic acid

txt

Text file https://doi.org/10.1107/S2052520620012421/px5026sup11.txt
Powder diffraction data of the L-Asc-Pic cocrystal

CCDC references: 2031141; 2031142; 2031141; 2031142

Computing details top

Data collection: CrysAlis PRO, Agilent Technologies, Version 1.171.37.35 (release 13-08-2014 CrysAlis171 .NET) (compiled Aug 13 2014,18:06:01) for picasc_293; CrysAlis PRO 1.171.38.43d (Rigaku OD, 2015) for picasc_100. Cell refinement: CrysAlis PRO, Agilent Technologies, Version 1.171.37.35 (release 13-08-2014 CrysAlis171 .NET) (compiled Aug 13 2014,18:06:01) for picasc_293; CrysAlis PRO 1.171.38.43d (Rigaku OD, 2015) for picasc_100. Data reduction: CrysAlis PRO, Agilent Technologies, Version 1.171.37.35 (release 13-08-2014 CrysAlis171 .NET) (compiled Aug 13 2014,18:06:01) for picasc_293; CrysAlis PRO 1.171.38.43d (Rigaku OD, 2015) for picasc_100. For both structures, program(s) used to solve structure: ShelXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

L-ascorbic acid picolinic acid cocrystal (picasc_293) top
Crystal data top
C6H8O6·C6H5NO2Dx = 1.562 Mg m3
Mr = 299.23Melting point: 455.6 K
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
a = 29.1612 (4) ÅCell parameters from 13377 reflections
b = 9.2070 (1) Åθ = 2.1–31.5°
c = 4.7387 (1) ŵ = 0.13 mm1
V = 1272.28 (3) Å3T = 293 K
Z = 4Block, clear light yellow
F(000) = 6240.45 × 0.34 × 0.28 mm
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
3979 reflections with I > 2σ(I)
Detector resolution: 10.3457 pixels mm-1Rint = 0.020
ω scansθmax = 31.9°, θmin = 2.3°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.35 (release 13-08-2014 CrysAlis171 .NET) (compiled Aug 13 2014,18:06:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 4241
Tmin = 0.933, Tmax = 1.000k = 1313
23240 measured reflectionsl = 77
4223 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.1136P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.28 e Å3
4223 reflectionsΔρmin = 0.12 e Å3
229 parametersAbsolute structure: Flack x determined using 1551 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.4 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.53551 (4)0.85762 (11)0.3122 (2)0.0320 (2)
O10.57762 (3)0.75676 (12)0.1822 (2)0.0321 (2)
O40.57112 (3)0.48770 (12)0.3560 (3)0.0367 (3)
O80.68675 (4)0.40952 (13)0.5803 (3)0.0404 (3)
O60.44292 (3)0.86978 (14)0.1177 (3)0.0417 (3)
O30.67107 (3)0.61440 (14)0.2135 (3)0.0411 (3)
O70.61635 (4)0.33680 (13)0.7035 (3)0.0418 (3)
O20.65114 (4)0.82685 (14)0.2169 (3)0.0463 (3)
N10.64974 (4)0.15715 (13)1.0929 (3)0.0292 (2)
C30.58697 (4)0.58642 (14)0.1746 (3)0.0266 (2)
C20.62859 (4)0.64111 (15)0.1163 (3)0.0277 (2)
C70.67926 (4)0.24026 (15)0.9482 (3)0.0273 (2)
C10.62330 (5)0.74994 (16)0.1048 (3)0.0299 (3)
C50.51530 (4)0.74096 (15)0.1585 (3)0.0280 (2)
C120.65901 (5)0.33915 (14)0.7241 (3)0.0286 (2)
C40.55173 (4)0.65797 (15)0.0087 (3)0.0274 (2)
C110.66330 (5)0.06151 (16)1.2900 (3)0.0341 (3)
C60.47908 (5)0.80321 (18)0.0355 (3)0.0347 (3)
C80.72550 (5)0.22899 (19)1.0040 (4)0.0370 (3)
C100.70921 (6)0.04742 (18)1.3512 (3)0.0388 (3)
C90.74042 (5)0.1324 (2)1.2087 (4)0.0428 (4)
H5A0.5000 (8)0.673 (3)0.291 (4)0.051*
H4A0.5382 (7)0.585 (3)0.136 (5)0.051*
H110.6402 (8)0.005 (2)1.379 (5)0.051*
H60.4519 (8)0.948 (3)0.190 (6)0.064*
H80.7471 (7)0.285 (3)0.905 (5)0.051*
H10.6205 (8)0.170 (2)1.059 (5)0.051*
H6A0.4651 (8)0.727 (3)0.146 (5)0.051*
H6B0.4928 (7)0.871 (3)0.170 (5)0.051*
H90.7729 (7)0.123 (2)1.248 (5)0.051*
H30.6717 (9)0.541 (3)0.343 (6)0.064*
H100.7197 (8)0.023 (2)1.486 (5)0.051*
H40.5921 (9)0.446 (3)0.470 (6)0.064*
H50.5506 (8)0.830 (3)0.447 (6)0.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0367 (5)0.0309 (5)0.0283 (5)0.0016 (4)0.0080 (4)0.0016 (4)
O10.0312 (4)0.0383 (5)0.0267 (4)0.0021 (4)0.0004 (4)0.0084 (4)
O40.0273 (4)0.0347 (5)0.0479 (6)0.0022 (4)0.0028 (4)0.0175 (5)
O80.0349 (5)0.0431 (6)0.0433 (6)0.0048 (5)0.0034 (5)0.0170 (5)
O60.0227 (4)0.0391 (6)0.0633 (8)0.0007 (4)0.0017 (5)0.0121 (6)
O30.0238 (4)0.0512 (6)0.0482 (6)0.0003 (4)0.0009 (4)0.0194 (6)
O70.0286 (5)0.0495 (6)0.0475 (6)0.0034 (4)0.0028 (4)0.0201 (6)
O20.0408 (6)0.0527 (7)0.0456 (6)0.0049 (5)0.0069 (5)0.0200 (6)
N10.0261 (5)0.0307 (5)0.0309 (5)0.0012 (4)0.0001 (4)0.0050 (4)
C30.0257 (5)0.0244 (5)0.0299 (6)0.0006 (4)0.0005 (5)0.0028 (5)
C20.0263 (5)0.0295 (6)0.0274 (5)0.0016 (5)0.0004 (4)0.0034 (5)
C70.0266 (5)0.0282 (6)0.0269 (5)0.0024 (4)0.0003 (4)0.0030 (5)
C10.0308 (6)0.0333 (6)0.0257 (5)0.0016 (5)0.0024 (5)0.0040 (5)
C50.0248 (5)0.0276 (5)0.0315 (6)0.0008 (4)0.0003 (4)0.0041 (5)
C120.0319 (6)0.0261 (5)0.0279 (6)0.0023 (5)0.0024 (5)0.0026 (5)
C40.0263 (5)0.0278 (6)0.0283 (6)0.0003 (4)0.0035 (4)0.0028 (5)
C110.0375 (7)0.0326 (6)0.0323 (6)0.0010 (5)0.0023 (6)0.0071 (6)
C60.0254 (6)0.0389 (7)0.0397 (7)0.0053 (5)0.0081 (5)0.0040 (6)
C80.0269 (6)0.0453 (8)0.0388 (7)0.0026 (6)0.0013 (5)0.0110 (7)
C100.0405 (7)0.0411 (8)0.0349 (7)0.0117 (6)0.0014 (6)0.0098 (6)
C90.0292 (6)0.0565 (9)0.0427 (8)0.0102 (6)0.0023 (6)0.0133 (8)
Geometric parameters (Å, º) top
O5—C51.4252 (17)C3—C41.4980 (18)
O5—H50.82 (3)C2—C11.4580 (19)
O1—C11.3831 (16)C7—C121.5186 (18)
O1—C41.4399 (16)C7—C81.3779 (19)
O4—C31.3338 (16)C5—C41.5298 (19)
O4—H40.90 (3)C5—C61.5130 (18)
O8—C121.2402 (17)C5—H5A0.99 (2)
O6—C61.4193 (18)C4—H4A0.99 (3)
O6—H60.84 (3)C11—C101.376 (2)
O3—C21.3443 (16)C11—H110.95 (2)
O3—H30.91 (3)C6—H6A0.96 (2)
O7—C121.2478 (16)C6—H6B0.98 (2)
O2—C11.2011 (18)C8—C91.386 (2)
N1—C71.3404 (17)C8—H80.94 (2)
N1—C111.3432 (18)C10—C91.377 (2)
N1—H10.88 (2)C10—H100.96 (2)
C3—C21.3426 (18)C9—H90.97 (2)
C5—O5—H5112.5 (19)O8—C12—C7116.35 (12)
C1—O1—C4108.95 (10)O7—C12—C7115.59 (12)
C3—O4—H4116.1 (16)O1—C4—C3104.43 (10)
C6—O6—H6110.3 (17)O1—C4—C5110.14 (11)
C2—O3—H3112.6 (16)O1—C4—H4A106.9 (14)
C7—N1—C11122.74 (12)C3—C4—C5113.31 (11)
C7—N1—H1116.8 (16)C3—C4—H4A109.1 (14)
C11—N1—H1120.4 (16)C5—C4—H4A112.4 (13)
O4—C3—C2134.53 (12)N1—C11—C10119.65 (13)
O4—C3—C4115.83 (11)N1—C11—H11117.4 (14)
C2—C3—C4109.63 (12)C10—C11—H11122.9 (14)
O3—C2—C1117.99 (12)O6—C6—C5111.82 (13)
C3—C2—O3133.95 (13)O6—C6—H6A106.0 (14)
C3—C2—C1108.05 (11)O6—C6—H6B111.3 (13)
N1—C7—C12116.76 (11)C5—C6—H6A110.5 (14)
N1—C7—C8119.17 (13)C5—C6—H6B110.6 (12)
C8—C7—C12124.04 (13)H6A—C6—H6B106.4 (19)
O1—C1—C2108.88 (11)C7—C8—C9119.33 (14)
O2—C1—O1120.46 (13)C7—C8—H8121.3 (14)
O2—C1—C2130.66 (13)C9—C8—H8119.4 (14)
O5—C5—C4110.73 (10)C11—C10—C9119.08 (14)
O5—C5—C6108.27 (11)C11—C10—H10121.0 (14)
O5—C5—H5A109.8 (13)C9—C10—H10119.9 (14)
C4—C5—H5A108.9 (13)C8—C9—H9119.9 (14)
C6—C5—C4111.06 (11)C10—C9—C8120.02 (14)
C6—C5—H5A108.0 (13)C10—C9—H9120.1 (14)
O8—C12—O7128.04 (13)
O5—C5—C4—O153.45 (14)C7—N1—C11—C100.6 (2)
O5—C5—C4—C363.11 (14)C7—C8—C9—C100.9 (3)
O5—C5—C6—O663.31 (15)C1—O1—C4—C32.11 (14)
O4—C3—C2—O32.3 (3)C1—O1—C4—C5119.87 (11)
O4—C3—C2—C1178.90 (15)C12—C7—C8—C9178.37 (15)
O4—C3—C4—O1179.59 (11)C4—O1—C1—O2177.83 (14)
O4—C3—C4—C560.53 (16)C4—O1—C1—C22.19 (15)
O3—C2—C1—O1177.64 (12)C4—C3—C2—O3178.77 (16)
O3—C2—C1—O22.3 (3)C4—C3—C2—C10.00 (16)
N1—C7—C12—O8176.05 (13)C4—C5—C6—O6174.92 (12)
N1—C7—C12—O72.40 (19)C11—N1—C7—C12177.71 (13)
N1—C7—C8—C90.2 (2)C11—N1—C7—C80.6 (2)
N1—C11—C10—C90.2 (2)C11—C10—C9—C80.9 (3)
C3—C2—C1—O11.36 (16)C6—C5—C4—O166.88 (14)
C3—C2—C1—O2178.66 (16)C6—C5—C4—C3176.56 (12)
C2—C3—C4—O11.28 (15)C8—C7—C12—O82.2 (2)
C2—C3—C4—C5118.59 (13)C8—C7—C12—O7179.38 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O4i0.99 (2)2.57 (2)3.4146 (17)143 (2)
C11—H11···O2ii0.95 (2)2.54 (2)3.2020 (19)127 (2)
O6—H6···O5iii0.84 (3)1.92 (3)2.7468 (16)170 (3)
N1—H1···O6iv0.88 (2)1.91 (2)2.7158 (15)153 (2)
C6—H6A···O7v0.96 (2)2.55 (2)3.3072 (18)136 (2)
C9—H9···O8vi0.97 (2)2.43 (2)3.1182 (19)128 (2)
O3—H3···O80.91 (3)1.71 (3)2.6055 (16)166 (2)
O4—H4···O70.90 (3)1.65 (3)2.5261 (15)162 (2)
O5—H5···O1vii0.82 (3)2.04 (3)2.8480 (14)170 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z+2; (iii) x+1, y+2, z; (iv) x+1, y+1, z+1; (v) x+1, y+1, z1; (vi) x+3/2, y1/2, z+2; (vii) x, y, z+1.
L-ascorbic acid picolinic acid cocrystal (picasc_100) top
Crystal data top
C6H8O6·C6H5NO2Dx = 1.589 Mg m3
Mr = 299.23Melting point: 455.6 K
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
a = 29.0583 (2) ÅCell parameters from 31071 reflections
b = 9.15479 (8) Åθ = 2.3–37.1°
c = 4.70223 (4) ŵ = 0.14 mm1
V = 1250.90 (2) Å3T = 100 K
Z = 4Block, clear light colourless
F(000) = 6240.45 × 0.34 × 0.28 mm
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
6109 reflections with I > 2σ(I)
Detector resolution: 10.3457 pixels mm-1Rint = 0.026
ω scansθmax = 37.2°, θmin = 2.3°
Absorption correction: multi-scan
CrysAlisPro 1.171.38.43d (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 4848
Tmin = 0.940, Tmax = 1.000k = 1515
43507 measured reflectionsl = 77
6327 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.0676P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.48 e Å3
6327 reflectionsΔρmin = 0.21 e Å3
229 parametersAbsolute structure: Flack x determined using 2532 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.06 (11)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.53512 (2)0.85824 (7)0.30684 (14)0.01359 (10)
O10.57740 (2)0.75786 (7)0.19051 (13)0.01356 (10)
O40.57101 (2)0.48652 (7)0.35082 (15)0.01548 (11)
O60.44216 (2)0.87053 (8)0.11308 (16)0.01735 (12)
O30.67143 (2)0.61520 (7)0.20889 (16)0.01722 (12)
O70.61659 (2)0.33718 (7)0.70252 (15)0.01718 (11)
O20.65132 (2)0.82976 (8)0.22328 (16)0.01889 (12)
N10.65040 (2)0.15662 (7)1.09411 (15)0.01225 (11)
C30.58680 (2)0.58599 (8)0.16891 (16)0.01144 (11)
C20.62876 (2)0.64171 (8)0.11053 (16)0.01192 (11)
C70.68004 (2)0.24041 (8)0.94740 (16)0.01155 (11)
C10.62320 (3)0.75137 (8)0.11130 (16)0.01272 (12)
C50.51482 (2)0.74076 (8)0.15229 (17)0.01210 (11)
C120.65971 (3)0.33865 (8)0.72107 (17)0.01203 (11)
C40.55152 (2)0.65769 (8)0.01596 (16)0.01175 (11)
C110.66405 (3)0.06107 (8)1.29354 (18)0.01417 (12)
C60.47830 (3)0.80348 (9)0.04281 (18)0.01481 (13)
C80.72665 (3)0.23090 (10)1.00474 (18)0.01525 (13)
C100.71033 (3)0.04775 (9)1.35706 (18)0.01561 (13)
C90.74185 (3)0.13455 (10)1.2133 (2)0.01716 (14)
H5A0.4994 (6)0.6696 (17)0.282 (3)0.021*
H60.4491 (6)0.949 (2)0.184 (4)0.026*
H4A0.5380 (5)0.5807 (18)0.146 (4)0.021*
H110.6407 (5)0.0027 (17)1.385 (4)0.021*
H80.7473 (5)0.2898 (19)0.900 (3)0.021*
H6A0.4653 (5)0.7282 (18)0.153 (4)0.021*
H10.6213 (5)0.1675 (17)1.067 (4)0.021*
H6B0.4918 (5)0.8700 (18)0.173 (4)0.021*
H100.7216 (6)0.0198 (18)1.488 (4)0.021*
H90.7742 (5)0.1280 (18)1.261 (3)0.021*
H50.5499 (5)0.8266 (19)0.436 (4)0.026*
H30.6736 (6)0.539 (2)0.335 (4)0.026*
H40.5910 (6)0.449 (2)0.460 (4)0.026*
O80.68761 (2)0.40848 (7)0.57260 (14)0.01609 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0154 (2)0.0132 (2)0.0121 (2)0.00011 (18)0.00343 (18)0.00037 (18)
O10.0120 (2)0.0164 (2)0.0123 (2)0.00059 (18)0.00023 (17)0.00387 (19)
O40.0119 (2)0.0148 (2)0.0198 (3)0.00118 (17)0.00109 (19)0.0076 (2)
O60.0099 (2)0.0166 (2)0.0255 (3)0.00057 (18)0.0002 (2)0.0053 (2)
O30.0101 (2)0.0211 (3)0.0205 (3)0.00022 (18)0.0012 (2)0.0085 (2)
O70.0112 (2)0.0208 (3)0.0196 (3)0.00122 (18)0.0005 (2)0.0078 (2)
O20.0163 (2)0.0214 (3)0.0190 (3)0.0019 (2)0.0028 (2)0.0078 (2)
N10.0111 (2)0.0127 (2)0.0130 (3)0.00030 (18)0.00018 (19)0.0023 (2)
C30.0109 (2)0.0111 (2)0.0123 (3)0.0001 (2)0.0004 (2)0.0017 (2)
C20.0107 (2)0.0127 (3)0.0125 (3)0.0004 (2)0.0000 (2)0.0022 (2)
C70.0111 (2)0.0121 (3)0.0114 (3)0.0006 (2)0.0001 (2)0.0016 (2)
C10.0123 (3)0.0140 (3)0.0118 (3)0.0008 (2)0.0007 (2)0.0017 (2)
C50.0108 (2)0.0122 (2)0.0133 (3)0.0002 (2)0.0004 (2)0.0012 (2)
C120.0127 (3)0.0116 (2)0.0118 (3)0.0008 (2)0.0008 (2)0.0014 (2)
C40.0110 (3)0.0122 (3)0.0121 (3)0.0001 (2)0.0011 (2)0.0012 (2)
C110.0150 (3)0.0140 (3)0.0135 (3)0.0005 (2)0.0005 (2)0.0035 (2)
C60.0110 (3)0.0165 (3)0.0169 (3)0.0020 (2)0.0026 (2)0.0019 (2)
C80.0115 (3)0.0183 (3)0.0160 (3)0.0010 (2)0.0002 (2)0.0042 (3)
C100.0153 (3)0.0169 (3)0.0147 (3)0.0038 (2)0.0002 (2)0.0036 (2)
C90.0126 (3)0.0217 (3)0.0172 (3)0.0034 (2)0.0002 (2)0.0053 (3)
O80.0139 (2)0.0174 (2)0.0170 (2)0.00192 (19)0.0004 (2)0.0064 (2)
Geometric parameters (Å, º) top
O5—C51.4258 (10)C2—C11.4567 (11)
O5—H50.797 (18)C7—C121.5135 (10)
O1—C11.3832 (9)C7—C81.3836 (10)
O1—C41.4423 (9)C5—C41.5303 (10)
O4—C31.3309 (9)C5—C61.5157 (11)
O4—H40.846 (18)C5—H5A0.999 (16)
O6—C61.4202 (10)C12—O81.2463 (10)
O6—H60.818 (18)C4—H4A1.012 (17)
O3—C21.3456 (9)C11—C101.3828 (11)
O3—H30.922 (18)C11—H110.963 (16)
O7—C121.2560 (9)C6—H6A0.942 (16)
O2—C11.2083 (10)C6—H6B0.947 (17)
N1—C71.3439 (10)C8—C91.3912 (12)
N1—C111.3424 (10)C8—H80.946 (16)
N1—H10.861 (15)C10—C91.3882 (12)
C3—C21.3500 (10)C10—H100.933 (16)
C3—C41.4956 (10)C9—H90.969 (15)
C5—O5—H5109.6 (12)O8—C12—O7127.99 (7)
C1—O1—C4108.73 (6)O8—C12—C7116.41 (7)
C3—O4—H4115.4 (12)O1—C4—C3104.63 (6)
C6—O6—H6114.2 (12)O1—C4—C5109.98 (6)
C2—O3—H3114.9 (10)O1—C4—H4A107.5 (10)
C7—N1—H1119.1 (11)C3—C4—C5113.28 (6)
C11—N1—C7122.76 (7)C3—C4—H4A108.2 (9)
C11—N1—H1118.1 (12)C5—C4—H4A112.8 (9)
O4—C3—C2134.47 (7)N1—C11—C10119.72 (7)
O4—C3—C4115.96 (6)N1—C11—H11117.6 (10)
C2—C3—C4109.57 (6)C10—C11—H11122.6 (10)
O3—C2—C3133.98 (7)O6—C6—C5111.66 (7)
O3—C2—C1118.21 (6)O6—C6—H6A107.7 (10)
C3—C2—C1107.81 (6)O6—C6—H6B111.1 (10)
N1—C7—C12116.74 (6)C5—C6—H6A109.7 (10)
N1—C7—C8119.43 (7)C5—C6—H6B110.1 (9)
C8—C7—C12123.82 (7)H6A—C6—H6B106.3 (14)
O1—C1—C2109.22 (6)C7—C8—C9119.21 (7)
O2—C1—O1120.52 (7)C7—C8—H8118.8 (9)
O2—C1—C2130.27 (7)C9—C8—H8121.9 (9)
O5—C5—C4110.49 (6)C11—C10—C9119.08 (7)
O5—C5—C6108.21 (6)C11—C10—H10122.9 (10)
O5—C5—H5A111.5 (9)C9—C10—H10118.0 (10)
C4—C5—H5A107.7 (9)C8—C9—H9120.7 (10)
C6—C5—C4111.30 (6)C10—C9—C8119.78 (7)
C6—C5—H5A107.7 (9)C10—C9—H9119.5 (10)
O7—C12—C7115.59 (7)
O5—C5—C4—O153.40 (8)C7—N1—C11—C100.89 (12)
O5—C5—C4—C363.27 (8)C7—C8—C9—C101.14 (14)
O5—C5—C6—O663.17 (8)C1—O1—C4—C32.12 (8)
O4—C3—C2—O32.23 (17)C1—O1—C4—C5119.85 (6)
O4—C3—C2—C1178.82 (9)C12—C7—C8—C9178.57 (8)
O4—C3—C4—O1179.62 (6)C4—O1—C1—O2177.68 (8)
O4—C3—C4—C560.60 (9)C4—O1—C1—C22.32 (8)
O3—C2—C1—O1177.57 (7)C4—C3—C2—O3178.75 (9)
O3—C2—C1—O22.42 (14)C4—C3—C2—C10.19 (9)
N1—C7—C12—O73.36 (10)C4—C5—C6—O6175.25 (6)
N1—C7—C12—O8175.20 (7)C11—N1—C7—C12177.63 (7)
N1—C7—C8—C90.03 (12)C11—N1—C7—C81.07 (12)
N1—C11—C10—C90.33 (13)C11—C10—C9—C81.32 (13)
C3—C2—C1—O11.57 (9)C6—C5—C4—O166.84 (8)
C3—C2—C1—O2178.44 (9)C6—C5—C4—C3176.49 (6)
C2—C3—C4—O11.16 (8)C8—C7—C12—O7178.01 (8)
C2—C3—C4—C5118.61 (7)C8—C7—C12—O83.44 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O4i1.00 (2)2.52 (2)3.3796 (10)144 (1)
O6—H6···O5ii0.82 (2)1.91 (2)2.7260 (9)173 (2)
C11—H11···O2iii0.96 (2)2.45 (2)3.1278 (10)127 (1)
C6—H6A···O7iv0.94 (2)2.55 (2)3.2704 (10)134 (1)
N1—H1···O6v0.86 (2)1.89 (2)2.7026 (9)157 (2)
C9—H9···O8vi0.97 (2)2.42 (2)3.0820 (10)125 (1)
O5—H5···O1vii0.80 (2)2.03 (2)2.8179 (9)169 (2)
O3—H3···O80.92 (2)1.68 (2)2.5937 (9)170 (2)
O4—H4···O70.85 (2)1.71 (2)2.5216 (9)161 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x, y1, z+2; (iv) x+1, y+1, z1; (v) x+1, y+1, z+1; (vi) x+3/2, y1/2, z+2; (vii) x, y, z+1.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds